15-410

“My other car is a cdr” -- Unknown

Exam #1
Oct. 20, 2025

Dave Eckhardt
Babu Pillai

L2 O_Exam

15-410, F'25

Synchronization

Checkpoint schedule (NOTE NEW HASH FUNCTION)

= Friday during class time
= Meet in Wean 5207
= If your group number ends with
» 0-2 try to arrive 10:55-11:00 (5 minutes early)
» 3-b arrive at 11:13:17
» 6-9 arrive at 11:31:19
= Preparation
= Your kernel should be in mygroup/p3ck2
= We are expecting everybody (even if not quite done)
» Unless you notify us by noon on Thursday

15-410, F'25

Synchronization

Checkpoint 2 - alerts

= Reminder: context switch # timer interrupt!
= Timer interrupt is a special case

= Some timer interrupts will not cause context switch
» Really!

= Most context-switch invocations will have nothing to do with
the timer

» Really!

15-410, F'25

Synchronization

Checkpoint 2 - alerts

= Reminder: context switch # timer interrupt!
= Timer interrupt is a special case

= Some timer interrupts will not cause context switch
» Really!

= Most context-switch invocations will have nothing to do with
the timer

» Really!

= Please read the handout warnings about context switch
and mode switch and IRET very carefully

= Each warning is there because of a big mistake which was
very painful for previous students

15-410, F'25

Synchronization

Book report!

= This your approximately-mid-semester reminder about the
book report assignment

15-410, F'25

10

Synchronization

Asking for trouble?
= If you aren't using source control, that is probably a
mistake
= If your code isn't in your 410 AFS space every day, you
are asking for trouble
= GitHub sometimes goes down!
» S$'13: on P4 hand-in day (really!)

= Roughly 30% of groups have blank REPOSITORY
directories...

15-410, F'25

Synchronization

Asking for trouble?

= If you aren't using source control, that is probably a
mistake
= If your code isn't in your 410 AFS space every day, you
are asking for trouble
= GitHub sometimes goes down!
» S$'13: on P4 hand-in day (really!)
= Roughly 30% of groups have blank REPOSITORY
directories...
= If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble
= Don't forget about CC=clang / CC=clangalyzer
= Using a variety of compilers is likely to expose issues

11 15-410, F'25

12

Synchronization

Asking for trouble?

If you aren't using source control, that is probably a
mistake
If your code isn't in your 410 AFS space every day, you
are asking for trouble

= GitHub sometimes goes down!

» S$'13: on P4 hand-in day (really!)
= Roughly 30% of groups have blank REPOSITORY
directories...

If your code isn't built and tested on Andrew Linux every
two or three days, you are asking for trouble

= Don't forget about CC=clang / CC=clangalyzer

= Using a variety of compilers is likely to expose issues
Running your code on the crash box may be useful

= But if you aren't doing it fairly regularly, the first “release”

may take a /ong time
15-410, F'25

14

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

15-410, F'25

15

Synchronization

Debugging advice

= Once as | was buying lunch | received a fortune

Y(JL_lr problem just got bigger.
I'hink, what have you done?

Image credit: Kartik Subramanian

15-410, F'25

A Word on the Final Exam

Disclaimer
= Past performance is not a guarantee of future results

The class will change

= Up to now: “basics” - What you need for Project 3
= Coming: advanced topics

= Design issues

= Things you won't experience via implementation

Examination will change to match
= More design questions
= Some things you won't have implemented (text useful!!)

= Still 3 hours, but could be more stuff (~85 points,
~6 questions)

16 15-410, F'25

18

Thanks for Avoiding Faint Pencil!

It wasn't a problem on the mid-term
= Let's keep it that way for the final exam!

15-410, F'25

“See Course Staff”

If your exam says “see course staff”...
= ...you should!

This generally indicates a serious misconception...

= ...Wwhich we fear will seriously harm code you are writing
NOW...

= ...which we believe requires personal counseling, not just
a brief note, to clear up.

..though it might instead indicate a complex
subtiety...

= ...which we believe will benefit from personal counseling,
not just a brief note, to clear up.

“See Instructor”...

= ...means it is probably a good idea to see an instructor...
20 = ...It does not necessarily imply disaster. 15-410, F'25

21

“Low Exam-Score Syndrome”

What if my score is really low????

= |t is frequently possible to do dramatically better on the
final exam

= Specific suggestions later
= Please execute those instructions in order

15-410, F'25

22

Outline

Question 1
Question 2
Question 3
Question 4
Question 5

15-410, F'25

24

Q1 - Short Answer

Three parts

= Condition-variable rules
= Top/bottom halves
= Trap vs. interrupt

15-410, S'22

Q1a - Condition-variable rules

Basic idea: awareness of how cvars should function

= How should they behave?
= How should applications use them?

Information sources

= Synchronization lectures
= Exam-review material

At a very high level

= Threads that should not run should block
= Threads that are unblocked should be able to run
= The three rules given in lecture are less overly abstract

25 15-410, S'22

26

Q1a - Condition-variable rules

Common issue

= Many students discussed cvar internals

= But application code has the responsibility to use cvars
responsibly

= Lots of partial credit

15-410, S'22

27

Q1b — Top/Bottom Halves

Question goal
= Recall a key principle for dividing code in device drivers

Information sources

= “Hardware” lecture
= Project 1 lecture

Results

= Some very “creative” answers
= Many correct responses

15-410, S'22

28

Q1c — Trap vs. Interrupt

Information sources
= “Hardware” lecture

Results

= Responses were generally good
= Try not to mix the two up!

15-410, S'22

29

Q1 — Results

Scores

= ~50% of the class scored 7/10 or above (good)
= ~20% of the class scored below 5/10

15-410, F'25

31

Q2 — Pausable Semaphores

What we were testing

= Primarily: ability to find and show race conditions
= Also: knowledge of what a c.s. algorithm should do

15-410, S'22

32

Q2 — Pausable Semaphores

What we were testing

= Primarily: ability to find and show race conditions
= Also: knowledge of what a c.s. algorithm should do

Cautions

= It is not ok to assume illegal use of a synch object, then
show a “race condition”!

= Itis good to inspect “if vs. while”, but “every if is a
bug” is not a rule

= “Every other thread can go before me once” is the
opposite of a bounded-waiting failure (“once” is a bound!)

= “The pause operation must instantly freeze all other

threads” is too strong — showing it doesn't happen isn't

showing a failure 15-410 S22

33

Q2 — Pausable Semaphores

Guidance
= One synchronization failure assumes dubious usage by
one of the threads
= This dubious usage does not appear in the sample
program

= One synchronization failure is much more likely to occur
than the other

= If you found one, finding the other one might be good
practice (though the other one might be subtle)

15-410, S'22

34

Q2 - Results

Scores

= 54% of the class got 14/15 or 15/15 (good!)
= ~20% of the class scored below 10/15 (10/15 == 60%)

15-410, F'25

35

Q3 - “Super Semaphores”

Question goal

= Slight modification of typical “write a synchronization
object” exam question

Interesting question features
= Can be done well with or without aux structs
= If you solved it one way, maybe try again a different way?

= Some short solutions and some long solutions are
reasonable

15-410, F'25

Q3 - “Super Semaphores”

Question goal

= Slight modification of typical “write a synchronization
object” exam question

Interesting question features

= Can be done well with or without aux structs
= If you solved it one way, maybe try again a different way?
= Some short solutions and some long solutions are
reasonable
= Some short solutions are not stellar, though

» Piling a bunch of threads up on a mutex for an indefinite
period of time is short but probably turns the fans on

» An rwlock is arguably anti-good at stopping threads
promptly

15-410, F'25

37

Q3 - “Super Semaphores”

Things to watch out for

= Many solutions included starvation (perhaps of threads
requesting “too many” thingies)

= There were some progress failures (threads waiting
indefinitely despite sufficient thingies being present)

= Does the right thing happen if a sighal() operation
deposits quite a few thingies?

= Avoid “thundering herd” aka “churn”

= One giant cvar

= Unbounded number of threads of all types waiting on it for
different things

= cond_broadcast () wakes everybody up and many threads
must block again
= When possible, cond_signal()/cond_broadcast()
outside of a mutex is better than inside

15-410, F'25

Q3 - “Super Semaphores”

General note on blocking

= Threads that can't do productive work should stop
running

= Once stopped, a thread should remain stopped until there
is a reasonable likelihood that it can do productive work

38 15-410, F'25

Q3 - “Super Semaphores”

General note on blocking
= Threads that can't do productive work should stop
running

= Once stopped, a thread should remain stopped until there
is a reasonable likelihood that it can do productive work

General conceptual problems
= “x() takes a pointer” does not mean “x() must call
malloc()”
= Assigning to a function parameter changes the /ocal copy
= It has no effect on the calling function's value
= Cisn't C++ or Pascal (luckily!)
= See course staff about any general conceptual problems
revealed by this specific exam question

39 15-410, F'25

Q3 - “Super Semaphores”

Approach guidance

= This question mixes counting with blocking for two very-
different reasons (but maybe it's three different reasons?)

= Existing primitives implement counting and blocking and
unblocking

» So it is possible to offload lots of work

» But it is important to keep track of who should receive
priority to take various steps

= Pseudo-code/outline sfrongly suggested
= Pseudo-code/outline all parts before coding any part
= Consider writing helper functions!

= “First I'll code up wait(), then I'll code up signal()” is much
less likely to result in correct code

15-410, F'25

Q3 - “Super Semaphores”

Important general advice!

= It's a good idea to trace through your code and make sure
that at least the simplest cases work without races or
threads getting stuck

= If the question provides example traces, it's prudent to check
that your code does the right thing for those traces!

Other things to watch out for
= Memory leaks
= Memory allocation / pointer mistakes
= Forgetting to shut down underlying primitives
= Parallel arrays (use structs instead)

43 15-410, F'25

44

Q3 - “Super Semaphores”

Outcomes

= ~60% of the class scored 16/20 or better (80%+)
= This question is arguably “not super hard”

= ~20% of the class “did not do ok” (under 60%))
= These outcomes are concerning

Other questions in this category are harder
= Perhaps a final-exam question might be harder

15-410, F'25

45

Q4 - Blocking (“Process Model”)

For full credit

= Blocked thread can't run until a specific event
= Blocked thread is not in a run queue

15-410, S'22

Q4 - Blocking (“Process Model”)

For full credit

= Blocked thread can't run until a specific event
= Blocked thread is not in a run queue

Dangerous idea

= “If a thread invokes gettid(), the thread's execution is
suspended until the system call returns.”
= This is dangerously wrong.
= The thread isn't suspended: it's running gettid()!

46 15-410, S'22

Q4 - Blocking (“Process Model”)

For full credit

= Blocked thread can't run until a specific event
= Blocked thread is not in a run queue

Dangerous idea

= “If a thread invokes gettid(), the thread's execution is
suspended until the system call returns.”
= This is dangerously wrong.
= The thread isn't suspended: it's running gettid()!

Common misconception

= Question text reminds: especially on a multiprocessor,
“might need a lock” does not mean “likely to block”

= Remember that we assume most locks are usually not
contested and are held briefly

47 15-410, S'22

Q4 - Blocking (“Process Model”)

For full credit

= Blocked thread can't run until a specific event
= Blocked thread is not in a run queue

Dangerous idea

= “If a thread invokes gettid(), the thread's execution is
suspended until the system call returns.”
= This is dangerously wrong.
= The thread isn't suspended: it's running gettid()!

Common misconception

= Question text reminds: especially on a multiprocessor,
“might need a lock” does not mean “likely to block”
= Remember that we assume most locks are usually not
contested and are held briefly
= Sometimes we use a synch object that blocks threads, but
48 locking and blocking are not the same thing 15-410, S'22

49

Q4 - Blocking (“Process Model”)

Common glitches

= Vagueness about non-runnability (common deduction:
“_1 OOQ”)

= Explaining why part of new_pages () should be
straightforward

= There are two other parts!

15-410, S'22

Q4 - Blocking (“Process Model”)

Common glitches

= Vagueness about non-runnability (common deduction:
“_1 OOQ”)

= Explaining why part of new_pages () should be
straightforward
= There are two other parts!

The “hierarchy”
= Running and doing useful work (user mode or kernel
mode)
= [Running and doing “locking work™]
= Runnable but not running (in scheduler “run queue”)
= Blocked = not running and not runnable

15-410, S'22

51

Q4 - Blocking (“Process Model”)

Results

= Many students got 8/10 or better

= Scores below 7/10 are concerning
= Blocking is a key concept

15-410, S'22

52

Q5a — Nuts & Bolts: “capture %eip”

Purpose: Think about using familiar asm instructions

in unfamiliar ways.
= Can be solved with one or two lines of code

= Two approaches
= Use a (very) common instruction that manipuates %eip
= Use linker's ability to assign absolute addresses to symbols

Outcomes
= Reasonable distribution of scores
= Not legal to use %eip as an instruction argument (x86-32)

= Partial credit given for some kind of valid %eip
manipulation

15-410, S'22

Q5b — Nuts & Bolts: variable locations

Purpose: Review your understanding of a basic idea.

= 2in BSS
= 1in data
= 3 in stack (2 in a special place)

Outcomes

= This should be an easy/fast question

= For the rest of the semester you will spend a lot of time
debugging stacks!

= Some perfect scores, but arguably not enough

53 15-410, S'22

54

Q5 — Results

Overall outcomes

= ~30% got 10/10
= Scores under 8/10 (1/6 of class) are arguably concerning

15-410, S'22

DO

Breakdown

90% = 58.5 5 students (57.0 and up)
80% = 52.0 10 students (52.6 to 56.0)
70% = 45.5 7 students (44.0 to 51.0)
60% = 39.0 3 students (38.60 to 43.0)
50% = 32.5 1 student (31.0 to 37.0)
40% = 26.0 ® students

<40% 1 student

Comparison/calibration
= Overall scores don't look blatantly problematic

15-410, F'25

60

Implications

Score below 50?

= Form a “theory of what happened”
= Not enough textbook time?
= Not enough reading of partner's code?
= Lecture examples “read” but not grasped?
= Sample exams “scanned” but not solved?
= It is important to do better on the final exam

15-410, F'25

Implications

Score below 50?

= Form a “theory of what happened”
= Not enough textbook time?
= Not enough reading of partner's code?
= Lecture examples “read” but not grasped?
= Sample exams “scanned” but not solved?
= It is important to do better on the final exam
= Historically, an explicit plan works much better than “I'll try
harder”
= Strong suggestion:
» ldentify causes, draft a plan, see instructor

61 15-410, F'25

62

Implications

Score below 40?

= Something went noticeably wrong
= It's important to figure out what!
= Beware of “triple whammy”
= Low score on three “core” questions
= Generally Q2, Q3, Q4
= Passing the final exam could be a challenge
= Passing the class may be at risk!

= To pass the class you must demonstrate proficiency on
exams (not just project grades)

15-410, F'25

63

Implications

Score below 40?

= Something went noticeably wrong
= It's important to figure out what!
Beware of “triple whammy”
= Low score on three “core” questions
= Generally Q2, Q3, Q4
Passing the final exam could be a challenge
Passing the class may be at risk!

= To pass the class you must demonstrate proficiency on
exams (not just project grades)

Try to identify causes, draft a plan, see instructor
= Good news: explicit, actionable plans usually work well

15-410, F'25

64

Action plan

Please follow steps in order:
1. Identify causes
2. Draft a plan
3. See instructor

15-410, F'25

Action plan

Please follow steps in order:
1. Identify causes
2. Draft a plan
3. See instructor

Please avoid:

= “| am worried about my exam, what should | do?”
= Each person should do something different!

= The “identify causes” and “draft a plan” steps are individual,
and depend on some things not known by us

65 15-410, F'25

Action plan

Please follow steps in order:
1. Identify causes
2. Draft a plan
3. See instructor

Please avoid:

= “| am worried about my exam, what should | do?”
= Each person should do something different!

= The “identify causes” and “draft a plan” steps are individual,
and depend on some things not known by us

General plea

= Please check to see whether there is something we
strongly recommend that you have been skipping
because you never needed to do that thing before
= This class is different

66 15-410, F'25

