
15-410, F'251

Exam #1
Oct. 20, 2025

Dave EckhardtDave Eckhardt

Babu PillaiBabu Pillai

L20_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, F'252

Synchronization

Checkpoint schedule Checkpoint schedule (NOTE NEW HASH FUNCTION)(NOTE NEW HASH FUNCTION)
 Friday during class time
 Meet in Wean 5207

 If your group number ends with
» 0-2 try to arrive 10:55-11:00 (5 minutes early)
» 3-5 arrive at 11:13:17
» 6-9 arrive at 11:31:19

 Preparation
 Your kernel should be in mygroup/p3ck2
 We are expecting everybody (even if not quite done)

» Unless you notify us by noon on Thursday

15-410, F'256

Synchronization

Checkpoint 2 - alertsCheckpoint 2 - alerts
 Reminder: context switch ≠ timer interrupt!

 Timer interrupt is a special case
 Some timer interrupts will not cause context switch

» Really!
 Most context-switch invocations will have nothing to do with

the timer
» Really!

15-410, F'257

Synchronization

Checkpoint 2 - alertsCheckpoint 2 - alerts
 Reminder: context switch ≠ timer interrupt!

 Timer interrupt is a special case
 Some timer interrupts will not cause context switch

» Really!
 Most context-switch invocations will have nothing to do with

the timer
» Really!

 Please read the handout warnings about context switch
and mode switch and IRET very carefully

 Each warning is there because of a big mistake which was
very painful for previous students

15-410, F'259

Synchronization

Book report!Book report!
 This your approximately-mid-semester reminder about the

book report assignment

15-410, F'2510

Synchronization

Asking for trouble?Asking for trouble?
 If you aren't using source control, that is probably a

mistake
 If your code isn't in your 410 AFS space every day, you

are asking for trouble
 GitHub sometimes goes down!

» S'13: on P4 hand-in day (really!)
 Roughly 30% of groups have blank REPOSITORY

directories...

15-410, F'2511

Synchronization

Asking for trouble?Asking for trouble?
 If you aren't using source control, that is probably a

mistake
 If your code isn't in your 410 AFS space every day, you

are asking for trouble
 GitHub sometimes goes down!

» S'13: on P4 hand-in day (really!)
 Roughly 30% of groups have blank REPOSITORY

directories...
 If your code isn't built and tested on Andrew Linux every

two or three days, you are asking for trouble
 Don't forget about CC=clang / CC=clangalyzer
 Using a variety of compilers is likely to expose issues

15-410, F'2512

Synchronization

Asking for trouble?Asking for trouble?
 If you aren't using source control, that is probably a

mistake
 If your code isn't in your 410 AFS space every day, you

are asking for trouble
 GitHub sometimes goes down!

» S'13: on P4 hand-in day (really!)
 Roughly 30% of groups have blank REPOSITORY

directories...
 If your code isn't built and tested on Andrew Linux every

two or three days, you are asking for trouble
 Don't forget about CC=clang / CC=clangalyzer
 Using a variety of compilers is likely to expose issues

 Running your code on the crash box may be useful
 But if you aren't doing it fairly regularly, the first “release”

may take a long time

15-410, F'2514

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

15-410, F'2515

Synchronization

Debugging adviceDebugging advice
 Once as I was buying lunch I received a fortune

Image credit: Kartik Subramanian

15-410, F'2516

A Word on the Final Exam
DisclaimerDisclaimer

 Past performance is not a guarantee of future results

The class will changeThe class will change
 Up to now: “basics” - What you need for Project 3
 Coming: advanced topics

 Design issues
 Things you won't experience via implementation

Examination will change to matchExamination will change to match
 More design questions
 Some things you won't have implemented (text useful!!)
 Still 3 hours, but could be more stuff (~85 points,

~6 questions)

15-410, F'2518

Thanks for Avoiding Faint Pencil!

It wasn't a problem on the mid-termIt wasn't a problem on the mid-term
 Let's keep it that way for the final exam!

15-410, F'2520

“See Course Staff”

If your exam says “see course staff”...If your exam says “see course staff”...
 ...you should!

This generally indicates a serious misconception...This generally indicates a serious misconception...
 ...which we fear will seriously harm code you are writing

now...
 ...which we believe requires personal counseling, not just

a brief note, to clear up.

...though it might instead indicate a complex ...though it might instead indicate a complex
subtlety...subtlety...

 ...which we believe will benefit from personal counseling,
not just a brief note, to clear up.

““See Instructor”...See Instructor”...
 ...means it is probably a good idea to see an instructor...
 ...it does not necessarily imply disaster.

15-410, F'2521

“Low Exam-Score Syndrome”

What if my score is really low????What if my score is really low????
 It is frequently possible to do dramatically better on the

final exam
 Specific suggestions later

 Please execute those instructions in order

15-410, F'2522

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, S'2224

Q1 – Short Answer

Three partsThree parts
 Condition-variable rules
 Top/bottom halves
 Trap vs. interrupt

15-410, S'2225

Q1a – Condition-variable rules

Basic idea: awareness of how cvars should functionBasic idea: awareness of how cvars should function
 How should they behave?
 How should applications use them?

Information sourcesInformation sources
 Synchronization lectures
 Exam-review material

At a very high levelAt a very high level
 Threads that should not run should block
 Threads that are unblocked should be able to run
 The three rules given in lecture are less overly abstract

15-410, S'2226

Q1a – Condition-variable rules

Common issueCommon issue
 Many students discussed cvar internals
 But application code has the responsibility to use cvars

responsibly
 Lots of partial credit

15-410, S'2227

Q1b – Top/Bottom Halves

Question goalQuestion goal
 Recall a key principle for dividing code in device drivers

Information sourcesInformation sources
 “Hardware” lecture
 Project 1 lecture

ResultsResults
 Some very “creative” answers
 Many correct responses

15-410, S'2228

Q1c – Trap vs. Interrupt

Information sourcesInformation sources
 “Hardware” lecture

ResultsResults
 Responses were generally good
 Try not to mix the two up!

15-410, F'2529

Q1 – Results

ScoresScores
 ~50% of the class scored 7/10 or above (good)
 ~20% of the class scored below 5/10

15-410, S'2231

Q2 – Pausable Semaphores

What we were testingWhat we were testing
 Primarily: ability to find and show race conditions
 Also: knowledge of what a c.s. algorithm should do

15-410, S'2232

Q2 – Pausable Semaphores

What we were testingWhat we were testing
 Primarily: ability to find and show race conditions
 Also: knowledge of what a c.s. algorithm should do

CautionsCautions
 It is not ok to assume illegal use of a synch object, then

show a “race condition”!
 It is good to inspect “if vs. while”, but “every if is a

bug” is not a rule
 “Every other thread can go before me once” is the

opposite of a bounded-waiting failure (“once” is a bound!)
 “The pause operation must instantly freeze all other

threads” is too strong – showing it doesn't happen isn't
showing a failure

15-410, S'2233

Q2 – Pausable Semaphores

GuidanceGuidance
 One synchronization failure assumes dubious usage by

one of the threads
 This dubious usage does not appear in the sample

program
 One synchronization failure is much more likely to occur

than the other
 If you found one, finding the other one might be good

practice (though the other one might be subtle)

15-410, F'2534

Q2 – Results

ScoresScores
 54% of the class got 14/15 or 15/15 (good!)
 ~20% of the class scored below 10/15 (10/15 == 60%)

15-410, F'2535

Q3 – “Super Semaphores”

Question goalQuestion goal
 Slight modification of typical “write a synchronization

object” exam question

Interesting question featuresInteresting question features
 Can be done well with or without aux structs

 If you solved it one way, maybe try again a different way?
 Some short solutions and some long solutions are

reasonable

15-410, F'2536

Q3 – “Super Semaphores”

Question goalQuestion goal
 Slight modification of typical “write a synchronization

object” exam question

Interesting question featuresInteresting question features
 Can be done well with or without aux structs

 If you solved it one way, maybe try again a different way?
 Some short solutions and some long solutions are

reasonable
 Some short solutions are not stellar, though

» Piling a bunch of threads up on a mutex for an indefinite
period of time is short but probably turns the fans on

» An rwlock is arguably anti-good at stopping threads
promptly

15-410, F'2537

Q3 – “Super Semaphores”

Things to watch out forThings to watch out for
 Many solutions included starvation (perhaps of threads

requesting “too many” thingies)
 There were some progress failures (threads waiting

indefinitely despite sufficient thingies being present)
 Does the right thing happen if a signal() operation

deposits quite a few thingies?
 Avoid “thundering herd” aka “churn”

 One giant cvar
 Unbounded number of threads of all types waiting on it for

different things
 cond_broadcast() wakes everybody up and many threads

must block again
 When possible, cond_signal()/cond_broadcast()

outside of a mutex is better than inside

15-410, F'2538

Q3 – “Super Semaphores”

General note on blocking General note on blocking
 Threads that can't do productive work should stop

running
 Once stopped, a thread should remain stopped until there

is a reasonable likelihood that it can do productive work

15-410, F'2539

Q3 – “Super Semaphores”

General note on blocking General note on blocking
 Threads that can't do productive work should stop

running
 Once stopped, a thread should remain stopped until there

is a reasonable likelihood that it can do productive work

General conceptual problemsGeneral conceptual problems
 “x() takes a pointer” does not mean “x() must call

malloc()”
 Assigning to a function parameter changes the local copy

 It has no effect on the calling function's value
 C isn't C++ or Pascal (luckily!)

 See course staff about any general conceptual problems
revealed by this specific exam question

15-410, F'2542

Q3 – “Super Semaphores”

Approach guidanceApproach guidance
 This question mixes counting with blocking for two very-

different reasons (but maybe it's three different reasons?)
 Existing primitives implement counting and blocking and

unblocking
» So it is possible to offload lots of work
» But it is important to keep track of who should receive

priority to take various steps
 Pseudo-code/outline strongly suggested

 Pseudo-code/outline all parts before coding any part
 Consider writing helper functions!

 “First I'll code up wait(), then I'll code up signal()” is much
less likely to result in correct code

15-410, F'2543

Q3 – “Super Semaphores”

Important general advice!Important general advice!
 It's a good idea to trace through your code and make sure

that at least the simplest cases work without races or
threads getting stuck

 If the question provides example traces, it's prudent to check
that your code does the right thing for those traces!

Other things to watch out forOther things to watch out for
 Memory leaks
 Memory allocation / pointer mistakes
 Forgetting to shut down underlying primitives
 Parallel arrays (use structs instead)

15-410, F'2544

Q3 – “Super Semaphores”

OutcomesOutcomes
 ~60% of the class scored 16/20 or better (80%+)

 This question is arguably “not super hard”
 ~20% of the class “did not do ok” (under 60%)

 These outcomes are concerning

Other questions in this category are harderOther questions in this category are harder
 Perhaps a final-exam question might be harder

15-410, S'2245

Q4 – Blocking (“Process Model”)

For full creditFor full credit
 Blocked thread can't run until a specific event
 Blocked thread is not in a run queue

15-410, S'2246

Q4 – Blocking (“Process Model”)

For full creditFor full credit
 Blocked thread can't run until a specific event
 Blocked thread is not in a run queue

Dangerous ideaDangerous idea
 “If a thread invokes gettid(), the thread's execution is

suspended until the system call returns.”
 This is dangerously wrong.
 The thread isn't suspended: it's running gettid()!

15-410, S'2247

Q4 – Blocking (“Process Model”)

For full creditFor full credit
 Blocked thread can't run until a specific event
 Blocked thread is not in a run queue

Dangerous ideaDangerous idea
 “If a thread invokes gettid(), the thread's execution is

suspended until the system call returns.”
 This is dangerously wrong.
 The thread isn't suspended: it's running gettid()!

Common misconceptionCommon misconception
 Question text reminds: especially on a multiprocessor,

“might need a lock” does not mean “likely to block”
 Remember that we assume most locks are usually not

contested and are held briefly

15-410, S'2248

Q4 – Blocking (“Process Model”)

For full creditFor full credit
 Blocked thread can't run until a specific event
 Blocked thread is not in a run queue

Dangerous ideaDangerous idea
 “If a thread invokes gettid(), the thread's execution is

suspended until the system call returns.”
 This is dangerously wrong.
 The thread isn't suspended: it's running gettid()!

Common misconceptionCommon misconception
 Question text reminds: especially on a multiprocessor,

“might need a lock” does not mean “likely to block”
 Remember that we assume most locks are usually not

contested and are held briefly
 Sometimes we use a synch object that blocks threads, but

locking and blocking are not the same thing

15-410, S'2249

Q4 – Blocking (“Process Model”)

Common glitchesCommon glitches
 Vagueness about non-runnability (common deduction:

“‑1 OOQ”)
 Explaining why part of new_pages() should be

straightforward
 There are two other parts!

15-410, S'2250

Q4 – Blocking (“Process Model”)

Common glitchesCommon glitches
 Vagueness about non-runnability (common deduction:

“‑1 OOQ”)
 Explaining why part of new_pages() should be

straightforward
 There are two other parts!

The “hierarchy”The “hierarchy”
 Running and doing useful work (user mode or kernel

mode)
 [Running and doing “locking work”]
 Runnable but not running (in scheduler “run queue”)
 Blocked = not running and not runnable

15-410, S'2251

Q4 – Blocking (“Process Model”)

ResultsResults
 Many students got 8/10 or better
 Scores below 7/10 are concerning

 Blocking is a key concept

15-410, S'2252

Q5a – Nuts & Bolts: “capture %eip”

Purpose: Think about using familiar asm instructions Purpose: Think about using familiar asm instructions
in unfamiliar ways.in unfamiliar ways.

 Can be solved with one or two lines of code
 Two approaches

 Use a (very) common instruction that manipuates %eip
 Use linker's ability to assign absolute addresses to symbols

OutcomesOutcomes
 Reasonable distribution of scores
 Not legal to use %eip as an instruction argument (x86-32)
 Partial credit given for some kind of valid %eip

manipulation

15-410, S'2253

Q5b – Nuts & Bolts: variable locations

Purpose: Review your understanding of a basic idea.Purpose: Review your understanding of a basic idea.
 2 in BSS
 1 in data
 3 in stack (2 in a special place)

OutcomesOutcomes
 This should be an easy/fast question

 For the rest of the semester you will spend a lot of time
debugging stacks!

 Some perfect scores, but arguably not enough

15-410, S'2254

Q5 – Results

Overall outcomesOverall outcomes
 ~30% got 10/10
 Scores under 8/10 (1/6 of class) are arguably concerning

15-410, F'2555

Breakdown

90% = 58.590% = 58.5 5 students (57.0 and up) 5 students (57.0 and up)

80% = 52.080% = 52.0 10 students (52.0 to 56.0)10 students (52.0 to 56.0)

70% = 45.570% = 45.5 7 students (44.0 to 51.0) 7 students (44.0 to 51.0)

60% = 39.060% = 39.0 3 students (38.0 to 43.0) 3 students (38.0 to 43.0)

50% = 32.550% = 32.5 1 student (31.0 to 37.0) 1 student (31.0 to 37.0)

40% = 26.040% = 26.0 0 students 0 students

<40%<40% 1 student 1 student

Comparison/calibrationComparison/calibration
 Overall scores don't look blatantly problematic

15-410, F'2560

Implications

Score below 50?Score below 50?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 It is important to do better on the final exam

15-410, F'2561

Implications

Score below 50?Score below 50?
 Form a “theory of what happened”

 Not enough textbook time?
 Not enough reading of partner's code?
 Lecture examples “read” but not grasped?
 Sample exams “scanned” but not solved?

 It is important to do better on the final exam
 Historically, an explicit plan works much better than “I'll try

harder”
 Strong suggestion:

» Identify causes, draft a plan, see instructor

15-410, F'2562

Implications

Score below 40?Score below 40?
 Something went noticeably wrong

 It's important to figure out what!
 Beware of “triple whammy”

 Low score on three “core” questions
 Generally Q2, Q3, Q4

 Passing the final exam could be a challenge
 Passing the class may be at risk!

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

15-410, F'2563

Implications

Score below 40?Score below 40?
 Something went noticeably wrong

 It's important to figure out what!
 Beware of “triple whammy”

 Low score on three “core” questions
 Generally Q2, Q3, Q4

 Passing the final exam could be a challenge
 Passing the class may be at risk!

 To pass the class you must demonstrate proficiency on
exams (not just project grades)

 Try to identify causes, draft a plan, see instructor
 Good news: explicit, actionable plans usually work well

15-410, F'2564

Action plan

Please follow steps in order:Please follow steps in order:
1. Identify causes
2. Draft a plan
3. See instructor

15-410, F'2565

Action plan

Please follow steps in order:Please follow steps in order:
1. Identify causes
2. Draft a plan
3. See instructor

Please avoid:Please avoid:
 “I am worried about my exam, what should I do?”

 Each person should do something different!
 The “identify causes” and “draft a plan” steps are individual,

and depend on some things not known by us

15-410, F'2566

Action plan

Please follow steps in order:Please follow steps in order:
1. Identify causes
2. Draft a plan
3. See instructor

Please avoid:Please avoid:
 “I am worried about my exam, what should I do?”

 Each person should do something different!
 The “identify causes” and “draft a plan” steps are individual,

and depend on some things not known by us

General pleaGeneral plea
 Please check to see whether there is something we

strongly recommend that you have been skipping
because you never needed to do that thing before

 This class is different

