
Computer Science 15-410/15-605: Operating Systems
Mid-Term Exam (A), Fall 2024

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below.

3. PLEASE DO NOT WRITE FAINTLY WITH PENCIL. Please write in
ink, or, if writing in pencil, please ensure that zero strokes in zero words
are faint. Using a mechanical pencil with thin lead is probably unwise.

4. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

5. If you have a clarification question, please write it down on the card we have
provided. Please don’t ask us questions of the form “If I answered like this,
would it be ok?” or “Are you looking for ...?”

6. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

7. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

Andrew
Username

Full
Name

Question Max Points Grader

1. 10

2. 15

3. 15

4. 20

5. 10

70

Please note that there are system-call and thread-library “cheat sheets” at the end of the
exam.

If we cannot read your writing, we will be unable to assign a high score to your work.

1. 10 points Short answer.

(a) 4 points In an abstract sense, a mutex is interchangeable with a readers/writers lock if
the rwlock is always used in the RWLOCK WRITE mode: either way, the number of threads
executing the critical section would never be more than one. However, according to the 15-
410 course staff, that abstract-interchangeability thinking is “correct but wrong.” Briefly
explain how, according to the 15-410 course staff, a programmer should decide whether
to protect a given critical section with a mutex versus an RWLOCK WRITE rwlock. Briefly
justify your explanation. We are expecting an answer that will fit naturally on this page.

Page 2

(b) 6 points When designing a body of code, at times one finds oneself thinking, “I wonder
if I should use Approach A or Approach B?” According to the 15-410 design orthodoxy,
you should follow a specific procedure to resolve your question. In accordance with that
procedure, please document a design decision about how/where to allocate memory for
some object/purpose that you made while working on your your Project 2 thread library.
For the purposes of this question we will be scoring based on your documentation of the
decision procedure, not whether we agree or disagree with what you chose. Begin with
a brief description of the problem (one to three sentences) and then show us your design
decision—answers that correctly use the 15-410 approved data structure will receive higher
scores. For full credit, we expect that you will compare implementable options, as opposed
to non-working ones.

Page 3

You may use this page as extra space for the P2-design question if you wish.

Page 4

2. 15 points Faulty Mutex

In this question you will examine some mutex code submitted for your consideration by your project
partner. You should assume that atomic exchange() works correctly (as described below), that
the gettid() system call never “fails,” that all queue functions behave in a strictly FIFO fashion,
and that they will never fail. You should also assume “traditional x86-32 memory semantics,” i.e.,
not “wacky modern memory.”

/* queue.h */

int q_init(queue_t *q); // initializes a queue (to empty)

void q_enqueue(queue_t *q, int i); // adds integer to queue at the end

int q_dequeue(queue_t *q); // removes+returns first integer in queue (else -1)

void q_destroy(queue_t *q); // frees any resources used by queue

/* For the purposes of this question, assume queue functions cannot fail. */

/* atomic.h */

/**

* Atomically:

* (1) fetches the old value of the memory location pointed to by "target"

* (2) places the value "source" into the memory location pointed to by "target"

* Then: returns the old value (that was atomically fetched)

*

* Equivalently:

* ATOMICALLY {

* int previous_target = *target;

* *target = source;

* }

* return previous_target;

*/

extern int atomic_exchange(int *target, int source);

The remainder of this page is intentionally blank.

Page 5

typedef struct {

int turn;

int locked;

int queue_locked;

queue_t waiting;

} mutex_t;

int mutex_init(mutex_t *m) {

m->turn = -1;

m->locked = 0;

m->queue_locked = 0;

return q_init(&m->waiting);

}

void mutex_lock(mutex_t *m) {

if (atomic_exchange(&m->locked, 1)) {

// someone else has the lock

int tid = gettid();

while (atomic_exchange(&m->queue_locked, 1))

continue;

q_enqueue(&m->waiting, tid);

m->queue_locked = 0;

while (m->turn != tid)

continue;

}

}

void mutex_unlock(mutex_t *m) {

int tid;

while (atomic_exchange(&m->queue_locked, 1))

continue;

if ((tid = q_dequeue(&m->waiting)) > 0) {

m->turn = tid;

} else {

m->locked = 0;

}

m->queue_locked = 0;

}

/* ... remainder omitted, e.g., mutex_destroy() ... */

Page 6

There is a problem with the mutex code shown above. That is, it does not ensure that all
three critical-section algorithm requirements are always met. Identify a requirement which is
not met and lay out a scenario which demonstrates your claim. Use the format presented in
class, i.e.,

T1 T2

tid = gettid();

continue;

...

Be sure that the execution trace you provide us with is easy to read and conclusively demon-
strates the claim you are making. You may introduce temporary variables or other obvious
notation as necessary to improve the clarity of your answer. You should report a problem with
code that is visible to you rather than assuming a problem in code that you have not been shown.
It is possible to answer this question with a brief, clear trace, so you should do what is necessary
to ensure that you do. It is strongly recommended that you write down a draft version of any
execution trace using the scrap paper provided at the end of the exam, or on the back of some
other page, before you begin to write your solution on the next page. If we cannot understand
the solution you provide, your grade will suffer!

Page 7

This page is for your faulty-mutex solution.

Page 8

This page can be used for your faulty-mutex solution.

Page 9

3. 15 points Dining Philosophers

Consider the code below which implements a small “Dining Philosophers” system using standard
concurrency primitives.

#include <stdlib.h>

#include <thread.h>

#include <mutex.h>

#include <cond.h>

#include <rand.h>

#include <stdio.h>

#include <syscall.h>

#define DINERS 3

/* "right hand rule" mapping diner numbers to left/right chopsticks

*

* diner 0’s left chopstick is (0+2)%3==2, right chopstick is 0

* diner 1’s left chopstick is (1+2)%3==0, right chopstick is 1

* diner 2’s left chopstick is (2+2)%3==1, right chopstick is 2

*/

int left(int d) { return ((d + (DINERS-1) % DINERS)); }

int right(int d) { return (d); }

mutex_t table;

int stick[DINERS]; /* stick -> -1 or owner */

cond_t avail[DINERS]; /* that stick is newly free */

mutex_t prng_lock;

unsigned long genrand_r(void);

void *diner(void *vsd);

int main()

{

int i;

sgenrand(get_ticks());

thr_init(16*1024);

mutex_init(&table);

mutex_init(&prng_lock);

/* "set the table": */

for (i = 0; i < DINERS; ++i) {

stick[i] = -1;

cond_init(&avail[i]);

}

/* "Gentlemen, Be Seated!" (Robert A. Heinlein) */

for (i = 0; i < DINERS; ++i) {

thr_create(diner, (void *)i);

}

thr_exit(0);

return(99); /* on the exam, we definitely won’t get here */

}

Page 10

void start_eating(int d)

{

mutex_lock(&table);

while (stick[right(d)] != -1) {

cond_wait(&avail[right(d)], &table);

}

stick[right(d)] = d;

while (stick[left(d)] != -1) {

cond_wait(&avail[left(d)], &table);

}

stick[left(d)] = d;

mutex_unlock(&table);

}

void done_eating(int d)

{

mutex_lock(&table);

stick[left(d)] = stick[right(d)] = -1;

cond_signal(&avail[right(d)]);

cond_signal(&avail[left(d)]);

mutex_unlock(&table);

}

void *diner(void *vsd)

{

int d = (int) vsd;

while (1) {

sleep(genrand_r() % 100);

start_eating(d);

sleep(genrand_r() % 10);

done_eating(d);

}

}

unsigned long genrand_r(void)

{

unsigned long ul;

mutex_lock(&prng_lock);

ul = genrand();

mutex_unlock(&prng_lock);

return (ul);

}

Page 11

(a) 10 points This system can deadlock. Show an execution trace which demonstrates one
way a deadlock can arise. Use the format presented in class; abbreviations which are
genuinely obvious are acceptable, e.g.,

D0 D1

cwait(1)

lock(t)

s[0]=0

Grades will be assigned based on your ability to convince the grader that your execution trace is
possible and results in a deadlock. Thus it is greatly to your advantage for your answer to be easy
to read, compelling, and concise. You should almost certainly write your solution down on the back
of the previous page (or somewhere else) and check it there before copying it to the space below.

Page 12

You may use this page as space for your dining-philosophers deadlock if you wish.

Page 13

(b) 5 points Describe an approach to changing the code above so that deadlock does not
occur. We are not expecting you to provide replacement code, but the description of your
change should be clear enough to convince your grader that your proposal is practical and
based on understanding the relevant principles. A small amount of pseudo-code or code
is fine if it is a good way to support your position, but pseudo-code or code without an
explanation may not receive much credit.

Page 14

You may use this page as space for your dining-philosophers solution if you wish.

Page 15

4. 20 points Atomic matching.

In lecture we talked about two fundamental operations in concurrent programming: brief mutual
exclusion for atomic sequences (provided in P2 by mutexes) and long-term voluntary descheduling
(provided by condition variables). As you know, these can be combined to produce higher-level
objects such as semaphores or readers/writers locks.

In this question you will implement a synchronization object called a “binder” that might be used
by computational chemists to simulate combining atoms into molecules. Though a binder object
could be general in the sense of combining various elements into molecules, for the purposes of this
question you will implement a binder object that repeatedly combines two hydrogen atoms and one
oxygen atom to create one water molecule. After a binder is initialized, a number of threads which
is a multiple of three will invoke the bind operation. Each thread will specify whether it represents
a hydrogen atom or an oxygen atom. The bind operation will suspend threads as necessary until
it has control over at least two hydrogen atoms and one oxygen atom; then it will arrange for three
threads (two hydrogen threads and one oxygen thread) to return. The return code from the bind

operation will tell each thread whether it represented the critical third atom to form a molecule,
or whether it represented one of the other two atoms. A binder object does not know how many
threads will invoke it, though it can depend on the number being a multiple of three and that the
ratio of atom types will be appropriate. Though a professional implementation of binder objects
would include not only a way to initialize them but also a way to inactivate them, we will skip
description and implementation of a destroy operation in this exam question.

A small example program using a binder is displayed on the next page.

The remainder of this page is intentionally blank.

Page 16

// We are making H2O, which needs NHYD=2 of type=HYD, plus NOXY of type=OXY

#define HYD 0

#define NHYD 2

#define OXY 1

#define NOXY 1

#define STACK_SIZE 4096

#define MOLECULES 5

binder_t the_binder;

static void *atom(void *v_type)

{

int type = (int) v_type;

char *s = (type == OXY) ? "oxygen" : "hydrogen";

int id = binder_bind(&the_binder, type);

if (id >= 0)

printf("%s %d formed molecule #%d!\n", s, thr_getid(), id);

else

printf("%s %d helped out\n", s, thr_getid());

return (NULL);

}

int main(void)

{

affirm(thr_init(STACK_SIZE) == 0);

affirm(binder_init(&the_binder) == 0);

for (int oxy = 0; oxy < MOLECULES; ++oxy)

affirm(thr_create(atom, (void *)OXY) >= 0);

for (int hyd = 0; hyd < MOLECULES; ++hyd) {

affirm(thr_create(atom, (void *)HYD) >= 0);

affirm(thr_create(atom, (void *)HYD) >= 0);

}

thr_exit(NULL);

panic("I shouldn’t be here. Nobody should be here!");

return -99;

}

Page 17

Sample output from one run of the program is found below. Note that the order lines are printed
in depends to some extent on the vagaries of the scheduler.

hydrogen 1086 formed molecule #0!

hydrogen 1085 helped out

oxygen 1080 helped out

hydrogen 1088 formed molecule #1!

hydrogen 1087 helped out

oxygen 1081 helped out

hydrogen 1090 formed molecule #2!

hydrogen 1089 helped out

oxygen 1082 helped out

hydrogen 1091 helped out

oxygen 1083 helped out

hydrogen 1092 formed molecule #3!

hydrogen 1093 helped out

hydrogen 1094 formed molecule #4!

oxygen 1084 helped out

Your task is to implement binders with the following interface:

• int binder init(binder t *bp) — initializes a binder. In the case of an error, this
function will return an error code less than zero.

• int binder bind(binder t *bp, int type) —

If a thread (which must be of type HYD or OXY) arrives before enough other threads of
the appropriate types, the thread will block. When a binder has control over least two
HYD threads and one OXY thread, “reasonably promptly” the binder object will simulate
the creation of a single water molecule: the three relevant threads will return from from
binder bind(). The first two of those threads that had invoked the bind operation will
receive a negative return code, and the third thread, whose arrival had enabled creation
of the water molecule, will receive a non-negative return code which will uniquely identify
the water molecule that was created. The molecule identification numbers generated by a
single binder object will start from zero and increase in a counter fashion, so they would
be suitable for indexing an array.

• void binder destroy(binder t *bp) — Deactivates a binder object. It is illegal for a
program to invoke binder destroy() if any threads are operating on it. Please note:
though we are providing a description of the destroy operation, we will not be requiring
you to implement it.

Page 18

Assumptions:

1. You may use regular Project 2 thread-library primitives: mutexes, condition variables,
semaphores, readers/writers locks, etc.

2. You may assume that callers of your routines will obey the rules. But you must be
careful that you obey the rules as well!

3. You may not use other atomic or thread-synchronization synchronization operations, such
as, but not limited to: deschedule()/make runnable(), or any atomic instructions (XCHG,
LL/SC).

4. You must comply with the published interfaces of synchronization primitives, i.e., you
cannot inspect or modify the internals of any thread-library data objects.

5. You may not use assembly code, inline or otherwise.

6. For the purposes of the exam, you may assume that library routines and system
calls don’t “fail” (unless you indicate in your comments that you have arranged, and
are expecting, a particular failure).

7. You may not rely on any data-structure libraries such as splay trees, red-black trees,
queues, stacks, or skip lists, lock-free or otherwise, that you do not implement as part of
your solution.

8. You may use non-synchronization-related thread-library routines in the “thr xxx() fam-
ily,” e.g., thr getid(). You may wish to refer to the “cheat sheets” at the end of the
exam. If you wish, you may assume that thr getid() is “very efficient” (for example, it
invokes no system calls). You may also assume that condition variables are strictly FIFO
if you wish.

It is strongly recommended that you rough out an implementation on the scrap paper provided at
the end of the exam, or on the back of some other page, before you write anything on the next page.
If we cannot understand the solution you provide, your grade will suffer!

Page 19

(a) 5 points Please declare your binder_t here. If you need one (or more) auxilary struc-

tures, you may declare it/them here as well. Then please implement binder init().

typedef struct {

} binder_t;

Page 20

[You may use this page for your binder declaration(s) and init if you wish.]

Page 21

(b) 15 points Now please implement binder bind(). It is not necessary to implement
binder destroy().

Page 22

. . . space for binder implementation . . .

Page 23

. . . space for binder implementation . . .

Page 24

[You may use this page for your binder implementation if you wish.]

Page 25

5. 10 points Your high school friend Kelly comes to visit you near the beginning of 15-410 and
attends a few lectures. Not having found the lecturer’s style compelling, Kelly decides to get
some revenge when the Project 1 tarball is issued. Here is Kelly’s test kernel.

/** @file game.c

*

* @brief Try *this* "shortest legal fairy tale"!!!!!!!

*/

#include <p1kern.h>

#include <stdio.h>

#include <simics.h>

#include <multiboot.h>

#include <x86/asm.h>

#include <x86/interrupt_defines.h>

volatile static int __kernel_all_done = 0;

void tick(unsigned int numTicks)

{

outb(INT_CTL_PORT,INT_ACK_CURRENT);

kernel_main(NULL, 0, (char **)0, (char **)0);

}

int kernel_main(mbinfo_t *mbinfo, int argc, char **argv, char **envp)

{

/*

* Initialize device-driver library.

*/

handler_install(tick);

enable_interrupts();

while (!__kernel_all_done) {

continue;

}

return 0;

}

What happens when Kelly’s test kernel is run, assuming a reasonable implementation of the
Project 1 drivers? If you feel that multiple scenarios are possible, please pick one and focus on its
details. You may wish to break your answer into several parts, such as “Assuming the ... is ...”,
“At first, ...”, “After some time...” and/or “Eventually...”.

Your answer doesn’t have to exactly match the particular quirks of x86 hardware as long as you
justify your response in terms of plausible hardware. That is, we’re looking for a plausible under-
standing of the parts of the problem and how they might well fit together.

Page 26

...Space for the Kelly’s-kernel question...

Page 27

You may use this page as extra space for the Kelly’s-kernel question if you wish.

Page 28

System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);

void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */

int gettid(void);

int yield(int pid);

int deschedule(int *flag);

int make_runnable(int pid);

int get_ticks();

int sleep(int ticks); /* 100 ticks/sec */

typedef void (*swexn_handler_t)(void *arg, ureg_t *ureg);

int swexn(void *esp3, swexn_handler_t eip, void *arg, ureg_t *newureg):

/* Memory management */

int new_pages(void * addr, int len);

int remove_pages(void * addr);

/* Console I/O */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);

int get_cursor_pos(int *row, int *col);

/* Miscellaneous */

void halt();

int readfile(char *filename, char *buf, int count, int offset);

/* "Special" */

void misbehave(int mode);

If a particular exam question forbids the use of a system call or class of system calls, the presence
of a particular call on this list does not mean it is “always ok to use.”

Page 29

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);

void mutex_destroy(mutex_t *mp);

void mutex_lock(mutex_t *mp);

void mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);

void cond_destroy(cond_t *cv);

void cond_wait(cond_t *cv, mutex_t *mp);

void cond_signal(cond_t *cv);

void cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);

int thr_create(void *(*func)(void *), void *arg);

int thr_join(int tid, void **statusp);

void thr_exit(void *status);

int thr_getid(void);

int thr_yield(int tid);

int sem_init(sem_t *sem, int count);

void sem_wait(sem_t *sem);

void sem_signal(sem_t *sem);

void sem_destroy(sem_t *sem);

#define RWLOCK_READ 0

#define RWLOCK_WRITE 1

int rwlock_init(rwlock_t *rwlock);

void rwlock_lock(rwlock_t *rwlock, int type);

void rwlock_unlock(rwlock_t *rwlock);

void rwlock_destroy(rwlock_t *rwlock);

void rwlock_downgrade(rwlock_t *rwlock);

If a particular exam question forbids the use of a library routine or class of library routines, the
presence of a particular routine on this list does not mean it is “always ok to use.”

Page 30

Ureg Cheat-Sheet

#define SWEXN_CAUSE_DIVIDE 0x00 /* Very clever, Intel */

#define SWEXN_CAUSE_DEBUG 0x01

#define SWEXN_CAUSE_BREAKPOINT 0x03

#define SWEXN_CAUSE_OVERFLOW 0x04

#define SWEXN_CAUSE_BOUNDCHECK 0x05

#define SWEXN_CAUSE_OPCODE 0x06 /* SIGILL */

#define SWEXN_CAUSE_NOFPU 0x07 /* FPU missing/disabled/busy */

#define SWEXN_CAUSE_SEGFAULT 0x0B /* segment not present */

#define SWEXN_CAUSE_STACKFAULT 0x0C /* ouch */

#define SWEXN_CAUSE_PROTFAULT 0x0D /* aka GPF */

#define SWEXN_CAUSE_PAGEFAULT 0x0E /* cr2 is valid! */

#define SWEXN_CAUSE_FPUFAULT 0x10 /* old x87 FPU is angry */

#define SWEXN_CAUSE_ALIGNFAULT 0x11

#define SWEXN_CAUSE_SIMDFAULT 0x13 /* SSE/SSE2 FPU is angry */

#ifndef ASSEMBLER

typedef struct ureg_t {

unsigned int cause;

unsigned int cr2; /* Or else zero. */

unsigned int ds;

unsigned int es;

unsigned int fs;

unsigned int gs;

unsigned int edi;

unsigned int esi;

unsigned int ebp;

unsigned int zero; /* Dummy %esp, set to zero */

unsigned int ebx;

unsigned int edx;

unsigned int ecx;

unsigned int eax;

unsigned int error_code;

unsigned int eip;

unsigned int cs;

unsigned int eflags;

unsigned int esp;

unsigned int ss;

} ureg_t;

#endif /* ASSEMBLER */

Page 31

Useful-Equation Cheat-Sheet

cos2 θ + sin2 θ = 1

sin(α± β) = sinα cosβ ± cosα sinβ

cos(α± β) = cosα cosβ ∓ sinα sinβ

sin 2θ = 2 sin θ cos θ

cos 2θ = cos2 θ − sin2 θ

eix = cos(x) + i sin(x)

cos(x) =
eix + e−ix

2

sin(x) =
eix − e−ix

2i

∫
lnx dx = x lnx− x+ C∫ ∞
0

√
x e−x dx =

1

2

√
π∫ ∞

0
e−ax

2
dx =

1

2

√
π

a∫ ∞
0

x2e−ax
2
dx =

1

4

√
π

a3
when a > 0

Γ(z) =

∫ ∞
0

tz−1e−t dt

ih̄
∂

∂t
Ψ(r, t) = ĤΨ(r, t)

ih̄
∂

∂t
Ψ(r, t) = − h̄2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t)

E = hf =
h

2π
(2πf) = h̄ω

p =
h

λ
=

h

2π

2π

λ
= h̄k

∇ ·E =
ρ

ε0

∇ ·B = 0

∇×E = −∂B
∂t

∇×B = µ0J + µ0ε0
∂E

∂t

Page 32

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 33

If you wish, you may tear this page off and use it for scrap paper. But be sure not to write
anything on this page which you want us to grade.

Page 34

