What You Need to Know
for Project One

Dave Eckhardt
Babu Pillai

Zach Snow
Joshua Wise

Joey Echeverria
Steve Muckle

Synchronization

* Please read the syllabus
Some of your questions are answered there :-)
We would rather teach than tear our hair out

* Also, please read the Project 1 handout

Please don't post about “Why did my screen turn
purple?”

Carnegie Mellon University

Poll

* Who is running “macOS Tahoe” aka “macOS
26”7

Carnegie Mellon University

Synchronization

* Partner registration -- please do if you can!

Status
15 groups registered (thanks!)

Hint
https://www.cs.cmu.edu/~410/seeking-partner.pdf

Carnegie Mellon University

Synchronization

* Anti-catastrophe reminder: this is not a Stack
Overflow class!

Also not Chegg, “Hawk Research”, etc.

* We realize that we are asking you to do things
differently than you have in the past

We realize that can be disorienting

Carnegie Mellon University

Synchronization

* Anti-catastrophe reminder: this is not a Stack
Overflow class!
Also not Chegg, “Hawk Research”, etc.

* We realize that we are asking you to do things
differently than you have in the past

We realize that can be disorienting

Please commit — right away now — to doing new
and disorienting things, or else please discuss with
your advisor whether this is the right class — right
away now

* Thanks!

Carnegie Mellon University

Synchronization

* Final-exam date???
We don't choose it — the Registrar does
It's not decided yet — the Registrar decides when

Carnegie Mellon University

10

Synchronization

* Final-exam date???
* We don't choose it — the Registrar does
* It's not decided yet — the Registrar decides when

* When can | get out of Pittsburgh???

Carnegie Mellon University

11

Synchronization

* Final-exam date???

* We don't choose it — the Registrar does

* It's not decided yet — the Registrar decides when
* When can | get out of Pittsburgh???

* It's not decided yet — the Registrar decides when

Carnegie Mellon University

12

Synchronization st

* Final-exam date???
* We don't choose it — the Registrar does
* It's not decided yet — the Registrar decides when

* When can | get out of Pittsburgh???
* It's not decided yet — the Registrar decides when

* If you must buy tickets now, you need to buy them
for the day after the “Makeup Final Examination”
day!

Carnegie Mellon University

13

Synchronization

* Final-exam date???
We don't choose it — the Registrar does
t's not decided yet — the Registrar decides when
* When can | get out of Pittsburgh???
t's not decided yet — the Registrar decides when

f you must buy tickets now, you need to buy them
for the day after the “Makeup Final Examination”
day!

* Speaking of absence...

Don't “stretch” the semester break

Carnegie Mellon University

14

Overview

* Project 1 motivation
* Mundane details (x86-32/1A-32 version)

PICs, hardware interrupts, software interrupts and
exceptions, the IDT, privilege levels, segmentation

* Writing a device driver
* Using Simics
* Project 1 pieces

Carnegie Mellon University

15

Project 1 Motivation

* Project 1 implements a game that runs directly
on x86 hardware (no OS)

* What are our hopes for Project 17
iIntroduction to kernel programming
a better understanding of the x86 arch

hands-on experience with hardware interrupts and
device drivers

get acquainted with the simulator (Simics) and
development tools

Carnegie Mellon University

16

Why do you care? 13

* You’ll need this for Project 3
* Lots of programs run on bare hardware

Copyright 2008 HI-TECH Software

Carnegie Mellon University

17

Mundane Details in x86

* Kernels work closely with hardware
* This means you need to know about hardware

* Some knowledge (registers, stack
conventions) is assumed from 15-213

* You will learn more x86 details as the
semester goes on

* Use the Intel PDF files as reference
(http://www.cs.cmu.edu/~410/projects.html)

Carnegie Mellon University

18

Mundane Details in x86:
Privilege Levels

* Processor has 4
“privilege levels” (PLs)

* Zero most-privileged,
three least-privileged |

Protection Rings

* Processor executes at System

one of the four PLs at operaingem
any given time

* PLs protect privileged
data, cause general
protection faults

Applications

Carnegie Mellon University

Level 0

Level 1

Level 2
Level 3

19

Mundane Details in x86:
Privilege Levels

Protection Rings

* Nearly unused in Project 1

* For projects 2 through 4
PLO is “kernel” Opersing Sysiem A\
PL3 is “user”

Interrupts & exceptions usually transfer from 3 to O
Sometimes: from 0to O

Running user code means getting from 0 to 3

Carnegie Mellon University

20

Memory Segmentation

* There are different “kinds” of memory

* Hardware “kinds”
Read-only memory (for booting)
Video memory (painted onto screen)

* Software “kinds”
Read-only memory (typically, program code)
Stack (grows down), heap (grows up)

Carnegie Mellon University

21

Memory Segmentation

* Memory segment is a range of “the same kind”

Hardware “kind”
Mark video memory as “don't buffer writes”

Software “kind”
Mark all code pages read-only

* Fancy software
Process uses many separate segments

Windows: each DLL is multiple segments
(Win16... and Win32... but not Win64...)

Carnegie Mellon University

22

Memory Segmentation

* x86-32 hardware /loves segments

* Mandatory segments
Stack
Code
Data

* Segments interact with privilege levels
Kernel stack / user stack
Kernel code / user code

Carnegie Mellon University

23

x86 Segmentation Road Map

* Segment = range of “same kind of memory”
* Segment register = %CS, %SS, %DS, ... %GS

* Segment selector = contents of a segment
register

* Which segment table and index do we mean?

* What access privilege do we have to the segment?
* Segment descriptor = definition of segment

* Which memory range?

* What are its properties?

Carnegie Mellon University

24

Memory Segmentation

* When fetching an instruction, the processor
asks for an address that looks like this: 9%CS:
%EIP

* So, if %EIP is Oxface then %CS:%EIP is the
64206th byte of the “code segment”.

Carnegie Mellon University

25

Mundane Details in x86:
Segmentation

* When fetching an instruction, the processor
asks for an address that looks like this: %CS:
%EIP

* The CPU looks at the segment selector in the
%CS segment register

* A segment selector looks like this:

15 4210
Index T RPL

Table Indicator +
0= GOT
1=L0OT

Requested Privilege Level (RPL)

Carnegie Mellon University

26

Mundane Details in x86:
Segmentation

* Segment selector has a segment number, table
selector, and requested privilege level (RPL)

* The table-select flag selects a descriptor table
global descriptor table or local descriptor table

* Segment number indexes into that descriptor
table

15-410 uses only global descriptor table (whew!)
* Descriptor tables set up by operating system
15-410 support code builds GDT for you (whew!)

* You will still need to understand this, though...

Carnegie Mellon University

Mundane Details in x86: 434+

Segmentation

Segment selector has a segment number, table
selector, and requested privilege level (RPL)

Table selector (done)
Segment number/index (done)
RPL generally means “what access do | have?”

Magic special case: RPL in %CS

* Defines current processor privilege level
* Think: “user mode” vs. “kernel mode”

* Remember this for Project 3!!!

Carnegie Mellon University

28

Mundane Details in x86:
Segment Descriptors

* Segment = area of memory with particular
access/usage constraints

* Base, size, “stuff”

* Logically, base and size are two 32-bit
numbers, “stuff” is flag/control bits

Carnegie Mellon University

29

Mundane Details in x86:
Segment Descriptors

* Segment = area of memory with particular
access/usage constraints

* Base, size, “stuff”
* Layout:

31 2473 22212018 1615141312 1 BT

Dl |Aa] Sed
Basa 31:24 G rja(v) Li

]
t |P| p I58] Type Basa 2316
B Ll 1916 L e

31 1615

Base Addrass 1500 Sagment Limit 1500

Carnegie Mellon university

30

Mundane Details in x86:
Segmentation

* Consider %CS segment register's segment
selector's segment descriptor
Assume base = Oxfeed0000
Assume limit > 64206

* Assume %EIP contains Oxface

Then %CS:%EIP means “linear virtual address”
Oxfeedface (Oxfeed0000 + 0x0000face)
* “Linear virtual address” fed to virtual memory
hardware, if it's turned on (Project 3, not
Project 1)

Carnegie Mellon University

31

Implied Segment Registers

* Programmer doesn't usually specify segment

* Usually implied by “kind of memory access”

* CS is the segment register for fetching code
All instruction fetches are from %CS:%EIP

* SS is the segment register for the stack segment
PUSH, POP instructions use %SS:%ESP

* DS is the default segment register for data access
MOVL (%EAX),%EBX fetches from %DS:%EAX
But ES, FS, and GS can be specified instead

Carnegie Mellon University

32

Mundane Details in x86:
Segmentation

* Segments need not be fully backed by

physical memory, and can overlap
* Segments defined for 15-410:

OXFFFFFFFF

User Code

0x00000000

User Data

Carnegie Mellon University

33

Mundane Details in x86:
Segmentation

* Why so many?
* You can'’t specify a segment that is readable,
writable and executable.
Need one for readable/executable code
Another for readable/writable data

* Need user and kernel segments in Project 3
for protection

* (Code, Data) X (User, Kernel) = 4

Carnegie Mellon University

34

Mundane Details in x86: H
Segmentation H:
OXFFFFFFFF

User Code User Data

0x00000000

Carnegie Mellon University

35

Mundane Details in x86:
Segmentation

* Don’t need to be concerned with every detalil
of segments in this class

* For more information you can read the Intel
docs

* Or our documentation at:
www.cs.cmu.edu/~410/doc/segments/segments.html

Carnegie Mellon University

36

http://www.cs.cmu.edu/~410/doc/segments/segments.html

Execution Types

* From the processor's perspective, three kinds
of instruction execution
Regular work — execute this one, then the next

Branch — execute this one, then somewhere else
Y

Carnegie Mellon University

37

Execution Types - Surprises

* From the processor's perspective, three kinds
of instruction execution
Regular work — execute this one, then the next
Branch — execute this one, then somewhere else

“Surprise” — suddenly we must run a different body
of code!

* Surprises
Exception/fault
Trap
Interrupt

Carnegie Mellon University

38

Surprises

* Exception: a particular instruction broke
* SIGSEGYV, page fault, zero divide, illegal instruction

* We may fix the conditions and re-run the
Instruction

* We may kill the program

* Trap: a particular instruction asks for help
* System call: “please invoke the kernel to ...”
* We later resume at the instruction after the trap

* Interrupt: an I/0O device needs attention
* A random instruction is deferred while we run driver
* We later resume the deferred instruction 39

Mundane Details in x86: Faults

* Sometimes code does stupid things
int gorgonzola = 128/0;
char* idiot_ptr = NULL; *idiot_ptr = 0O;
Executing bytes which don't encode an instruction
* Exceptions cause a handler routine to be run
Record information about which instruction broke
Record information about why it broke
Locate “exception handler”
Exception handler decides: fix/kill/crash

Carnegie Mellon University

40

Mundane Detalils in x86:
“Software Interrupts”

* A device gets the kernel’s attention by raising
a (hardware) interrupt

* User processes get the kernel’s attention by
raising a “software interrupt”

Which is not an interrupt even if Intel calls it one!

* x86 instruction INT n
(more info on page 346 of intel-isr.pdf)

* Invokes handler routine: system call

Carnegie Mellon University

41

Mundane Details in x86:
Interrupts and the PIC

* Devices raise interrupts through the
Programmable Interrupt Controller (PIC)

* The PIC serializes interrupts, delivers them
* There are actually two “daisy-chained” PICs

PIC1 e— PIC?2

Vel

Carnegie Mellon University

Mundane Details Iin x86:
Interrupts and the PIC

To Processor

-

PIC 1

Timer

Keyboard

Second PIC I

COM2

COM1

LPT2

Floppy

N O O B~ W N = O

LPT1

Carnegie Mellon University

PIC 2

Real Time Clock

General 1/O

General 1/O

General I/O

General I/O

Coprocessor

IDE Bus

N O O B~ W N = O

IDE Bus

43

Typical Interrupt Handshake

Processor Device
| am feeling “full”. Assert

interrupt. Don’t de-assert
/ interrupt until processor
Interrupt dismisses this one.

Asserted

time

Carnegie Mellon University

44

Typical Interrupt Handshake

Processor Device
| am feeling “full”. Assert

interrupt. Don’t de-assert
Oh my! / interrupt until processor
Interrupt dismisses this one.

Invoke handler.
Asserted

time

Carnegie Mellon University

45

Typical Interrupt Handshake

Processor Device
| am feeling “full”. Assert

interrupt. Don’t de-assert
Oh my! / interrupt until processor
Invoke handler. Interrupt dismisses this one.

Asserted

W Send data, feel less “full”.
Process or A/W

queue data.

fime Request data.

Carnegie Mellon University

46

Typical Interrupt Handshake

Processor Device
| am feeling “full”. Assert

interrupt. Don’t de-assert
Oh my! / interrupt until processor
Interrupt dismisses this one.

Invoke handler.
Asserted

W Send data, feel less “full”.
Process or A/W

queue data.

fime Request data.

Dismiss o
interrupt. Stop asserting interrupt.
“Dismiss” signal Ready to interrupt again.

Carnegie Mellon University

47

Enabling / Disabling Interrupts

* PIC automatically defers new interrupts from a
device until old one from that device is
dismissed by processor.

* We also provide disable_interrupts(),
which “disables” interrupts from ALL devices.
Think of this as deferring interrupts. They are
still out there, waiting to happen.

* We provide enable_interrupts(), which
re-enables interrupts.

* Finer-grained control is also possible.

Carnegie Mellon University

48

Interrupt Descriptor Table — IDT

* Processor needs info on which handler to run when

* Processor reads appropriate IDT entry depending
on the interrupt, exception or INT n instruction

* Logically, an IDT entry contains a function pointer
and some flags

Carnegie Mellon University

49

Interrupt Descriptor Table — IDT

* Processor needs info on which handler to run when

* Processor reads appropriate IDT entry depending
on the interrupt, exception or INT n instruction

* Anentry in the IDT looks like this:

Trap Gate
a1 1615 14 1312 a7 5 4 0
[
Offset 31..16 Fl p |OD1T 1110 00 4
L
31 16 15 0
Segment Selector Offset 15..0 [

Carnegie Mellon University

50

Interrupt Descriptor Table — IDT

* The first 32 entries in the IDT correspond to processor
exceptions. 31-255 correspond to hardware/software
events

* Some interesting entries:

IDT Entry Event

0 Divide by zero

14 Page fault

32 Timer interrupt (IRQ 0)

* More information in section 5.12 of intel-sys.pdf.

* Note: One “IDT” table is used for faults, traps, and
interrupts 51

Classifying Surprises

* Asynchronous or synchronous?
Asynchronous — happens at a random time
Can be deferred (“blocked”) until a convenient time

Synchronous — a particular instruction is to blame

Cannot be deferred — happen when instruction
happens

Carnegie Mellon University

52

Classifying Surprises

* Asynchronous or synchronous?

Asynchronous — happens at a random time
Can be deferred (“blocked”) until a convenient time

Synchronous — a particular instruction is to blame

Cannot be deferred — happen when instruction
happens

* What happens afterward?
Retry the surprising instruction (exception)
Kill program (exception)
Run the next instruction (trap, interrupt)

Carnegie Mellon University

53

Debugging Surprises

* Every synchronous surprise is because of
some particular instruction

* Not: “line of code”!

Carnegie Mellon University

54

Debugging Surprises

* Every synchronous surprise is because of
some particular instruction

Not: “line of code”!
* Every synchronous surprise is because of
some particular reason

Generally: a false precondition for that particular
Instruction

Carnegie Mellon University

55

Debugging Surprises

* Every synchronous surprise is because of
some particular instruction

Not: “line of code”!
* Every synchronous surprise is because of
some particular reason

Generally: a false precondition for that particular
Instruction

* To solve a synchronous surprise
You must know which instruction
You must know which reason

Carnegie Mellon University

56

Mundane Details in x86:
Communicating with Devices

* |/O Ports

* Use instructions like 1nb(port),
outb(port, data)

* Are not memory!
* Memory-Mapped I/0O
* Magic areas of memory tied to devices

* PC video hardware uses both
* Cursor is controlled by I/0 ports
* Characters are painted from memory

Carnegie Mellon University

57

x86 Device Perversity

* Influence of ancient history
IA-32 is fundamentally an 8-bit processor!
Primeval I/O devices had 8-bit ports
* I/O devices have multiple “reqgisters”
Timer: waveform type, counter value
Screen: resolution, color depth, cursor position

* You must get the right value in the right device
register

Carnegie Mellon University

58

x86 Device Perversity

* Value/bus mismatch
Counter value, cursor position are 16 bits
Primeval I/O devices still have 8-bit ports

* Typical control flow
“I am about to tell you half of register 12”
w3
“I am about to tell you the other half of register 12”
“0”

Carnegie Mellon University

59

x86 Device Perversity

* Sample interaction
outb(command_port, SELECT_R12_LOWER);
outb(data_port, 32);
outb(command_port, SELECT_R12_UPPER);
outb(data_port, 0);

* This is not intuitive (for software people).
Why can't we just “*R12 = Ox00000032"7?

* But you can't get anywhere on P1 without
understanding it.

Carnegie Mellon University

60

Writing a Device Driver

* Traditionally consist of two separate halves
Named “top” and “bottom” halves
BSD and Linux use these names “differently”

* One half is interrupt driven, executes quickly,
queues work

* The other half processes queued work at a
more convenient time

Carnegie Mellon University

61

Writing a Device Driver

* For this project, your keyboard driver will likely
have a top and bottom half
* Bottom half

Responds to keyboard interrupts and queues scan
codes

* Top half

In readchar(), reads from the queue and processes
scan codes into characters

Carnegie Mellon University

62

Installing and Using Simics

* Simics is a system simulator
* Makes testing kernels much easier
* Project 1 Makefile builds floppy-disk images

* Simics boots and runs them
Launch simics60 in your build directory

* Your 15-410 AFS space has p1/, scratch/

* If you work in scratch/, we can read your files,
and answering gquestions can be much faster.

Carnegie Mellon University

63

Installing and Using Simics:
Running on Personal PC

* SSH with X Windows forwarding to
LINUX.ANDREW

See “15-410 Software Setup Guide”

Especially see “Using Virtual Andrew” if/iwhen you are
far away from Pittsburgh

Carnegie Mellon University

64

Installing and Using Simics:
Overview of usage

* Run simulation with r, stop with AC

* Magic instruction

xchg %bx, %bx (wrapper in interrupts.h)
This may change -- use the macros!

* Memory access breakpoints
* Symbolic debugging
* See our local Simics hints! (on Project page)

Carnegie Mellon University

67

Simics vs. gdb

* Similar jobs: symbolic debugging
* Random differences

Details of commands and syntax
* Notable differences

Simics knows everything about PC hardware — all
magic registers, TLB contents, interrupt masks,
etc.

Simics is scriptable in Python

Carnegie Mellon University

68

Project 1 Pieces

* You will build

A device-driver library
“console” (screen) driver
keyboard driver
timer driver

Test code to your taste
For historical reasons, this will be called “game.c”.
* We will provide
Underlying setup/utility code
Simple device-driver test program
Text-mode game!

Carnegie Mellon University

70

Project 1 Pieces

The game we provide: “Adventure”

O O O |\ Simics Console: gfx_console_cmp0.con - Press shift and right button to enable mouse input

elcome to Adventuret!?! UWould you like instructions?

Somewhere nearby is Colossal Cave, where others have found fortunes in
reasure and gold, though it is rumored that some who enter are never
seen again. Magic is said to work in the cave. I will be your eyes
nd hands. Direct me with commands of 1 or 2 words. I should warn
ou that I look at only the first five letters of each word, so you’ll
have to enter "northeast"” as "ne" to distinguish it from “north".

(Should you get stuck, type "help"” for some general hints. For
information on how to end your adventure, etc., type "info".)

his program was originally developed by Will Crowther. Most of the
features of the current program were added by Don Woods. Address
omplaints about the UNIX version to Jim Gillogly (jim@rand.org).
Questions about the 15-410 version should go to staff-410@cs.cmu.edu.

ou are standing at the end of a road before a small brick building.
round you is a forest. A small stream flows out of the building and
own a gully.

13.75s> g

Carnegie Mellon University

72

Project 1 Pieces

74

Project 1 Pieces HE

Carnegie Mellon University

75

Project 1 Pieces HE

Carnegie Mellon University

/6

Project 1 Pieces HE

bootable floppy disk image

Carnegie Mellon University

144

Summary st

* Project 1 runs on bare hardware
* Not a machine-invisible language like ML or Java
* Not a machine-portable language like C
* Budget time for understanding this environment

* Project 1 runs on simulated bare hardware
* You probably need more than printf() for debugging

* Simics is not (exactly) gdb
* |nvest time to learn more than bare minimum

Carnegie Mellon University

/8

Summary

* Project 1 runs on bare PC hardware
As hardware goes, it's pretty irrational
Almost nothing works “how you would expect”
Those pesky bit-field diagrams do matter
Getting started is tough, so please don't delay.

* This isn't throwaway code
We will read it

You will use it for Project 3
So spend extra time to make it really great code!

Carnegie Mellon University

79

