
What You Need to Know
for Project One

Dave Eckhardt
Babu Pillai
Zach Snow

Joshua Wise
Joey Echeverria

Steve Muckle

3
Carnegie Mellon University

Synchronization

• Please read the syllabus
• Some of your questions are answered there :-)
• We would rather teach than tear our hair out

• Also, please read the Project 1 handout
• Please don't post about “Why did my screen turn

purple?”

4
Carnegie Mellon University

Poll

• Who is running “macOS Tahoe” aka “macOS
26”?

7
Carnegie Mellon University

Synchronization

• Partner registration -- please do if you can!
• Status

 15 groups registered (thanks!)

• Hint
 https://www.cs.cmu.edu/~410/seeking-partner.pdf

8
Carnegie Mellon University

Synchronization

• Anti-catastrophe reminder: this is not a Stack
Overflow class!
• Also not Chegg, “Hawk Research”, etc.

• We realize that we are asking you to do things
differently than you have in the past
• We realize that can be disorienting

9
Carnegie Mellon University

Synchronization

• Anti-catastrophe reminder: this is not a Stack
Overflow class!
• Also not Chegg, “Hawk Research”, etc.

• We realize that we are asking you to do things
differently than you have in the past
• We realize that can be disorienting
• Please commit – right away now – to doing new

and disorienting things, or else please discuss with
your advisor whether this is the right class – right
away now

• Thanks!

10
Carnegie Mellon University

Synchronization

• Final-exam date???
• We don't choose it – the Registrar does
• It's not decided yet – the Registrar decides when

11
Carnegie Mellon University

Synchronization

• Final-exam date???
• We don't choose it – the Registrar does
• It's not decided yet – the Registrar decides when

• When can I get out of Pittsburgh???

12
Carnegie Mellon University

Synchronization

• Final-exam date???
• We don't choose it – the Registrar does
• It's not decided yet – the Registrar decides when

• When can I get out of Pittsburgh???
• It's not decided yet – the Registrar decides when

13
Carnegie Mellon University

Synchronization

• Final-exam date???
• We don't choose it – the Registrar does
• It's not decided yet – the Registrar decides when

• When can I get out of Pittsburgh???
• It's not decided yet – the Registrar decides when
• If you must buy tickets now, you need to buy them

for the day after the “Makeup Final Examination”
day!

14
Carnegie Mellon University

Synchronization

• Final-exam date???
• We don't choose it – the Registrar does
• It's not decided yet – the Registrar decides when

• When can I get out of Pittsburgh???
• It's not decided yet – the Registrar decides when
• If you must buy tickets now, you need to buy them

for the day after the “Makeup Final Examination”
day!

• Speaking of absence...
• Don't “stretch” the semester break

15
Carnegie Mellon University

Overview

• Project 1 motivation
• Mundane details (x86-32/IA-32 version)

PICs, hardware interrupts, software interrupts and
exceptions, the IDT, privilege levels, segmentation

• Writing a device driver
• Using Simics
• Project 1 pieces

16
Carnegie Mellon University

Project 1 Motivation

• Project 1 implements a game that runs directly
on x86 hardware (no OS)

• What are our hopes for Project 1?
• introduction to kernel programming
• a better understanding of the x86 arch
• hands-on experience with hardware interrupts and

device drivers
• get acquainted with the simulator (Simics) and

development tools

17
Carnegie Mellon University

Why do you care?

• You’ll need this for Project 3
• Lots of programs run on bare hardware

Copyright 2008 HI-TECH Software

18
Carnegie Mellon University

Mundane Details in x86

• Kernels work closely with hardware
• This means you need to know about hardware
• Some knowledge (registers, stack

conventions) is assumed from 15-213
• You will learn more x86 details as the

semester goes on
• Use the Intel PDF files as reference

(http://www.cs.cmu.edu/~410/projects.html)

19
Carnegie Mellon University

Mundane Details in x86:
Privilege Levels

• Processor has 4
“privilege levels” (PLs)

• Zero most-privileged,
three least-privileged

• Processor executes at
one of the four PLs at
any given time

• PLs protect privileged
data, cause general
protection faults

20
Carnegie Mellon University

Mundane Details in x86:
Privilege Levels

• Nearly unused in Project 1
• For projects 2 through 4

• PL0 is “kernel”
• PL3 is “user”
• Interrupts & exceptions usually transfer from 3 to 0

 Sometimes: from 0 to 0

• Running user code means getting from 0 to 3

21
Carnegie Mellon University

Memory Segmentation

• There are different “kinds” of memory
• Hardware “kinds”

• Read-only memory (for booting)
• Video memory (painted onto screen)
• ...

• Software “kinds”
• Read-only memory (typically, program code)
• Stack (grows down), heap (grows up)
• ...

22
Carnegie Mellon University

Memory Segmentation

• Memory segment is a range of “the same kind”
• Hardware “kind”

 Mark video memory as “don't buffer writes”

• Software “kind”
 Mark all code pages read-only

• Fancy software
• Process uses many separate segments
• Windows: each DLL is multiple segments

 (Win16... and Win32... but not Win64...)

23
Carnegie Mellon University

Memory Segmentation

• x86-32 hardware loves segments
• Mandatory segments

• Stack
• Code
• Data

• Segments interact with privilege levels
• Kernel stack / user stack
• Kernel code / user code
• ...

24
Carnegie Mellon University

x86 Segmentation Road Map

• Segment = range of “same kind of memory”
• Segment register = %CS, %SS, %DS, ... %GS
• Segment selector = contents of a segment

register
• Which segment table and index do we mean?
• What access privilege do we have to the segment?

• Segment descriptor = definition of segment
• Which memory range?
• What are its properties?

25
Carnegie Mellon University

Memory Segmentation

• When fetching an instruction, the processor
asks for an address that looks like this: %CS:
%EIP

• So, if %EIP is 0xface then %CS:%EIP is the
64206th byte of the “code segment”.

26
Carnegie Mellon University

Mundane Details in x86:
Segmentation

• When fetching an instruction, the processor
asks for an address that looks like this: %CS:
%EIP

• The CPU looks at the segment selector in the
%CS segment register

• A segment selector looks like this:

27
Carnegie Mellon University

Mundane Details in x86:
Segmentation

• Segment selector has a segment number, table
selector, and requested privilege level (RPL)

• The table-select flag selects a descriptor table
• global descriptor table or local descriptor table

• Segment number indexes into that descriptor
table
• 15-410 uses only global descriptor table (whew!)

• Descriptor tables set up by operating system
• 15-410 support code builds GDT for you (whew!)

• You will still need to understand this, though...

28
Carnegie Mellon University

Mundane Details in x86:
Segmentation

• Segment selector has a segment number, table
selector, and requested privilege level (RPL)

• Table selector (done)
• Segment number/index (done)
• RPL generally means “what access do I have?”
• Magic special case: RPL in %CS

• Defines current processor privilege level
• Think: “user mode” vs. “kernel mode”
• Remember this for Project 3!!!

29
Carnegie Mellon University

Mundane Details in x86:
Segment Descriptors

• Segment = area of memory with particular
access/usage constraints

• Base, size, “stuff”
• Logically, base and size are two 32-bit

numbers, “stuff” is flag/control bits

30
Carnegie Mellon University

Mundane Details in x86:
Segment Descriptors

• Segment = area of memory with particular
access/usage constraints

• Base, size, “stuff”
• Layout:

31
Carnegie Mellon University

Mundane Details in x86:
Segmentation

• Consider %CS segment register's segment
selector's segment descriptor
• Assume base = 0xfeed0000
• Assume limit > 64206

• Assume %EIP contains 0xface
• Then %CS:%EIP means “linear virtual address”

0xfeedface (0xfeed0000 + 0x0000face)
• “Linear virtual address” fed to virtual memory

hardware, if it's turned on (Project 3, not
Project 1)

32
Carnegie Mellon University

Implied Segment Registers

• Programmer doesn't usually specify segment
• Usually implied by “kind of memory access”
• CS is the segment register for fetching code

• All instruction fetches are from %CS:%EIP
• SS is the segment register for the stack segment

• PUSH, POP instructions use %SS:%ESP
• DS is the default segment register for data access

• MOVL (%EAX),%EBX fetches from %DS:%EAX
• But ES, FS, and GS can be specified instead

33
Carnegie Mellon University

Mundane Details in x86:
Segmentation

• Segments need not be fully backed by
physical memory, and can overlap

• Segments defined for 15-410:

Kernel Code Kernel Data User Code User Data

0xFFFFFFFF

0x00000000

34
Carnegie Mellon University

Mundane Details in x86:
Segmentation

• Why so many?
• You can’t specify a segment that is readable,

writable and executable.
• Need one for readable/executable code
• Another for readable/writable data

• Need user and kernel segments in Project 3
for protection

• (Code, Data) X (User, Kernel) = 4

35
Carnegie Mellon University

Mundane Details in x86:
Segmentation

Kernel Code Kernel Data User Code User Data

0xFFFFFFFF

0x00000000

Not For P1

36
Carnegie Mellon University

Mundane Details in x86:
Segmentation

• Don’t need to be concerned with every detail
of segments in this class

• For more information you can read the Intel
docs

• Or our documentation at:
 www.cs.cmu.edu/~410/doc/segments/segments.html

http://www.cs.cmu.edu/~410/doc/segments/segments.html

37
Carnegie Mellon University

Execution Types

• From the processor's perspective, three kinds
of instruction execution
• Regular work – execute this one, then the next
• Branch – execute this one, then somewhere else
• ...?

38
Carnegie Mellon University

Execution Types - Surprises

• From the processor's perspective, three kinds
of instruction execution
• Regular work – execute this one, then the next
• Branch – execute this one, then somewhere else
• “Surprise” – suddenly we must run a different body

of code!
• Surprises

• Exception/fault
• Trap
• Interrupt

39

• Exception: a particular instruction broke
• SIGSEGV, page fault, zero divide, illegal instruction
• We may fix the conditions and re-run the

instruction
• We may kill the program

• Trap: a particular instruction asks for help
• System call: “please invoke the kernel to ...”
• We later resume at the instruction after the trap

• Interrupt: an I/O device needs attention
• A random instruction is deferred while we run driver
• We later resume the deferred instruction

Surprises

40
Carnegie Mellon University

Mundane Details in x86: Faults

• Sometimes code does stupid things
• int gorgonzola = 128/0;
• char* idiot_ptr = NULL; *idiot_ptr = 0;

• Executing bytes which don't encode an instruction
• Exceptions cause a handler routine to be run

• Record information about which instruction broke
• Record information about why it broke
• Locate “exception handler”
• Exception handler decides: fix/kill/crash

41
Carnegie Mellon University

Mundane Details in x86:
“Software Interrupts”

• A device gets the kernel’s attention by raising
a (hardware) interrupt

• User processes get the kernel’s attention by
raising a “software interrupt”
• Which is not an interrupt even if Intel calls it one!

• x86 instruction INT n
(more info on page 346 of intel-isr.pdf)

• Invokes handler routine: system call

42
Carnegie Mellon University

Mundane Details in x86:
Interrupts and the PIC

• Devices raise interrupts through the
Programmable Interrupt Controller (PIC)

• The PIC serializes interrupts, delivers them
• There are actually two “daisy-chained” PICs

CPU
PIC 1 PIC 2

Timer Keyboard IDE 1 IDE 2

43
Carnegie Mellon University

Mundane Details in x86:
Interrupts and the PIC

IDE Bus7

IDE Bus6

Coprocessor5

General I/O4

General I/O3

General I/O2

General I/O1

Real Time Clock0

PIC 2

To Processor

LPT17

Floppy6

LPT25

COM14

COM23

Second PIC2

Keyboard1

Timer0

PIC 1

44
Carnegie Mellon University

Typical Interrupt Handshake

Processor Device

time

I am feeling “full”. Assert
interrupt. Don’t de-assert
interrupt until processor
dismisses this one.Interrupt

Asserted

45
Carnegie Mellon University

Typical Interrupt Handshake

Processor Device

time

I am feeling “full”. Assert
interrupt. Don’t de-assert
interrupt until processor
dismisses this one.Interrupt

Asserted

Oh my!
Invoke handler.

46
Carnegie Mellon University

Typical Interrupt Handshake

Processor Device

time

I am feeling “full”. Assert
interrupt. Don’t de-assert
interrupt until processor
dismisses this one.Interrupt

Asserted

Oh my!
Invoke handler.

Request data

Send data

Send data, feel less “full”.

Process or
queue data.

Request data.

47
Carnegie Mellon University

Typical Interrupt Handshake

Processor Device

time

I am feeling “full”. Assert
interrupt. Don’t de-assert
interrupt until processor
dismisses this one.Interrupt

Asserted

Oh my!
Invoke handler.

Request data

Send data

Send data, feel less “full”.

Process or
queue data.

Stop asserting interrupt.
Ready to interrupt again.“Dismiss” signal

Dismiss
interrupt.

Request data.

48
Carnegie Mellon University

Enabling / Disabling Interrupts

• PIC automatically defers new interrupts from a
device until old one from that device is
dismissed by processor.

• We also provide disable_interrupts(),
which “disables” interrupts from ALL devices.
Think of this as deferring interrupts. They are
still out there, waiting to happen.

• We provide enable_interrupts(), which
re-enables interrupts.

• Finer-grained control is also possible.

49
Carnegie Mellon University

Interrupt Descriptor Table – IDT

• Processor needs info on which handler to run when
• Processor reads appropriate IDT entry depending

on the interrupt, exception or INT n instruction
• Logically, an IDT entry contains a function pointer

and some flags

50
Carnegie Mellon University

Interrupt Descriptor Table – IDT

• Processor needs info on which handler to run when
• Processor reads appropriate IDT entry depending

on the interrupt, exception or INT n instruction
• An entry in the IDT looks like this:

51

Interrupt Descriptor Table – IDT

• The first 32 entries in the IDT correspond to processor
exceptions. 31-255 correspond to hardware/software
events

• Some interesting entries:

• More information in section 5.12 of intel-sys.pdf.
• Note: One “IDT” table is used for faults, traps, and

interrupts

Timer interrupt (IRQ 0)32

Page fault14

Divide by zero0

EventIDT Entry

52
Carnegie Mellon University

Classifying Surprises

• Asynchronous or synchronous?
• Asynchronous – happens at a random time

 Can be deferred (“blocked”) until a convenient time

• Synchronous – a particular instruction is to blame
 Cannot be deferred – happen when instruction

happens

53
Carnegie Mellon University

Classifying Surprises

• Asynchronous or synchronous?
• Asynchronous – happens at a random time

 Can be deferred (“blocked”) until a convenient time

• Synchronous – a particular instruction is to blame
 Cannot be deferred – happen when instruction

happens

• What happens afterward?
• Retry the surprising instruction (exception)
• Kill program (exception)
• Run the next instruction (trap, interrupt)

54
Carnegie Mellon University

Debugging Surprises

• Every synchronous surprise is because of
some particular instruction
• Not: “line of code”!

55
Carnegie Mellon University

Debugging Surprises

• Every synchronous surprise is because of
some particular instruction
• Not: “line of code”!

• Every synchronous surprise is because of
some particular reason
• Generally: a false precondition for that particular

instruction

56
Carnegie Mellon University

Debugging Surprises

• Every synchronous surprise is because of
some particular instruction
• Not: “line of code”!

• Every synchronous surprise is because of
some particular reason
• Generally: a false precondition for that particular

instruction
• To solve a synchronous surprise

• You must know which instruction
• You must know which reason

57
Carnegie Mellon University

Mundane Details in x86:
Communicating with Devices

• I/O Ports
• Use instructions like inb(port),
outb(port,data)

• Are not memory!
• Memory-Mapped I/O

• Magic areas of memory tied to devices
• PC video hardware uses both

• Cursor is controlled by I/O ports
• Characters are painted from memory

58
Carnegie Mellon University

x86 Device Perversity

• Influence of ancient history
• IA-32 is fundamentally an 8-bit processor!
• Primeval I/O devices had 8-bit ports

• I/O devices have multiple “registers”
• Timer: waveform type, counter value
• Screen: resolution, color depth, cursor position

• You must get the right value in the right device
register

59
Carnegie Mellon University

x86 Device Perversity

• Value/bus mismatch
• Counter value, cursor position are 16 bits
• Primeval I/O devices still have 8-bit ports

• Typical control flow
• “I am about to tell you half of register 12”
• “32”
• “I am about to tell you the other half of register 12”
• “0”

60
Carnegie Mellon University

x86 Device Perversity

• Sample interaction
• outb(command_port, SELECT_R12_LOWER);
• outb(data_port, 32);
• outb(command_port, SELECT_R12_UPPER);
• outb(data_port, 0);

• This is not intuitive (for software people).
• Why can't we just “*R12 = 0x00000032”?

• But you can't get anywhere on P1 without
understanding it.

61
Carnegie Mellon University

Writing a Device Driver

• Traditionally consist of two separate halves
• Named “top” and “bottom” halves
• BSD and Linux use these names “differently”

• One half is interrupt driven, executes quickly,
queues work

• The other half processes queued work at a
more convenient time

62
Carnegie Mellon University

Writing a Device Driver

• For this project, your keyboard driver will likely
have a top and bottom half

• Bottom half
• Responds to keyboard interrupts and queues scan

codes
• Top half

• In readchar(), reads from the queue and processes
scan codes into characters

63
Carnegie Mellon University

Installing and Using Simics

• Simics is a system simulator
• Makes testing kernels much easier
• Project 1 Makefile builds floppy-disk images
• Simics boots and runs them

• Launch simics60 in your build directory
• Your 15-410 AFS space has p1/, scratch/
• If you work in scratch/, we can read your files,

and answering questions can be much faster.

64
Carnegie Mellon University

Installing and Using Simics:
Running on Personal PC

• SSH with X Windows forwarding to
LINUX.ANDREW

 See “15-410 Software Setup Guide”
 Especially see “Using Virtual Andrew” if/when you are

far away from Pittsburgh

67
Carnegie Mellon University

Installing and Using Simics:
Overview of usage

• Run simulation with r, stop with ^C
• Magic instruction

• xchg %bx,%bx (wrapper in interrupts.h)
 This may change -- use the macros!

• Memory access breakpoints
• Symbolic debugging
• See our local Simics hints! (on Project page)

68
Carnegie Mellon University

Simics vs. gdb

• Similar jobs: symbolic debugging
• Random differences

• Details of commands and syntax
• Notable differences

• Simics knows everything about PC hardware – all
magic registers, TLB contents, interrupt masks,
etc.

• Simics is scriptable in Python

70
Carnegie Mellon University

Project 1 Pieces

• You will build
• A device-driver library

 “console” (screen) driver
 keyboard driver
 timer driver

• Test code to your taste
 For historical reasons, this will be called “game.c”.

• We will provide
• Underlying setup/utility code
• Simple device-driver test program
• Text-mode game!

74
Carnegie Mellon University

Project 1 Pieces

cons kbd tmr

75
Carnegie Mellon University

Project 1 Pieces

cons kbd tmr

76
Carnegie Mellon University

Project 1 Pieces

advent.o

cons kbd tmr

advent

cons kbd tmr

410test .o

410test

77
Carnegie Mellon University

Project 1 Pieces

bootfd.img

advent.o

cons kbd tmr

advent

cons kbd tmr

410test .o

410test

bootable floppy disk image

78
Carnegie Mellon University

Summary

• Project 1 runs on bare hardware
• Not a machine-invisible language like ML or Java
• Not a machine-portable language like C
• Budget time for understanding this environment

• Project 1 runs on simulated bare hardware
• You probably need more than printf() for debugging
• Simics is not (exactly) gdb
• Invest time to learn more than bare minimum

79
Carnegie Mellon University

Summary

• Project 1 runs on bare PC hardware
• As hardware goes, it's pretty irrational
• Almost nothing works “how you would expect”
• Those pesky bit-field diagrams do matter
• Getting started is tough, so please don't delay.

• This isn't throwaway code
• We will read it
• You will use it for Project 3
• So spend extra time to make it really great code!

