15-410

“An Experience Like No Other”

Stack Discipline
Jan. 14, 2026

Babu Pillai
Dave Eckhardt

Slides originally stolen from 15-213

15-410, S’'26

Synchronization

Reminder: the syllabus has been released!

* Please read it, carefully, right away
= Please do nof wait until halfway through P0

4 15-410, S'26

Synchronization

Office hours today?
* | believe so — see the Staff web page
* Don't forget about the syllabus!

8 15-410, S'26

Outline

Topics

* Process memory model
IA32 stack organization
Register saving conventions
Before & after main ()
Project 0

0 15-410, S'26

Why Only 327
You may have learned x86-64 aka EMT64 aka AMDG4

= x86-64 is simpler than x86(-32) for user program code
= Lots of registers, registers more orthogonal

Why will 410 be x86 / IA327

10 15-410, S'26

Why Only 327
You may have learned x86-64 aka EMT64 aka AMDG4

= x86-64 is simpler than x86(-32) for user program code
= Lots of registers, registers more orthogonal

Why will 410 be x86 / I1A32?

= x86-64 is not simpler for kernel code
= Machine begins in 16-bit mode, then 32, finally 64
» You don't have time to write 32=64 transition code

» If we gave it to you, it would be a big black box
* Interrupts are more complicated

" x86-64 is not simpler during debugging
= More registers means more registers to have wrong values

= x86-64 virtual memory is a bit of a drag
= More steps than x86-32, but not more intellectually stimulating

= There are still a lot of 32-bit machines in the world

CS:APP 32-bit guide

= http://csapp.cs.cmu.edu/3e/waside/waside-ia32.pdf

11 15-410, S'26

Private Address Spaces

Each process has its own private address space.

Oxffffffff
kernel virtual memory memory
(code, data, heap, stack) T invisible to
0xc0000000 user code
user stack
(created at runtime) o _
J <+ %esp (stack pointer)
t .
memory mapped region for warn’ng-
shared libraries i

0x40000000 detalls vary
Warning: T Egrggl and
numbers . < brk .

. run-time heap version!
specific to (managed by malloc)
L|nux z-x read/write segments ‘
on |A32" (.data, .bss) \ loaded from the
read-only segments executable file
(.init, .text, .rodata)
0x08048000 /
unused

12 0x00000000 15-410, S'26

|IA32 Stack

* Region of memory managed
with stack discipline

= “Grows” toward lower

Stack “Bottom”

[

addresses
* Register $esp indicates
lowest stack address
= address of “top” element
= stack pointer

Stack
Pointer

Tesp —

13

AN

Incregsing
Addreésses

Stack Grows
Down

Stack “Top”

15-410, S’'26

IA32 Stack Pushing

Pushing

= pushl Src
= Fetch “operand” from Src

Stack “Bottom”

[

= Maybe a register: %ebp
= Maybe memory: 8(%ebp)
* Decrement $esp by 4

= Store operand in memory at
address given by %esp

Stack

Pointer
sesp —l—>'4

14

N

Incre

asing

Addrésses

Stack

D

Stack “Top”
15-410, S'26

rows
n

IA32 Stack Popping

Popping Stack “Bottom”
= popl Dest /
= Read memory at address
given by %esp Incregsing
" Increment $esp by 4 Addr¢sses
= Store into Dest operand

Stack
Pointer Sta%k :‘OWS
sesp W
+ ﬁ
Stack “Top”

15 15-410, S'26

Stack Operation Examples

0x110
0x10c
0x108 123

$eax 213

Fedx 555

sesp 0x108

16 15-410, S'26

Stack Operation Examples

0x110
0x10c
0x108 123

Teax 213
sedx 555
%esp 0x108

17 15-410, S'26

Stack Operation Examples

0x110
0x10c
0x108

$eax

zesp

18

123

213

555

0x108

0x110
0x10c
0x108
0x104

pushl %eax

123

213

213

555

0x104

0x110
0x10c
0x108
0x104

$eax

zesp

popl %edx

123

213

213

213

0x108

15-410, S’'26

Procedure Control Flow

= Use stack to support procedure call and return

Procedure call:

* call label Push return address;
Jump to label

“Return address”?
= Address of instruction after call
= Example from disassembly
= 804854e: e8 3d 06 00 00 call 8048b90 <main>

= 8048553: 50 pushl %eax
» Return address = 0x8048553

Procedure return:

° ret Pop address from stack;
Jump to address

19 15-410, S'26

Procedure Call Example

804854e: e8 3d 06 00 00 call 8048b9%0 <main>
8048553: 50 pushl %eax

call 8048b90

0x110 0x110
0x10c 0x10c
0x108 123 0x108 123

0x104 | 0x8048553

sesp 0x108 sesp 0x104

%eip |0x804854e %eip |0x8048b90

%eip is program counter

20 15-410, S'26

Procedure Return Example

21

8048591: 3

0x110
0x10c
0x108
0x104

zesp

zelip

ret

123

0x8048553

0x104

0x8048591

%eip is program counter

0x110
0x10c
0x108

zesp

seip

ret

123

0x8048553

0x108

0x8048553

15-410, S’'26

Stack-Based Languages

Languages that support recursion
" e.d., C, Pascal, Java

" Code must be “reentrant”
= Multiple instantiations of a single procedure “live” at same time

" Need some place to store state of each instantiation
Arguments

Local variables

Return pointer (maybe)

Weird things (static links, exception handling, ...)

Stack discipline — key observation

= State for given procedure needed for limited time
* From time of call to time of return

= Note: callee returns before caller does

Therefore stack allocated in nested frames
= State for single procedure instantiation

22 15-410, S'26

Call Chain Example

Code Structure

yoo (...)

{

;ho()- who (...)

. ' {

; amI () ;
amI () ;
}

* Procedure amI ()
recursive

23

Call Chain

15-410, S'26

Stack Frames

Contents
= Local variables yoo
= Return information N
= Temporary space e
Management aml
= Space allocated when enter
procedure
= “Set-up” code Frame
= Deallocated when return Pointer
* “Finish” code %ebp — |
. proc
Pointers Stack ___
: T Pointer
= Stack pointer %esp indicates \
stack top sesp Stack

. . . “Top”
= Frame pointer $ebp indicates

start of current frame

24 15-410, S'26

|A32/Linux Stack Frame

Current Stack Frame (“Top” (
to “Bottom”)
= Parameters for function Caller
we're about to call Frame <
= “Argument build”
* Local variables AR
* If don't all fit in registers Frame Pointer \ [Return Addr
= Caller's saved registers (%ebp) » Old %ebp
= Caller's saved frame pointer
Sa_ved
Caller's Stack Frame Registers
" Ret ddress y
eturn a | . Local
" Pushed by call instruction Variables
= Arguments for usl
Stack Pointer Argﬂ“‘g nt
(%esp) —
25 15-410, S'26

swap ()

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = t0;

26 15-410, S’'26

swap ()

int zipl = 15213;
int zip2 = 91125;

void call swap()

{
swap (&zipl, &zip2);

}

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = to0;

15-410, S’'26

swap ()

int zipl = 15213;
int zip2 = 91125;

void call swap ()

{
swap (&zipl, &zip2);

}

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = t0;

Calling swap from call swap

call swap:
pushl $zip2 # Global var
pushl $zipl # Global var
call swap

15-410, S’'26

swap ()

int zipl = 15213;
int zip2 = 91125;

void call swap ()

{
swap (&zipl, &zip2);

}

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = t0;

Calling swap from call swap

call swap:
pushl $zip2 # Global var
pushl $zipl # Global var
call swap

. Resulting
. Stack
&zip2
&zipl
Rtn adr |[—— %esp

15-410, S’'26

swap ()

swap:

pushl %ebp
movl %esp, 3sebp Set

Up

-) pushl %ebx
void swap(int *xp,

{

int *yp)

\

movl 12 (%ebp) , $ecx

int t0 = *xp;

tl =
= tl1;
= t0;

*yp;

30

Core <

movl 8 (%ebp) , %$edx

movl
movl
movl
movl

movl
movl

popl
ret

%ecx) ,%eax
%edx) , $ebx
%eax, (%edx)
%ebx, (%ecx)

—4(%ebp),%ebx.\

%ebp, sesp
sebp

> Body

/

> Finish

15-410, S’'26

swap () Setup

Entering
Stack

«—— 3ebp

&zip2

&zipl

Rtn adr [— %esp

swap:
pushl %ebp
movl %esp, sebp
pushl %ebx

31 15-410, S'26

swap () Setup #1

Entering gfsukltlng
Stack ac
«—— 3ebp %ebp
&zip2 VP
&zipl Xp
Rtn adr | %esp Rtn adr
Old %ebﬂ'— $esp
swap:

pushl %ebp
movl %esp, sebp
pushl %ebx

32 15-410, S'26

swap () Setup #2

Entering
Stack

«—— 3ebp

&zip2

&zipl

Rtn adr [— %esp

swap:
pushl %ebp
movl %esp, $ebp
pushl %ebx

33

Resulting
Stack
ypP
Xp
Rtn adr
Old %ebp[* $ebp
sesp
15-410, S’26

swap () Setup #3

Entering
Stack

«—— 3ebp

&zip2

&zipl

Rtn adr [— %esp

swap:
pushl %ebp
movl %esp, sebp
pushl %ebx

34

Resulting

Stack

yp

Xp

Rtn adr

Old $ebp

- %ebp

Old %$ebx

«——— %esp

15-410, S’'26

35

Effect of swap () Setup

Entering
Stack
«—— 3ebp
&zip2
&zipl
Rtn adr [+ %esp

movl 12 (%ebp) ,%ecx # get yp
movl 8 (%ebp) ,%edx

get xp

Offset
(relative to $ebp)

12
8

-4

Resulting
Stack
yp
Xp
Rtn adr
Old $ebp[* $ebp
Old $ebx|—— %esp

} Body

15-410, S’'26

swap () Finish #1

swap’s
Stack
Offset
12
8
4
0
-4
Observation

* Restoring saved register $ebx
= “Hold that thought”

36

yp

Xp

Rtn adr

Old $ebp[*

Old %ebx|*

%ebp

sesp

Offset

12
8
4
0

-4

YP
Xp
Rtn adr
Old $ebp[—— %ebp
Old $ebx|*— %esp

movl -4 (%ebp) ,h 3ebx
movl %ebp, Sesp
popl %ebp

ret

15-410, S’'26

swap () Finish #2

swap’s
Stack

Offset
12

37

yp

Xp

Rtn adr

Old $ebp[*

Old %ebx|*

swap’s
Stack

Offset

%ebp

sesp

12
8
4
0

YP
Xp
Rtn adr
Old $ebpfi— %ebp
zesp

movl -4 (%ebp) , Sebx
movl %ebP,%esE
popl 3%ebp

ret

15-410, S’'26

swap () Finish #3

swap’s swap's . e
Stack . Stack .
Offset : Offset .
12 VP 12 yP
8 e 8 Xp
2 | Rtn adr 4 | Rtn adr \ sesp
0 |Old %ebp)| %ebp)

movl -4 (%ebp) , Sebx
movl %ebp, Sesp
popl 3%ebp

ret

38 15-410, S'26

swap () Finish #4

; —
swap's
Stack :
Offset .
12 ypP
8 Xp
4 | Rtn adr \
Observation/query

sebp

sesp

sebp
. Exiting
Stack
&zip2
&zipl [sesp

movl -4 (%ebp) , Sebx
movl %ebp, Sesp
popl %ebp

ret

= Saved & restored caller's register $ebx —

= Didn't do so for $eax, $ecx, or $edx!

39

15-410, S’'26

Register Saving Conventions

When procedure yoo () calls who ():
= yoo () is the caller, who () is the callee

Can a register be used for temporary storage?

yoo:
movl $15213, %e
call who

addl %edx, %eax
ret

dx

who:
movl 8 (%ebp), %edx
addl $91125, %edx

ret

= Contents of register $edx overwritten by who ()

40

15-410, S’'26

Register Saving Conventions

When procedure yoo () calls who ():
= yoo () is the caller, who () is the callee

Can a register be used for temporary storage?

Definitions

= “Caller Save” register
= Caller saves temporary in its frame before calling

= “Callee Save” register
= Callee saves temporary in its frame before using

Conventions
= Which registers are caller-save, callee-save?

41

15-410, S’'26

IA32/Linux Register Usage

Integer Registers
= Two have special uses
" %ebp, sesp
= Three managed as
callee-save

" %ebx, $Sesi, Sedi
= Old values saved on
stack prior to using

= Three managed as
caller-save

" %eax, $edx, Secx
= Do what you please,

but expect any callee
to do so, as well

" Register $eax also
holds return value

42

Caller-Save
Temporaries =<

Callee-Save
Temporaries =<

Special <

\

\/

%eax

%ecx

$ebx

%esi

$edi

sesp

sebp

15-410, S’'26

Stack Summary

Stack makes recursion work

* Private storage for each instance of procedure call
= Instantiations don't clobber each other

= Addressing of locals + arguments can be relative to stack
positions

= Can be managed by stack discipline
= Procedures return in inverse order of calls

IA32 procedures: instructions + conventions
= call/ ret instructions mix %eip, %$esp in a fixed way

= Register usage conventions
= Caller/ Callee save
= %ebp and %esp

= Stack frame organization conventions
= Which argument is pushed first

43 15-410, S'26

Before & After main ()

int main(int argc, char *argv[]) {
if (argc > 1) {

}

printf (“%$s\n”, argv[l]);
else {

char *av[3] = { 0, 0, O };

aV[O] = argV[O]; av[l] = “Fred”:

execvp (av[0], av);

return (0);

44

15-410, S’'26

The Mysterious Parts

argc, argv
= Strings from one program
= Available while another program is running
= Which part of the memory map are they in?
* How did they get there?

What happens when main () does “return (0)*???
* There's no more program to run...right?
= Where does the 0 go?
= How does it get there?

410 students should seek to abolish mystery

= So we will (un)cover each mysterious thing

45 15-410, S'26

The Mysterious Parts

argc, argv
= Strings from one program
= Available while another program is running

* Inter-process sharing/information transfer is OS's job
= OS copies strings from old address space to new in exec()
= Traditionally placed “below bottom of stack”
= Other weird things (environment, auxiliary vector) (above argv)

arg
vector
main ()
printf ()

46 15-410, S'26

The Mysterious Parts

What happens when main () does “return (0)”?
= Defined by C standard to have same effect as “exit (0)”
= But how??

477 15-410, S'26

The Mysterious Parts

What happens when main () does “xeturn (0)”?
* Defined by C standard to have same effect as “exit (0)”
= But how??

The “main() wrapper”
= Receives argc, argv from OS
= Calls main (), then calls exit ()
* Provided by C library, traditionally in “crt0.s”
= Often has a “strange” name (not a legal C function name)

/* not actual code */
void ~~main(int argc, char *argv[]) {

exit (main(argc, argv));

48 15-410, S'26

Project O - “"Stack Crawler”

C/Assembly function

= Can be called by any C function
* Prints stack frames in a symbolic way

-—--Stack
Function
Function
Function
Function

Function

49

Trace Follows—---

fun3(c='c', d=2.090000),
fun2 (£=35.000000) ,

funl (count=0) ,
funl (count=1l),

funl (count=2) ,

in
in

in

in

in

15-410, S’'26

Project O - “"Stack Crawler”

Conceptually easy
= Calling convention specifies layout of stack
= Stack is “just memory” - C happily lets you read & write

Key questions
= How do | know 0x80334720 is “funl”?
= How do | know fun3 () 's second parameter is called “d”?

50 15-410, S'26

Project O "Data Flow”

fun.c

symbol-table array
many slots (blank)

51

th.c

tb globals.c

A

15-410, S’'26

Project O "Data Flow” - Compilation

fun.o

52

tb.o

tb globals.o

15-410, S'26

Project O “Data Flow™ - Linking

tb globals.o

debugger 1nfo

53 15-410, S'26

Project 0 "Data Flow™ - PO "Post-Linking”

tb globals.o

debugger 1nfo

54 15-410, S'26

Summary

Review of stack knowledge
What makes main () special

Project 0 overview

Look for handout this afternoon/evening

Please read all of the handout before asking questions!
Meanwhile, reading the syllabus is timely!

Start interviewing Project 2/3/4 partners!

55 15-410, S'26

	Stack Discipline Jan. 15, 2025
	Slide 4
	Slide 8
	Outline
	Why Only 32?
	Slide 11
	Private Address Spaces
	IA32 Stack
	IA32 Stack Pushing
	IA32 Stack Popping
	Stack Operation Examples
	Slide 17
	Slide 18
	Slide 19
	Procedure Call Example
	Procedure Return Example
	Stack-Based Languages
	Call Chain Example
	Stack Frames
	IA32/Linux Stack Frame
	swap()
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	swap() Setup
	swap() Setup #1
	swap() Setup #2
	swap() Setup #3
	Effect of swap() Setup
	swap() Finish #1
	swap() Finish #2
	swap() Finish #3
	swap() Finish #4
	Register Saving Conventions
	Slide 41
	IA32/Linux Register Usage
	Stack Summary
	Before & After main()
	The Mysterious Parts
	Slide 46
	Slide 47
	Slide 48
	Project 0 - “Stack Crawler”
	Slide 50
	Project 0 “Data Flow”
	Project 0 “Data Flow” - Compilation
	Project 0 “Data Flow” - Linking
	Project 0 “Data Flow” - P0 “Post-Linking”
	Summary

