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Synchronization

Reminder: the syllabus has been released!

* Please read it, carefully, right away
= Please do nof wait until halfway through P0
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Synchronization

Office hours today?
* | believe so — see the Staff web page
* Don't forget about the syllabus!
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Outline

Topics

* Process memory model
IA32 stack organization
Register saving conventions
Before & after main ()
Project 0
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Why Only 327
You may have learned x86-64 aka EMT64 aka AMDG4

= x86-64 is simpler than x86(-32) for user program code
= Lots of registers, registers more orthogonal

Why will 410 be x86 / IA327
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Why Only 327
You may have learned x86-64 aka EMT64 aka AMDG4

= x86-64 is simpler than x86(-32) for user program code
= Lots of registers, registers more orthogonal

Why will 410 be x86 / I1A32?

= x86-64 is not simpler for kernel code
= Machine begins in 16-bit mode, then 32, finally 64
» You don't have time to write 32=64 transition code

» If we gave it to you, it would be a big black box
* Interrupts are more complicated

" x86-64 is not simpler during debugging
= More registers means more registers to have wrong values

= x86-64 virtual memory is a bit of a drag
= More steps than x86-32, but not more intellectually stimulating

= There are still a lot of 32-bit machines in the world

CS:APP 32-bit guide

= http://csapp.cs.cmu.edu/3e/waside/waside-ia32.pdf
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Private Address Spaces

Each process has its own private address space.

Oxffffffff
kernel virtual memory memory
(code, data, heap, stack) T invisible to
0xc0000000 user code
user stack
(created at runtime) o _
J <+ %esp (stack pointer)
t .
memory mapped region for warn’ng-
shared libraries i

0x40000000 detalls vary
Warning: T Egrggl and
numbers . < brk .

. run-time heap version!
specific to (managed by malloc)
L|nux z-x read/write segments ‘
on |A32" (.data, .bss) \ loaded from the
read-only segments executable file
(.init, .text, .rodata)
0x08048000 /
unused
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|IA32 Stack

* Region of memory managed
with stack discipline

= “Grows” toward lower

Stack “Bottom”

[

addresses
* Register $esp indicates
lowest stack address
= address of “top” element
= stack pointer

Stack
Pointer

Tesp —

13

AN

Incregsing
Addreésses

Stack Grows
Down

Stack “Top”
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IA32 Stack Pushing

Pushing

= pushl Src
= Fetch “operand” from Src

Stack “Bottom”

[

= Maybe a register: %ebp
= Maybe memory: 8(%ebp)
* Decrement $esp by 4

= Store operand in memory at
address given by %esp

Stack

Pointer
sesp —l—>'4

14

N

Incre

asing

Addrésses

Stack

D

Stack “Top”
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IA32 Stack Popping

Popping Stack “Bottom”
= popl Dest /
= Read memory at address
given by %esp Incregsing
" Increment $esp by 4 Addr¢sses
= Store into Dest operand

Stack
Pointer Sta%k :‘OWS
sesp W
+ ﬁ
Stack “Top”
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Stack Operation Examples

0x110
0x10c
0x108 123

$eax 213

Fedx 555

sesp 0x108
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Stack Operation Examples

0x110
0x10c
0x108 123

Teax 213
sedx 555
%esp 0x108
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Stack Operation Examples

0x110
0x10c
0x108

$eax

zesp

18

123

213

555

0x108

0x110
0x10c
0x108
0x104

pushl %eax

123

213

213

555

0x104

0x110
0x10c
0x108
0x104

$eax

zesp

popl %edx

123

213

213

213

0x108
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Procedure Control Flow

= Use stack to support procedure call and return

Procedure call:

* call label Push return address;
Jump to label

“Return address”?
= Address of instruction after call
= Example from disassembly
= 804854e: e8 3d 06 00 00 call 8048b90 <main>

= 8048553: 50 pushl %eax
» Return address = 0x8048553

Procedure return:

° ret Pop address from stack;
Jump to address
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Procedure Call Example

804854e: e8 3d 06 00 00 call 8048b9%0 <main>
8048553: 50 pushl %eax

call 8048b90

0x110 0x110
0x10c 0x10c
0x108 123 0x108 123

0x104 | 0x8048553

sesp 0x108 sesp 0x104

%eip |0x804854e %eip |0x8048b90

%eip is program counter
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Procedure Return Example

21

8048591: 3

0x110
0x10c
0x108
0x104

zesp

zelip

ret

123

0x8048553

0x104

0x8048591

%eip is program counter

0x110
0x10c
0x108

zesp

seip

ret

123

0x8048553

0x108

0x8048553
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Stack-Based Languages

Languages that support recursion
" e.d., C, Pascal, Java

" Code must be “reentrant”
= Multiple instantiations of a single procedure “live” at same time

" Need some place to store state of each instantiation
Arguments

Local variables

Return pointer (maybe)

Weird things (static links, exception handling, ...)

Stack discipline — key observation

= State for given procedure needed for limited time
* From time of call to time of return

= Note: callee returns before caller does

Therefore stack allocated in nested frames
= State for single procedure instantiation
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Call Chain Example

Code Structure

yoo (...)

{

;ho()- who (...)

. ' {

; amI () ;
amI () ;
}

* Procedure amI ()
recursive

23

Call Chain
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Stack Frames

Contents
= Local variables yoo
= Return information N
= Temporary space e
Management aml
= Space allocated when enter
procedure
= “Set-up” code Frame
= Deallocated when return Pointer
* “Finish” code %ebp — |
. proc
Pointers Stack ___
: T Pointer
= Stack pointer %esp indicates \
stack top sesp Stack

. . . “Top”
= Frame pointer $ebp indicates

start of current frame
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|A32/Linux Stack Frame

Current Stack Frame (“Top” (
to “Bottom”)
= Parameters for function Caller
we're about to call Frame <
= “Argument build”
* Local variables AR
* If don't all fit in registers Frame Pointer \ [Return Addr
= Caller's saved registers (%ebp) » Old %ebp
= Caller's saved frame pointer
Sa_ved
Caller's Stack Frame Registers
" Ret ddress y
eturn a | . Local
" Pushed by call instruction Variables
= Arguments for usl
Stack Pointer Argﬂ“‘g nt
(%esp) —
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swap ()

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = t0;
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swap ()

int zipl = 15213;
int zip2 = 91125;

void call swap()

{
swap (&zipl, &zip2);

}

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = to0;

15-410, S’'26



swap ()

int zipl = 15213;
int zip2 = 91125;

void call swap ()

{
swap (&zipl, &zip2);

}

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = t0;

Calling swap from call swap

call swap:
pushl $zip2 # Global var
pushl $zipl # Global var
call swap

15-410, S’'26



swap ()

int zipl = 15213;
int zip2 = 91125;

void call swap ()

{
swap (&zipl, &zip2);

}

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xp = tl;

*yp = t0;

Calling swap from call swap

call swap:
pushl $zip2 # Global var
pushl $zipl # Global var
call swap

. Resulting
. Stack
&zip2
&zipl
Rtn adr |[—— %esp

15-410, S’'26



swap ()

swap:

pushl %ebp
movl %esp, 3sebp Set

Up

- ) pushl %ebx
void swap(int *xp,

{

int *yp)

\

movl 12 (%ebp) , $ecx

int t0 = *xp;

tl =
= tl1;
= t0;

*yp;

30

Core <

movl 8 (%ebp) , %$edx

movl
movl
movl
movl

movl
movl

popl
ret

%ecx) ,%eax
%edx) , $ebx
%eax, (%edx)
%ebx, (%ecx)

—4(%ebp),%ebx.\

%ebp, sesp
sebp

> Body

/

> Finish
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swap () Setup

Entering
Stack

«—— 3ebp

&zip2

&zipl

Rtn adr [— %esp

swap:
pushl %ebp
movl %esp, sebp
pushl %ebx
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swap () Setup #1

Entering gfsukltlng
Stack ac
«—— 3ebp %ebp
&zip2 VP
&zipl Xp
Rtn adr | %esp Rtn adr
Old %ebﬂ'— $esp
swap:

pushl %ebp
movl %esp, sebp
pushl %ebx

32 15-410, S'26



swap () Setup #2

Entering
Stack

«—— 3ebp

&zip2

&zipl

Rtn adr [— %esp

swap:
pushl %ebp
movl %esp, $ebp
pushl %ebx

33

Resulting
Stack
ypP
Xp
Rtn adr
Old %ebp[* $ebp
sesp
15-410, S’26



swap () Setup #3

Entering
Stack

«—— 3ebp

&zip2

&zipl

Rtn adr [— %esp

swap:
pushl %ebp
movl %esp, sebp
pushl %ebx

34

Resulting

Stack

yp

Xp

Rtn adr

Old $ebp

- %ebp

Old %$ebx

«——— %esp
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Effect of swap () Setup

Entering
Stack
«—— 3ebp
&zip2
&zipl
Rtn adr [+ %esp

movl 12 (%ebp) ,%ecx # get yp
movl 8 (%ebp) ,%edx

# get xp

Offset
(relative to $ebp)

12
8

-4

Resulting
Stack
yp
Xp
Rtn adr
Old $ebp[* $ebp
Old $ebx|—— %esp

} Body
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swap () Finish #1

swap’s
Stack
Offset
12
8
4
0
-4
Observation

* Restoring saved register $ebx
= “Hold that thought”

36

yp

Xp

Rtn adr

Old $ebp[*

Old %ebx|*

%ebp

sesp

Offset

12
8
4
0

-4

YP
Xp
Rtn adr
Old $ebp[—— %ebp
Old $ebx|*— %esp

movl -4 (%ebp) ,h 3ebx
movl %ebp, Sesp
popl %ebp

ret
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swap () Finish #2

swap’s
Stack

Offset
12

37

yp

Xp

Rtn adr

Old $ebp[*

Old %ebx|*

swap’s
Stack

Offset

%ebp

sesp

12
8
4
0

YP
Xp
Rtn adr
Old $ebpfi— %ebp
zesp

movl -4 (%ebp) , Sebx
movl %ebP,%esE
popl 3%ebp

ret
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swap () Finish #3

swap’s swap's . e
Stack . Stack .
Offset : Offset .
12 VP 12 yP
8 e 8 Xp
2 | Rtn adr 4 | Rtn adr \ sesp
0 |Old %ebp)| %ebp )

movl -4 (%ebp) , Sebx
movl %ebp, Sesp
popl 3%ebp

ret
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swap () Finish #4

; —
swap's
Stack :
Offset .
12 ypP
8 Xp
4 | Rtn adr \
Observation/query

sebp

sesp

sebp
. Exiting
Stack
&zip2
&zipl [ sesp

movl -4 (%ebp) , Sebx
movl %ebp, Sesp
popl %ebp

ret

= Saved & restored caller's register $ebx —

= Didn't do so for $eax, $ecx, or $edx!

39
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Register Saving Conventions

When procedure yoo () calls who ():
= yoo () is the caller, who () is the callee

Can a register be used for temporary storage?

yoo:
movl $15213, %e
call who

addl %edx, %eax
ret

dx

who:
movl 8 (%ebp), %edx
addl $91125, %edx

ret

= Contents of register $edx overwritten by who ()

40
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Register Saving Conventions

When procedure yoo () calls who ():
= yoo () is the caller, who () is the callee

Can a register be used for temporary storage?

Definitions

= “Caller Save” register
= Caller saves temporary in its frame before calling

= “Callee Save” register
= Callee saves temporary in its frame before using

Conventions
= Which registers are caller-save, callee-save?

41
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IA32/Linux Register Usage

Integer Registers
= Two have special uses
" %ebp, sesp
= Three managed as
callee-save

" %ebx, $Sesi, Sedi
= Old values saved on
stack prior to using

= Three managed as
caller-save

" %eax, $edx, Secx
= Do what you please,

but expect any callee
to do so, as well

" Register $eax also
holds return value

42

Caller-Save
Temporaries =<

Callee-Save
Temporaries =<

Special <

\

\/

%eax

%ecx

$ebx

%esi

$edi

sesp

sebp
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Stack Summary

Stack makes recursion work

* Private storage for each instance of procedure call
= Instantiations don't clobber each other

= Addressing of locals + arguments can be relative to stack
positions

= Can be managed by stack discipline
= Procedures return in inverse order of calls

IA32 procedures: instructions + conventions
= call/ ret instructions mix %eip, %$esp in a fixed way

= Register usage conventions
= Caller/ Callee save
= %ebp and %esp

= Stack frame organization conventions
= Which argument is pushed first
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Before & After main ()

int main(int argc, char *argv[]) {
if (argc > 1) {

}

printf (“%$s\n”, argv[l]);
else {

char *av[3] = { 0, 0, O };

aV[O] = argV[O]; av[l] = “Fred”:

execvp (av[0], av);

return (0);

44
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The Mysterious Parts

argc, argv
= Strings from one program
= Available while another program is running
= Which part of the memory map are they in?
* How did they get there?

What happens when main () does “return (0)*???
* There's no more program to run...right?
= Where does the 0 go?
= How does it get there?

410 students should seek to abolish mystery

= So we will (un)cover each mysterious thing
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The Mysterious Parts

argc, argv
= Strings from one program
= Available while another program is running

* Inter-process sharing/information transfer is OS's job
= OS copies strings from old address space to new in exec()
= Traditionally placed “below bottom of stack”
= Other weird things (environment, auxiliary vector) (above argv)

arg
vector
main ()
printf ()
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The Mysterious Parts

What happens when main () does “return (0)”?
= Defined by C standard to have same effect as “exit (0)”
= But how??

477 15-410, S'26



The Mysterious Parts

What happens when main () does “xeturn (0)”?
* Defined by C standard to have same effect as “exit (0)”
= But how??

The “main() wrapper”
= Receives argc, argv from OS
= Calls main (), then calls exit ()
* Provided by C library, traditionally in “crt0.s”
= Often has a “strange” name (not a legal C function name)

/* not actual code */
void ~~main(int argc, char *argv[]) {

exit (main(argc, argv));
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Project O - “"Stack Crawler”

C/Assembly function

= Can be called by any C function
* Prints stack frames in a symbolic way

-—--Stack
Function
Function
Function
Function

Function

49

Trace Follows—---

fun3(c='c', d=2.090000),
fun2 (£=35.000000) ,

funl (count=0) ,
funl (count=1l),

funl (count=2) ,

in
in

in

in

in
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Project O - “"Stack Crawler”

Conceptually easy
= Calling convention specifies layout of stack
= Stack is “just memory” - C happily lets you read & write

Key questions
= How do | know 0x80334720 is “funl”?
= How do | know fun3 () 's second parameter is called “d”?
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Project O "Data Flow”

fun.c

symbol-table array
many slots (blank)

51

th.c

tb globals.c

A
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Project O "Data Flow” - Compilation

fun.o

52

tb.o

tb globals.o
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Project O “Data Flow™ - Linking

tb globals.o

debugger 1nfo
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Project 0 "Data Flow™ - PO "Post-Linking”

tb globals.o

debugger 1nfo
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Summary

Review of stack knowledge
What makes main () special

Project 0 overview

Look for handout this afternoon/evening

Please read all of the handout before asking questions!
Meanwhile, reading the syllabus is timely!

Start interviewing Project 2/3/4 partners!
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