Virtualization

Mike Kasick
Glenn Willen
Mike Cui

15-410: Operating System Design & Implementation

April 16, 2007

Outline

@ Introduction

@ Virtualization

@ x86 Virtualization

0 Alternatives for Isolation

© Alternatives for “running two OSes on same machine”

e Summary

Outline

@ Introduction

What is Virtualization?

@ Virtualization:
Process of presenting and partitioning computing
resources in a logical way rather than what is dictated
by their physical reality

@ Virtual Machine:
An execution environment identical to a physical
machine, with the ability to execute a full operating
system

Advantages of the Process Abstraction

@ Each process is a pseudo-machine

@ Processes have their own registers, address space,
file descriptors (sometimes)

@ Protection from other processes

Disadvantages of the Process Abstraction

@ Processes share the filesystem
@ Difficult to simultaneously use different versions of:
e Programs, libraries, configurations

@ Single machine owner:

@ root is the superuser
e Which “domain” does a machine belong to?

Disadvantages of the Process Abstraction

@ Processes share the same kernel
e Kernel/OS specific software
e Kernels are huge, lots of possibly unstable code
@ AFS client fallover?

@ Processes have limited degree of protection, even

from each other
o OOM Kkiller?

Why Use Virtualization?

@ Process abstraction at the kernel layer
e Separate filesystem
e Different machine owners

@ Offers much better protection (in theory)

e Secure hypervisor, fair scheduler
e Interdomain DoS? Thrashing?

Why Use Virtualization?

@ Run two operating systems on the same machine!

@ Huge impact on enterprise hosting
e No longer have to sell whole machines
e Sell machine slices
e Can put competitors on the same physical hardware

Why Use Virtualization?

@ With NAS, can separate instance of VM from
instance of hardware

@ Live migration of VM from machine to machine
e No more maintenance downtime

@ VM replication to provide fault-tolerance
e Why bother doing it at the application level?

Disadvantages of Virtual Machines

@ Attempt to solve what really is an abstraction issue
somewhere else
e Monolithic kernels
e Not enough partitioning of global identifiers
@ pids, uids, etc

@ Draws a box around “the problem”:

e Still hard to solve “the problem”
o Relatively easy to manipulate the box (the VM)

Disadvantages of Virtual Machines

@ Feasibility issues
e Hardware support? OS support?
e Admin support?
e VMware ESX seems to be doing the job well

@ Performance issues

e Is a 10-20% performance hit tolerable?
@ Can your NIC or disk keep up with the load?

Outline

@ Virtualization

Full Virtualization

@ |IBM CP-40 (later CP/CMS & VM/CMS) (1967)
e Supported 14 simultaneous S/360 virtual machines.

@ Popek & Goldberg: Formal Requirements for
Virtualizable Third Generation Architectures (1974)
e Defines characteristics of a Virtual Machine Monitor
e Describes a set of architecture features sufficient to
support virtualization

Virtual Machine Monitor

@ Equivalence:
Provides an environment essentially identical with the
original machine

Q@ Efficiency:
Programs running under a VMM should exhibit only
minor decreases in speed

© Resource Control:
VMM is in complete control of system resources

Popek & Goldberg Instruction Classification

@ Privileged instructions:

e Trap if the processor is in user mode
e Do not trap if in supervisor mode

@ Sensitive instructions:

e Attempt to change configuration of system resources
e lllustrate different behaviors depending on system
configuration

Popek & Goldberg Theorem

“... a virtual machine monitor may be constructed if the
set of sensitive instructions for that computer is a subset
of the set of privileged instructions.”

@ All instructions must either:

e Exhibit the same result in user and supervisor modes
e Or, they must trap if executed in user mode

@ Architectures that meet this requirement:
e IBM S/370, Motorola 68010+, PowerPC, others.

Outline

Q x86 Virtualization

x86 Virtualization

@ x86 ISA does not meet the Popek & Goldberg
requirements for virtualization
@ ISA contains 17+ sensitive, unprivileged instructions:
@ SGDT, SIDT, SLDT, SMSW, PUSHF, POPF, LAR, LSL, VERR,

VERW, POP, PUSH, CALL, JVP, INT, RET, STR, MOV
e Most simply reveal the processor’s CPL

@ Virtualization is still possible, requires a workaround

VMware (1998)

@ Runs guest operating system in ring 3
e Maintains the illusion of running the guest in ring 0

@ Insensitive instructions execute as is:

@ addl Y%ecx, %eax

@ Privileged instructions trap to the VMM:
@ cli
@ Performs binary translation on guest code to work
around sensitive, unprivileged instructions:
@ popf = int $99

VMware (1998)

Privileged instructions trap to the VMM:
cli

actually results in:
int $13 (General Protection Fault)

which gets handled:

void gpf_exception(int vm_num, regs_t *regs)

{
switch (vmm_get_faulting_opcode(regs->eip))
{
case CLI_OP:
vmm_defer_interrupts(vm_num) ;
break;
}

VMware (1998)

A sensitive, unprivileged instruction:

popf (restore %EFLAGS from the stack)
we would like to result in:

int $13 (General Protection Fault)
but actually results in:

%EFLAGS « all bits from stack except IOPL

VMware (1998)

So, VMware performs binary translation on guest code:
popf

VMware translates to:
int $99 (popf handler)

which gets handled:

void popf_handler(int vm_num, regs_t *regs)
{

regs—->eflags = regs->esp;

regs->espt+;

Hardware Assisted Virtualization

@ Recent variants of the x86 ISA that meet Popek &
Goldberg requirements
e Intel VT-x (2005), AMD-V (2006)

@ VT-x introduces two new operating modes:

VMX root operation & VMX non-root operation
VMM runs in VMX root, guest OS runs in non-root
Both modes support all privilege rings

Guest OS runs in (non-root) ring 0, no illusions
necessary

Hardware Assisted Virtualization

@ VT-x defines two new processor transitions:

e VM entry: root = non-root

e VM exit: non-root = root

e Guest instructions & interrupts that result in a VM exit
are specified by the virtual-machine control structure
(VMCS)

@ movl Yeax, %cr0 = VM exit = VMM sets %CRO =
VM entry

VT-x in the Real World

@ Supports virtualization of all of x86 protected mode
e All rings, descriptor tables, page tables, etc

@ Requires paging
e Real mode & protected mode without paging is

unsupported and must be emulated by the VMM

@ Most OSes only use a subset of x86 features
e Two rings, a few segments, etc

@ Binary translation necessary to support x86 feature

subset actually used by OSes is faster than the
full-blown hardware solution

Paravirtualization (Denali 2002, Xen 2003)

@ First observation:

e Most commodity OSes are open source'
e OSes can be modified at the source level to
supported limited virtualization

@ Paravirtualizing VMMs (hypervisors) virtualize only a
subset of the x86 execution environment
@ Run guest OS in rings 1-3
e No illusion about running in a virtual environment
e Guests may not use sensitive, unprivileged
instructions and expect a privileged result
@ Requires source modification only to guest kernels
e No modifications to user level code and applications

'One notable exception

Paravirtualization (Denali 2002, Xen 2003)

@ Second observation:

e Regular VMMs must emulate hardware for devices
@ Disk, ethernet, etc
@ Performance is poor due to constrained device API
@ Emulated hardware, x86 ISA, inb/outb, PICs

e Already modifying guest kernel, why not provide

virtual device drivers?

o Faster API?

e Hypercall interface:
@ syscall:kernel :: hypercall:hypervisor

VMware vs. Paravirtualization

Kernel's device communication with VMware (emulated):

void nic_write_buffer(char *buf, int size)

{
for (; size > 0; size--) {
nic_poll_ready();
outb(NIC_TX_BUF, *buf++);
}
}

Kernel’s device communication with hypervisor
(hypercall):

void nic_write_buffer(char *buf, int size)

{
vmm_write (NIC_TX_BUF, buf, size);
}

Xen (2003)

@ Popular hypervisor supporting paravirtualization
@ Hypervisor runs on hardware

@ Runs two kinds of kernels

°

Host kernel runs in domain 0 (domO)

Required by Xen to boot

Hypervisor contains no peripheral device drivers
domO needed to communicate with devices
Supports all peripherals that Linux or NetBSD do!

Guest kernels run in unprivileged domains (domuUs)

Xen (2003)

@ Provides virtual devices to guest kernels

e Virtual block device, virtual ethernet device
e Devices communicate with hypercalls & ring buffers
e Can also assign PCI devices to specific domUs

@ Video card

@ Also supports hardware assisted virtualization (HVM)
e Allows Xen to run unmodified domUs
e Useful for bootstrapping
e Also used for “the OS” that can’t be source modified
@ Supports Linux & NetBSD as dom0 kernels

@ Linux, FreeBSD, NetBSD, and Solaris as domUs

Outline

0 Alternatives for Isolation

chroot

@ Runs a Unix process with a different root directory
e Almost like having a separate filesystem

@ Share the same kernel & non-filesystem “things”
e Networking, process control

@ Only a minimal sandbox

@ Can be escaped! (chroot+fchdir)

User-mode Linux

@ Runs a guest Linux kernel as a user space process
under a regular Linux kernel

@ Requires highly modified Linux kernel

e No modification to application code
@ Used to be popular among hosting providers
@ More mature than Xen, but much slower

Container-based OS Virtualization

@ Allows multiple instances of an OS to run in isolated
containers under the same kernel

@ VServer, FBSD Jails, OpenVZ, Solaris Containers

@ Aims for VM-like isolation with higher efficiency

e Hypervisor isolates at the physical resource level

e Container isolates at the logical resource level

e Global ids live in separate namespaces for each VM
@ pids, uids, etc

@ Total isolation between container userlands

@ Kernel resources are well partitioned
e Makes kernel version migration feasible (VServer)

Outline

© Alternatives for “running two OSes on same machine”

Full System Simulation (Simics 1998)

@ Software simulates hardware components that make
up a target machine

@ Interpreter executes each instruction & updates the
software representation of the hardware state

@ Approach is very accurate but very slow

@ Great for OS development & debugging
e Break on triple fault is better than a reset

System Emulation (Bochs, DOSBox, QEMU)

@ Seeks to emulate just enough of system hardware
components to create an accurate “user experience

@ Typically CPU & memory subsystems are emulated

e Buses are not
e Devices communicate with CPU & memory directly

@ Many shortcuts taken to achieve better performance
e Reduces overall system accuracy
e Code designed to run correctly on real hardware
executes “pretty well”
e Code not designed to run correctly on real hardware
exhibits wildly divergent behavior

System Emulation Techniques

@ Pure interpretation:

e Interpret each guest instruction as they execute
e Perform a semantically equivalent operation on host

@ Static translation:
e Translate each guest instruction to host once

e Happens at startup
e Limited applicability, no self-modifying code

System Emulation Techniques

@ Dynamic translation:
e Translate a block of guest instructions to host
instructions just prior to execution of that block
e Cache translated blocks for better performance

@ Dynamic recompilation & adaptive optimization:

e Discover what algorithm the guest code implements
e Substitute with an optimized version on the host
e Hard

QEMU (2005)

@ Open source fast processor/machine emulator
@ Run an i386, amd64, arm, sparc, powerpc, or mips
OS on your i386, amd64, powerpc, alpha, sparc, arm,
or s390 computer
@ Can run any i386 (or other) OS as a user application
e Complete with graphics, sound, and network support
e Don’t even need to be root!
@ Tolerable performance for real world OSes
e Orders of magnitude faster than Simics

QEMU'’s Portable Dynamic Translator

@ Cute hack: uses GCC to pregenerate translated code

@ Code executing on host is generated by GCC
e Not hand written

@ Makes QEMU easily portable to architectures that
GCC supports

e “The overall porting complexity of QEMU is estimated
to be the same as the one of a dynamic linker.”

QEMU'’s Portable Dynamic Translator

Instructions for a given architecture are divided into
micro-operations. For example:

addl $42, Yeax # eax += 42

divides into:
movl_TO_EAX # TO = eax
addl_TO_im # TO += 42
movl_EAX_TO # eax = TO

QEMU'’s Portable Dynamic Translator

@ At (QEMU) compile time, each micro-op is compiled
from C into an object file for the host architecture

e dyngen copies the machine code from object files
e Object code used as input data for code generator

@ At runtime, code generator reads a stream of
micro-ops and emits a stream of machine code
e By convention, code executes properly as emitted

QEMU'’s Portable Dynamic Translator
Micro-operations are coded as individual C functions:

void OPPROTO op_movl_TO_EAX(void) { TO = EAX }
void OPPROTO op_addl_TO_im(void) { TO += PARAM1 }
void OPPROTO op_movl_EAX_TO(void) { EAX = TO }

which are compiled by GCC to machine code:

op_movl_TO_EAX:
movl 0(%ebp), %ebx
ret

op_addl_TO_im:
addl $42, %hebx
ret

op_movl_EAX_TO:
movl %ebx, 0(%ebp)
ret

QEMU'’s Portable Dynamic Translator

dyngen strips away function prologue and epilogue:

op_movl_TO_EAX:
movl 0(%ebp), %ebx

op_addl_TO_im:
addl $42, Y%ebx

op_movl_EAX_TO:
movl %ebx, 0(%ebp)

QEMU'’s Portable Dynamic Translator

At runtime, QEMU translate the instruction:
addl $42, Yeax

into the micro-op sequence:

op_movl_TO_EAX
op_addl_TO_im
op_movl_EAX_TO

and then into machine code:

movl 0(%ebp), %ebx
addl $42, Y%ebx
movl hebx, 0(%ebp)

QEMU'’s Portable Dynamic Translator

@ When QEMU encounters untranslated code, it
translates each instruction until the next branch
e Forms a single translation block

@ After each code block is executed, the next block is
located in the block hash table
e Indexed by CPU state
@ Or, block is translated if not found
@ Write protects guest code pages after translation

e Write attempt indicates self modifying code
e Translations are invalidated on write attempt

Outline

e Summary

Summary

@ Virtualization is big in enterprise hosting

@ {Full, hardware assisted, para-}virtualization

@ Containers: VM-like abstraction with high efficiency
@ Emulation is a slower alternative, more flexibility

Further Reading

El
El
[

Gerald J. Popek and Robert P. Goldberg.

Formal requirements for virtualizable third generation architectures.
Communications of the ACM, 17(7):412—421, July 1974.

John Scott Robin and Cynthia E. Irvine.

Analysis of the intel pentium’s ability to support a secure virtual machine monitor.
In Proceedings of the 9th USENIX Security Symposium, Denver, CO, August 2000.

Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig.

Intel Virtualization Technology: Hardware support for efficient processor virtualization.
Intel Technology Journal, 10(3):167-177, August 2006.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, lan Pratt,

and Andrew Warfield.

Xen and the art of virtualization.

In Proceedings of the 19th ACM Symposium on Operating Systems Principles, pages 164—177, Bolton
Landing, NY, October 2003.

Yaozu Dong, Shaofan Li, Asit Mallick, Jun Nakajima, Kun Tian, Xuefei Xu, Fred Yang, and Wilfred Yu.

Extending Xen with Intel Virtualization Technology.
Intel Technology Journal, 10(3):193—-203, August 2006.

Stephen Soltesz, Herbert Pétzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson.

Container-based operating system virtualization: A scalable, high-performance alternative to hypervisors.
In Proceedings of the 2007 EuroSys conference, Lisbon, Portugal, March 2007.

Fabrice Bellard.

QEMU, a fast and portable dynamic translator.
In Proceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

	Introduction
	Virtualization
	x86 Virtualization
	Alternatives for Isolation
	Alternatives for ``running two OSes on same machine''
	Summary

