
Virtualization

Mike Kasick
Glenn Willen

Mike Cui

15-410: Operating System Design & Implementation

April 16, 2007

Outline

1 Introduction

2 Virtualization

3 x86 Virtualization

4 Alternatives for Isolation

5 Alternatives for “running two OSes on same machine”

6 Summary

Outline

1 Introduction

2 Virtualization

3 x86 Virtualization

4 Alternatives for Isolation

5 Alternatives for “running two OSes on same machine”

6 Summary

What is Virtualization?

Virtualization:
Process of presenting and partitioning computing
resources in a logical way rather than what is dictated
by their physical reality

Virtual Machine:
An execution environment identical to a physical
machine, with the ability to execute a full operating
system

Advantages of the Process Abstraction

Each process is a pseudo-machine
Processes have their own registers, address space,
file descriptors (sometimes)
Protection from other processes

Disadvantages of the Process Abstraction

Processes share the filesystem
Difficult to simultaneously use different versions of:

Programs, libraries, configurations

Single machine owner:
root is the superuser
Which “domain” does a machine belong to?

Disadvantages of the Process Abstraction

Processes share the same kernel
Kernel/OS specific software
Kernels are huge, lots of possibly unstable code

AFS client fallover?

Processes have limited degree of protection, even
from each other

OOM killer?

Why Use Virtualization?

Process abstraction at the kernel layer
Separate filesystem
Different machine owners

Offers much better protection (in theory)
Secure hypervisor, fair scheduler
Interdomain DoS? Thrashing?

Why Use Virtualization?

Run two operating systems on the same machine!
Huge impact on enterprise hosting

No longer have to sell whole machines
Sell machine slices
Can put competitors on the same physical hardware

Why Use Virtualization?

With NAS, can separate instance of VM from
instance of hardware
Live migration of VM from machine to machine

No more maintenance downtime

VM replication to provide fault-tolerance
Why bother doing it at the application level?

Disadvantages of Virtual Machines

Attempt to solve what really is an abstraction issue
somewhere else

Monolithic kernels
Not enough partitioning of global identifiers

pids, uids, etc

Draws a box around “the problem”:
Still hard to solve “the problem”
Relatively easy to manipulate the box (the VM)

Disadvantages of Virtual Machines

Feasibility issues
Hardware support? OS support?
Admin support?
VMware ESX seems to be doing the job well

Performance issues
Is a 10-20% performance hit tolerable?
Can your NIC or disk keep up with the load?

Outline

1 Introduction

2 Virtualization

3 x86 Virtualization

4 Alternatives for Isolation

5 Alternatives for “running two OSes on same machine”

6 Summary

Full Virtualization

IBM CP-40 (later CP/CMS & VM/CMS) (1967)
Supported 14 simultaneous S/360 virtual machines.

Popek & Goldberg: Formal Requirements for
Virtualizable Third Generation Architectures (1974)

Defines characteristics of a Virtual Machine Monitor
Describes a set of architecture features sufficient to
support virtualization

Virtual Machine Monitor

1 Equivalence:
Provides an environment essentially identical with the
original machine

2 Efficiency:
Programs running under a VMM should exhibit only
minor decreases in speed

3 Resource Control:
VMM is in complete control of system resources

Popek & Goldberg Instruction Classification

1 Privileged instructions:
Trap if the processor is in user mode
Do not trap if in supervisor mode

2 Sensitive instructions:
Attempt to change configuration of system resources
Illustrate different behaviors depending on system
configuration

Popek & Goldberg Theorem

“... a virtual machine monitor may be constructed if the
set of sensitive instructions for that computer is a subset
of the set of privileged instructions.”

All instructions must either:
Exhibit the same result in user and supervisor modes
Or, they must trap if executed in user mode

Architectures that meet this requirement:
IBM S/370, Motorola 68010+, PowerPC, others.

Outline

1 Introduction

2 Virtualization

3 x86 Virtualization

4 Alternatives for Isolation

5 Alternatives for “running two OSes on same machine”

6 Summary

x86 Virtualization

x86 ISA does not meet the Popek & Goldberg
requirements for virtualization
ISA contains 17+ sensitive, unprivileged instructions:

SGDT, SIDT, SLDT, SMSW, PUSHF, POPF, LAR, LSL, VERR,
VERW, POP, PUSH, CALL, JMP, INT, RET, STR, MOV
Most simply reveal the processor’s CPL

Virtualization is still possible, requires a workaround

VMware (1998)

Runs guest operating system in ring 3
Maintains the illusion of running the guest in ring 0

Insensitive instructions execute as is:
addl %ecx, %eax

Privileged instructions trap to the VMM:
cli

Performs binary translation on guest code to work
around sensitive, unprivileged instructions:

popf⇒ int $99

VMware (1998)
Privileged instructions trap to the VMM:

cli

actually results in:

int $13 (General Protection Fault)

which gets handled:
void gpf_exception(int vm_num, regs_t *regs)
{

switch (vmm_get_faulting_opcode(regs->eip))
{

...
case CLI_OP:

vmm_defer_interrupts(vm_num);
break;

...
}

}

VMware (1998)

A sensitive, unprivileged instruction:

popf (restore %EFLAGS from the stack)

we would like to result in:

int $13 (General Protection Fault)

but actually results in:

%EFLAGS← all bits from stack except IOPL

VMware (1998)

So, VMware performs binary translation on guest code:

popf

VMware translates to:

int $99 (popf handler)

which gets handled:

void popf_handler(int vm_num, regs_t *regs)
{

regs->eflags = regs->esp;
regs->esp++;

}

Hardware Assisted Virtualization

Recent variants of the x86 ISA that meet Popek &
Goldberg requirements

Intel VT-x (2005), AMD-V (2006)

VT-x introduces two new operating modes:
VMX root operation & VMX non-root operation
VMM runs in VMX root, guest OS runs in non-root
Both modes support all privilege rings
Guest OS runs in (non-root) ring 0, no illusions
necessary

Hardware Assisted Virtualization

VT-x defines two new processor transitions:
VM entry: root⇒ non-root
VM exit: non-root⇒ root
Guest instructions & interrupts that result in a VM exit
are specified by the virtual-machine control structure
(VMCS)
movl %eax, %cr0⇒ VM exit⇒ VMM sets %CR0⇒
VM entry

VT-x in the Real World

Supports virtualization of all of x86 protected mode
All rings, descriptor tables, page tables, etc

Requires paging
Real mode & protected mode without paging is
unsupported and must be emulated by the VMM

Most OSes only use a subset of x86 features
Two rings, a few segments, etc

Binary translation necessary to support x86 feature
subset actually used by OSes is faster than the
full-blown hardware solution

Paravirtualization (Denali 2002, Xen 2003)

First observation:
Most commodity OSes are open source1

OSes can be modified at the source level to
supported limited virtualization

Paravirtualizing VMMs (hypervisors) virtualize only a
subset of the x86 execution environment
Run guest OS in rings 1–3

No illusion about running in a virtual environment
Guests may not use sensitive, unprivileged
instructions and expect a privileged result

Requires source modification only to guest kernels
No modifications to user level code and applications

1One notable exception

Paravirtualization (Denali 2002, Xen 2003)

Second observation:
Regular VMMs must emulate hardware for devices

Disk, ethernet, etc
Performance is poor due to constrained device API
Emulated hardware, x86 ISA, inb/outb, PICs

Already modifying guest kernel, why not provide
virtual device drivers?

Faster API?

Hypercall interface:
syscall:kernel :: hypercall:hypervisor

VMware vs. Paravirtualization

Kernel’s device communication with VMware (emulated):

void nic_write_buffer(char *buf, int size)
{

for (; size > 0; size--) {
nic_poll_ready();
outb(NIC_TX_BUF, *buf++);

}
}

Kernel’s device communication with hypervisor
(hypercall):

void nic_write_buffer(char *buf, int size)
{

vmm_write(NIC_TX_BUF, buf, size);
}

Xen (2003)

Popular hypervisor supporting paravirtualization
Hypervisor runs on hardware
Runs two kinds of kernels
Host kernel runs in domain 0 (dom0)

Required by Xen to boot
Hypervisor contains no peripheral device drivers
dom0 needed to communicate with devices
Supports all peripherals that Linux or NetBSD do!

Guest kernels run in unprivileged domains (domUs)

Xen (2003)

Provides virtual devices to guest kernels
Virtual block device, virtual ethernet device
Devices communicate with hypercalls & ring buffers
Can also assign PCI devices to specific domUs

Video card

Also supports hardware assisted virtualization (HVM)
Allows Xen to run unmodified domUs
Useful for bootstrapping
Also used for “the OS” that can’t be source modified

Supports Linux & NetBSD as dom0 kernels
Linux, FreeBSD, NetBSD, and Solaris as domUs

Outline

1 Introduction

2 Virtualization

3 x86 Virtualization

4 Alternatives for Isolation

5 Alternatives for “running two OSes on same machine”

6 Summary

chroot

Runs a Unix process with a different root directory
Almost like having a separate filesystem

Share the same kernel & non-filesystem “things”
Networking, process control

Only a minimal sandbox
Can be escaped! (chroot+fchdir)

User-mode Linux

Runs a guest Linux kernel as a user space process
under a regular Linux kernel
Requires highly modified Linux kernel

No modification to application code

Used to be popular among hosting providers
More mature than Xen, but much slower

Container-based OS Virtualization

Allows multiple instances of an OS to run in isolated
containers under the same kernel
VServer, FBSD Jails, OpenVZ, Solaris Containers
Aims for VM-like isolation with higher efficiency

Hypervisor isolates at the physical resource level
Container isolates at the logical resource level
Global ids live in separate namespaces for each VM

pids, uids, etc

Total isolation between container userlands
Kernel resources are well partitioned

Makes kernel version migration feasible (VServer)

Outline

1 Introduction

2 Virtualization

3 x86 Virtualization

4 Alternatives for Isolation

5 Alternatives for “running two OSes on same machine”

6 Summary

Full System Simulation (Simics 1998)

Software simulates hardware components that make
up a target machine
Interpreter executes each instruction & updates the
software representation of the hardware state
Approach is very accurate but very slow
Great for OS development & debugging

Break on triple fault is better than a reset

System Emulation (Bochs, DOSBox, QEMU)

Seeks to emulate just enough of system hardware
components to create an accurate “user experience”
Typically CPU & memory subsystems are emulated

Buses are not
Devices communicate with CPU & memory directly

Many shortcuts taken to achieve better performance
Reduces overall system accuracy
Code designed to run correctly on real hardware
executes “pretty well”
Code not designed to run correctly on real hardware
exhibits wildly divergent behavior

System Emulation Techniques

Pure interpretation:
Interpret each guest instruction as they execute
Perform a semantically equivalent operation on host

Static translation:
Translate each guest instruction to host once
Happens at startup
Limited applicability, no self-modifying code

System Emulation Techniques

Dynamic translation:
Translate a block of guest instructions to host
instructions just prior to execution of that block
Cache translated blocks for better performance

Dynamic recompilation & adaptive optimization:
Discover what algorithm the guest code implements
Substitute with an optimized version on the host
Hard

QEMU (2005)

Open source fast processor/machine emulator
Run an i386, amd64, arm, sparc, powerpc, or mips
OS on your i386, amd64, powerpc, alpha, sparc, arm,
or s390 computer
Can run any i386 (or other) OS as a user application

Complete with graphics, sound, and network support
Don’t even need to be root!

Tolerable performance for real world OSes
Orders of magnitude faster than Simics

QEMU’s Portable Dynamic Translator

Cute hack: uses GCC to pregenerate translated code
Code executing on host is generated by GCC

Not hand written

Makes QEMU easily portable to architectures that
GCC supports

“The overall porting complexity of QEMU is estimated
to be the same as the one of a dynamic linker.”

QEMU’s Portable Dynamic Translator

Instructions for a given architecture are divided into
micro-operations. For example:

addl $42, %eax # eax += 42

divides into:
movl_T0_EAX # T0 = eax

addl_T0_im # T0 += 42

movl_EAX_T0 # eax = T0

QEMU’s Portable Dynamic Translator

At (QEMU) compile time, each micro-op is compiled
from C into an object file for the host architecture

dyngen copies the machine code from object files
Object code used as input data for code generator

At runtime, code generator reads a stream of
micro-ops and emits a stream of machine code

By convention, code executes properly as emitted

QEMU’s Portable Dynamic Translator
Micro-operations are coded as individual C functions:

void OPPROTO op_movl_T0_EAX(void) { T0 = EAX }
void OPPROTO op_addl_T0_im(void) { T0 += PARAM1 }
void OPPROTO op_movl_EAX_T0(void) { EAX = T0 }

which are compiled by GCC to machine code:

op_movl_T0_EAX:
movl 0(%ebp), %ebx
ret

op_addl_T0_im:
addl $42, %ebx
ret

op_movl_EAX_T0:
movl %ebx, 0(%ebp)
ret

QEMU’s Portable Dynamic Translator

dyngen strips away function prologue and epilogue:

op_movl_T0_EAX:

movl 0(%ebp), %ebx

op_addl_T0_im:

addl $42, %ebx

op_movl_EAX_T0:

movl %ebx, 0(%ebp)

QEMU’s Portable Dynamic Translator

At runtime, QEMU translate the instruction:

addl $42, %eax

into the micro-op sequence:

op_movl_T0_EAX

op_addl_T0_im

op_movl_EAX_T0

and then into machine code:

movl 0(%ebp), %ebx

addl $42, %ebx

movl %ebx, 0(%ebp)

QEMU’s Portable Dynamic Translator

When QEMU encounters untranslated code, it
translates each instruction until the next branch

Forms a single translation block

After each code block is executed, the next block is
located in the block hash table

Indexed by CPU state
Or, block is translated if not found

Write protects guest code pages after translation
Write attempt indicates self modifying code
Translations are invalidated on write attempt

Outline

1 Introduction

2 Virtualization

3 x86 Virtualization

4 Alternatives for Isolation

5 Alternatives for “running two OSes on same machine”

6 Summary

Summary

Virtualization is big in enterprise hosting
{Full, hardware assisted, para-}virtualization
Containers: VM-like abstraction with high efficiency
Emulation is a slower alternative, more flexibility

Further Reading
Gerald J. Popek and Robert P. Goldberg.
Formal requirements for virtualizable third generation architectures.
Communications of the ACM, 17(7):412–421, July 1974.

John Scott Robin and Cynthia E. Irvine.
Analysis of the intel pentium’s ability to support a secure virtual machine monitor.
In Proceedings of the 9th USENIX Security Symposium, Denver, CO, August 2000.

Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig.
Intel Virtualization Technology: Hardware support for efficient processor virtualization.
Intel Technology Journal, 10(3):167–177, August 2006.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt,
and Andrew Warfield.
Xen and the art of virtualization.
In Proceedings of the 19th ACM Symposium on Operating Systems Principles, pages 164–177, Bolton
Landing, NY, October 2003.

Yaozu Dong, Shaofan Li, Asit Mallick, Jun Nakajima, Kun Tian, Xuefei Xu, Fred Yang, and Wilfred Yu.
Extending Xen with Intel Virtualization Technology.
Intel Technology Journal, 10(3):193–203, August 2006.

Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization: A scalable, high-performance alternative to hypervisors.
In Proceedings of the 2007 EuroSys conference, Lisbon, Portugal, March 2007.

Fabrice Bellard.
QEMU, a fast and portable dynamic translator.
In Proceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

	Introduction
	Virtualization
	x86 Virtualization
	Alternatives for Isolation
	Alternatives for ``running two OSes on same machine''
	Summary

