Carnegie Mellon

15-213 Recitation
Malloc Lab (Part Il)

Your TAs
Friday, October 24th

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Agenda
m Review:
o Heap Layout + Quick Roadmap of Malloc Checkpoint
m Debugging
o Finding errors with contracts and gdb
O Instrumentation
m Malloc Final Overview

m Style

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Reminders
m malloc Deadlines:

o Checkpoint: October 28th (Tuesday)

o Final: November 4th (Tuesday)

o 7% of final grade (+4% for Checkpoint)
m Written 7 due October 29th

m Watch your email for Checkpoint Code Review sign-ups!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Review: Malloc Checkpoint

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Where are we? - Checkpoint

Quick Discussion: What should we implement for checkpoint
and how do they aid in performance?

Started with a working (but slow) implicit list version

Implement coalesce block () first.

Implement an explicit free list. This is a good

place to currently
be!

w N RO

Implement segregated lists

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Debugging

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

What does “Garbled Bytes” mean?

1. Yourmalloc returns a block pointer to satisfy a request.
2. mdriver writes bytes into payload
3. Later, mdriver checks that those bytes are intact:

o If bytes have been overwritten, your malloc is

overwriting data in an allocated block!

Now what?

m Double check your heap invariants. Are they exhaustive?
m If that doesn’t help, use gdb to watch writes to the address

getting garbled.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Debugging: Overview

m Refer to last week’s recitation for common errors, and what
they mean.

m Use tools: gdb breakpoints and watchpoints.
o Note: Valgrind will not work!

m Write a heap checker! We’'ll be grading it in the next code
review!
o Add new heap invariants as you add new features.

m Today: debugging walkthrough!

o Garbled bytes + Using contracts

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Debugging Activity

m Loginto a Shark machine, then type:

$ wget http://www.cs.cmu.edu/~213/activities/rec9. tar

S tar -xvf rec9.tar
S cd recHd

m mm.cis afake implicit list implementation, based on the

starter code.

m Itis buggy. Let’s try and find the bugs!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Debugging Activity

m What happens if we run the program normally?

$./mdriver -c ./traces/syn-struct-short.rep

ERROR [trace ./traces/syn-struct-short.rep, line 16]: block 1 (at
0x8000000a0) has 8 garbled bytes, starting at byte 16
ERROR [trace ./traces/syn-struct-short.rep, line 21]: block 4 (at
0x800000180) has 8 garbled bytes, starting at byte 16

correctness check finished, by running tracefile
"traces/syn-struct-short.rep".
=> incorrect.

Terminated with 2 errors

Not very helpful...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Debugging: Using Watchpoints

m Now let’s try again with watchpoints!

$ gdb --args ./mdriver-dbgl -c ./traces/syn-struct-short.rep

(gdb) watch *0x8000000a0
(gdb) run

// Keep continuing through the breaks:
// write block()

// 4 x memcpy

Hardware watchpoint 1: *0x8000000a0

0ld value = 129
New value = 32
write block() at mm.c:333

m Now we know to take a closer look at write block()!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging: Using Contracts

m Now let’s run a version of the file that uses contracts:

$./mdriver-dbg2 -c ./traces/syn-struct-short.rep

mdriver-dbg: mm.c:331: void write block(block t *, size t, Bool):
Assertion "~ (unsigned long) footerp < ((long)block + size)' failed.
Aborted (core dumped)

m This version had a contract in place to check that the footer is

where we expect it to be.

m Writing effective contracts can save a lot of debugging time!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Debugging: Miscellaneous Tips
B mdriver
o Use =D option to detect garbled bytes as soon as possible
o Use -V for verbose mode to find out which trace caused
the error
m If the error happens in the first few allocations, can set
breakpoints onmm malloc andmm free and step through

line by line.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Instrumentation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Common Problems
m Throughput is very low
o Which operation is likely the most costly? Where is the
program likely to spend most of its time?
m Utilization is very low / Out of Memory
o Which operation can cause you to allocate more memory
than you may need?

m We can use instrumentation to investigate both problems!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Adding Instrumentation
m Instrumentation: add temporary code that collects
measurements for metrics you're interested in.
o eg. how often are certain functions called?
o You can always remove the code afterwards.
o Can temporarily go over 128 byte writable global limit!
m These measurements can guide your development process:
o Develop insights into performance before you spend time

on implementation.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Instrumentation Example: Low Throughput

m Program is likely to spend most of its time in £ind _£fit()’s

loops.

m How efficient is your fit algorithm? How might you find out?

static block t *find fit(size_t asize)
{
block t *block; call_count++
for (block = heap listp; get size(block) > 0;
block = find next(block))
{ block count++
if (!(get_alloc(block)) && (asize <= get size(block)))
{
return block;

}
}
return NULL; // no fit found

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Instrumentation: Other Metrics
m What are the most common request sizes?
© How many are 8 bytes or less?
o How many are 16 bytes or less?
o How might this inform your design?

m What other things might we want to measure?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Malloc Final

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

What are we trying to do?

m In Checkpoint, you dramatically improved the throughput of

your allocator.

m For Final, you will need to greatly improve utilization while
maintaining a high throughput.

m We will cover:
1. Footer Removal in Allocated Blocks

2. Decreasing Minimum Block Size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Current Block Structure
m Here is the current structure of our block (post-checkpoint)
m When is each component utilized in our implementation?

m Do we need each component at all time / in all cases?

Size a Size a
next
Payload + prev
Padding
Size a Size a
Allocated (as before) Free

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Zooming In: Footer
m When is the footer used?
o To access the size/allocation status of previous block
during coalescing
m When do we care about the size?
o When the block is free! If the previous block is allocated,

we no longer need to know the size.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Footer Removal: Implementation

0 | 1
No footers in

position of the previous allocated blocks!

m What do we need footers for?

o Coalescing

o Key observation: do we

need to know the size or

block if we’re not going to 64 0

coalesce with it?

m We just need some way to Free blocks stil

determine whether the block need footers.

before us is allocated... 64 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Footer Removal: Example 1

m Let’ssaywecallmalloc (24). Can
our block of size 32 satisfy the
request?

m Add on overhead:

o Header: +8 bytes = 32 bytes

o Footer: +8 bytes = 40 bytes
m Round to multiple of 16 => 48 bytes

m Doesn’t fit!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Footer Removal: Example 1
m What if we had no footer?

m Add on overhead:

o Header: +8 bytes = 32 bytes

o—Footer—+8bytes=40-bytes
24 data bytes

m Round to multiple of 16 => 32 bytes

m Now it fits!

o We have reduced internal

fragmentation.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

25

Carnegie Mellon

Footer Removal: Example 2

m Now suppose we callmalloc (5).

Does removing footers help?

m Whatis our minimum block size? 5 data bytes
Bytes Wasted (11)

o Still 32 bytes! (header, next,
prev, footer for free blocks)

m Header + 16 byte minimum payload

uses 24 bytes => round up to 5 data bytes
Bytes Wasted (11)

minimum block size

m No benefits in this case!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Recap: Removing Footers
m For alarge enough allocation request we can:
o Include all the information we need for free blocks
o Also reduce the total block size by cutting the overhead
from footers!
m Remember, this does not reduce the minimum block size!

o Though it can help us build towards it...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Why Mini Blocks?

m Let’s go back to the example where we called malloc (5)

m What was the reason that removing footers yielded no

benefits?

m How can we circumvent this barrier to reduce internal

fragmentation?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Decreasing Minimum Block Size

m Currently, minimum block size

®32 M
o 8 byte header next
o 16 byte payload (min.) prev

o 8 byte footer (for free blocks)

m Ifwedomalloc (5), there’s a

lot of wasted space due to the 5 bytes
min size constraint 11 bytes unused payload
m Can we create a design with a ; Padding :

smaller minimum block size?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Final Tips

m The shift from checkpoint to final requires us to think more
about utilization rather than throughput!

m We talked about several features we can add to improve
utilization in certain cases

m What are other features of malloc we can modify to further

improve utilization? How do they help?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Warning!

m Note that there are implementations that may achieve better
performance vs be less complex to design!

m Compressed headers is a technique that reduces the size of
the header, reducing internal fragmentation

m Another possible design is to represent your explicit list as a

treel

m Proceed with caution in implementing these two features as

they have a higher complexity!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Style

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Style
m Checkpoint Code Review: Heap Checker Quality
m Final Code Review: Code Style
m Remember the style guidelines!
o Modularity: use helper functions (e.g., for linked lists)!
© Documentation
m File header: have you described all your design

decisions (block structure, fit algorithm, etc.)?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Wrapping Up

@ malloc Deadlines:
o Checkpoint: October 28th (Tuesday)
o Final: November 4th (Tuesday)

m Written 7 due October 29th

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

The End

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

