
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Recitation
Malloc Lab (Part II)

Your TAs

Friday, October 24th

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Agenda
■ Review:

○ Heap Layout + Quick Roadmap of Malloc Checkpoint

■ Debugging

○ Finding errors with contracts and gdb

○ Instrumentation

■ Malloc Final Overview

■ Style

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminders
■ malloc Deadlines:

○ Checkpoint: October 28th (Tuesday)

○ Final: November 4th (Tuesday)

○ 7% of final grade (+4% for Checkpoint)

■ Written 7 due October 29th

■ Watch your email for Checkpoint Code Review sign-ups!

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Malloc Checkpoint

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Where are we? - Checkpoint

0. Started with a working (but slow) implicit list version

1. Implement coalesce_block() first.

2. Implement an explicit free list.

3. Implement segregated lists

Quick Discussion: What should we implement for checkpoint
and how do they aid in performance?

This is a good
place to currently

be!

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What does “Garbled Bytes” mean?
1. Your malloc returns a block pointer to satisfy a request.

2. mdriver writes bytes into payload

3. Later, mdriver checks that those bytes are intact:

○ If bytes have been overwritten, your malloc is

overwriting data in an allocated block!

Now what?

■ Double check your heap invariants. Are they exhaustive?

■ If that doesn’t help, use gdb to watch writes to the address

getting garbled.

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging: Overview
■ Refer to last week’s recitation for common errors, and what

they mean.

■ Use tools: gdb breakpoints and watchpoints.

○ Note: Valgrind will not work!

■ Write a heap checker! We’ll be grading it in the next code

review!

○ Add new heap invariants as you add new features.

■ Today: debugging walkthrough!

○ Garbled bytes + Using contracts

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging Activity
■ Log into a Shark machine, then type:

$ wget http://www.cs.cmu.edu/~213/activities/rec9.tar
$ tar -xvf rec9.tar
$ cd rec9

■ mm.c is a fake implicit list implementation, based on the

starter code.

■ It is buggy. Let’s try and find the bugs!

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging Activity
■ What happens if we run the program normally?

$./mdriver -c ./traces/syn-struct-short.rep

ERROR [trace ./traces/syn-struct-short.rep, line 16]: block 1 (at
0x8000000a0) has 8 garbled bytes, starting at byte 16
ERROR [trace ./traces/syn-struct-short.rep, line 21]: block 4 (at
0x800000180) has 8 garbled bytes, starting at byte 16

correctness check finished, by running tracefile
"traces/syn-struct-short.rep".
 => incorrect.

Terminated with 2 errors

Not very helpful...

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging: Using Watchpoints
■ Now let’s try again with watchpoints!

$ gdb --args ./mdriver-dbg1 -c ./traces/syn-struct-short.rep

(gdb) watch *0x8000000a0
(gdb) run

// Keep continuing through the breaks:
// write_block()
// 4 x memcpy
Hardware watchpoint 1: *0x8000000a0

Old value = 129
New value = 32
write_block() at mm.c:333

■ Now we know to take a closer look at write_block()!

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging: Using Contracts
■ Now let’s run a version of the file that uses contracts:

$./mdriver-dbg2 -c ./traces/syn-struct-short.rep

mdriver-dbg: mm.c:331: void write_block(block_t *, size_t, _Bool):
Assertion `(unsigned long)footerp < ((long)block + size)' failed.
Aborted (core dumped)

■ This version had a contract in place to check that the footer is

where we expect it to be.

■ Writing effective contracts can save a lot of debugging time!

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging: Miscellaneous Tips
■ mdriver

○ Use -D option to detect garbled bytes as soon as possible

○ Use -V for verbose mode to find out which trace caused

the error

■ If the error happens in the first few allocations, can set

breakpoints on mm_malloc and mm_free and step through

line by line.

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instrumentation

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common Problems
■ Throughput is very low

○ Which operation is likely the most costly? Where is the

program likely to spend most of its time?

■ Utilization is very low / Out of Memory

○ Which operation can cause you to allocate more memory

than you may need?

■ We can use instrumentation to investigate both problems!

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Adding Instrumentation
■ Instrumentation: add temporary code that collects

measurements for metrics you’re interested in.

○ eg. how often are certain functions called?

○ You can always remove the code afterwards.

○ Can temporarily go over 128 byte writable global limit!

■ These measurements can guide your development process:

○ Develop insights into performance before you spend time

on implementation.

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instrumentation Example: Low Throughput
■ Program is likely to spend most of its time in find_fit()’s

loops.

■ How efficient is your fit algorithm? How might you find out?

static block_t *find_fit(size_t asize)
{

block_t *block;
for (block = heap_listp; get_size(block) > 0;

 block = find_next(block))
{

 if (!(get_alloc(block)) && (asize <= get_size(block)))
 {
 return block;
 }

}
return NULL; // no fit found

}

call_count++

block_count++

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Instrumentation: Other Metrics
■ What are the most common request sizes?

○ How many are 8 bytes or less?

○ How many are 16 bytes or less?

○ How might this inform your design?

■ What other things might we want to measure?

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Malloc Final

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What are we trying to do?
■ In Checkpoint, you dramatically improved the throughput of

your allocator.

■ For Final, you will need to greatly improve utilization while

maintaining a high throughput.

■ We will cover:

1. Footer Removal in Allocated Blocks

2. Decreasing Minimum Block Size

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Current Block Structure
■ Here is the current structure of our block (post-checkpoint)

■ When is each component utilized in our implementation?

■ Do we need each component at all time / in all cases?

?

Size a

Size a

Payload +
Padding

Allocated (as before)

Size a

Size a

next

Free

prev

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Zooming In: Footer
■ When is the footer used?

○ To access the size/allocation status of previous block

during coalescing

■ When do we care about the size?

○ When the block is free! If the previous block is allocated,

we no longer need to know the size.

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Footer Removal: Implementation
■ What do we need footers for?

○ Coalescing

○ Key observation: do we

need to know the size or

position of the previous

block if we’re not going to

coalesce with it?

■ We just need some way to

determine whether the block

before us is allocated…

32 1

64 0

64 0

0 1

0 1

No footers in
allocated blocks!

Free blocks still
need footers.

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Footer Removal: Example 1
■ Let’s say we call malloc(24). Can

our block of size 32 satisfy the

request?

■ Add on overhead:

○ Header: +8 bytes = 32 bytes

○ Footer: +8 bytes = 40 bytes

■ Round to multiple of 16 => 48 bytes

■ Doesn’t fit!

? 1

? 1

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Footer Removal: Example 1
■ What if we had no footer?

■ Add on overhead:

○ Header: +8 bytes = 32 bytes

○ Footer: +8 bytes = 40 bytes

■ Round to multiple of 16 => 32 bytes

■ Now it fits!

○ We have reduced internal

fragmentation.

32 1

24 data bytes

32

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Footer Removal: Example 2
■ Now suppose we call malloc(5).

Does removing footers help?

■ What is our minimum block size?

○ Still 32 bytes! (header, next,

prev, footer for free blocks)

■ Header + 16 byte minimum payload

uses 24 bytes => round up to

minimum block size

■ No benefits in this case!

32 1

32 1

5 data bytes

Bytes Wasted (11)

? 1

5 data bytes

Bytes Wasted (11)

32

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recap: Removing Footers
■ For a large enough allocation request we can:

○ Include all the information we need for free blocks

○ Also reduce the total block size by cutting the overhead

from footers!

■ Remember, this does not reduce the minimum block size!

○ Though it can help us build towards it…

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mini Blocks?
■ Let’s go back to the example where we called malloc(5)

■ What was the reason that removing footers yielded no

benefits?

■ How can we circumvent this barrier to reduce internal

fragmentation?

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Decreasing Minimum Block Size
■ Currently, minimum block size

is 32:

○ 8 byte header

○ 16 byte payload (min.)

○ 8 byte footer (for free blocks)

■ If we do malloc(5), there’s a

lot of wasted space due to the

min size constraint

■ Can we create a design with a

smaller minimum block size?

32 0

next

32 0

prev

32 1

 11 bytes unused payload

5 bytes

32Pa Padding

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Final Tips
■ The shift from checkpoint to final requires us to think more

about utilization rather than throughput!

■ We talked about several features we can add to improve

utilization in certain cases

■ What are other features of malloc we can modify to further

improve utilization? How do they help?

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Warning!
■ Note that there are implementations that may achieve better

performance vs be less complex to design!

■ Compressed headers is a technique that reduces the size of

the header, reducing internal fragmentation

■ Another possible design is to represent your explicit list as a

tree!

■ Proceed with caution in implementing these two features as

they have a higher complexity!

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Style

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Style
■ Checkpoint Code Review: Heap Checker Quality

■ Final Code Review: Code Style

■ Remember the style guidelines!

○ Modularity: use helper functions (e.g., for linked lists)!

○ Documentation

■ File header: have you described all your design

decisions (block structure, fit algorithm, etc.)?

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Wrapping Up
■ malloc Deadlines:

○ Checkpoint: October 28th (Tuesday)

○ Final: November 4th (Tuesday)

■ Written 7 due October 29th

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The End

