Carnegie Mellon

15-213 Recitation
Caches & Blocking

Your TAs
Friday, October 3rd

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Reminders
m cachelab is due Thursday (October 9th).
m malloc lab will be released on the same day.
m Take Home midterm is due Wednesday (Oct 8th)
o Should roughly take 1 hour 20 minutes of your time!
m In Class midterm on Tuesday (October 21st).

m Drop Deadline: Monday (October 6th)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Agenda

m Code Reviews

m Writing Cache-Friendly Code
m Blocking

m Activity: More Blocking!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Code Reviews

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Why Code Reviews?

m Used inindustry
o Nearly all companies use code reviews
o Effective at finding bugs

m Sets you up for success in future systems courses!

Defect Removal by Phase With Peer Reviews

300
250
E 200
£ 150 0 Minor
= .
Z 100 B Major
. L] '
0 fr— —1 - I —
System Software Arch Det Design Code Unit Test Integ Test System
Rgmts Rgmts Design Test

Roger G. [Aug 2005]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

https://course.ece.cmu.edu/~ece649/lectures/09_reviews_handouts.pdf

Carnegie Mellon

Code Reviews: Logistics
m Each of you will be assigned a Code Review TA.

m Starting with cachelab, you will receive style points (0-4)

on each lab.

m Watch for an email from your TA so that you can sign up for a

meeting slot!

o Meetings are short (<= 15 minutes)!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Code Reviews: Guidelines
m First: look at Official 213 Stvle Guide!

m Documentation (comments, file header)
m Modularity
m Use helper functions!
m Avoid magic numbers (use ##define or static
const)
m Correctness
© malloc can fail! Library functions can fail!

o Are you leaking memory/file descriptors?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

https://www.cs.cmu.edu/~213/codeStyle.html

Carnegie Mellon

Writing Cache-Friendly Code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Recall: Temporal and Spatial Locality

m Temporal Locality:

o Recently referenced Q 7

items are likely to be
referenced again soon!

m Spatial Locality:
o ltems with nearby ﬁ
addresses tend to be

referenced close
together in time.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Optimizing for Locality

Temporal Spatial

\/ C

m Recently referenced items are m I|tems with nearby addresses

likely to be referenced again tend to be referenced close
soon! together in time.

m To optimize: try to use data m To optimize: read objects
objects as often as possible sequentially, and with smaller
once they’re read from stride.
memory. m Lecture Example: Rearranging

m Lecture Example: Blocking. loops.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Review: Cache Configurations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Cache Configurations

m Direct Mapped: Cache with E=1
o one line per set

m Fully Associative: Cache with s=0
o all lines in one set

m k-way Associative: Cache with E=k

o klines per set

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Blocking

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Example: Matrix Multiplication

/* Multiply 4x4 matrices */
void mm(int a[4][4], int b[4][4], int c[4][4]) {
int i, j, k;
for (i = 0; i < 4; i++)
for (J = 0; jJ < 4; j++)
for (k = 0; k < 4; k++)
c[i][j] += alil[k] * b[k][]]~

m “Standard” way of doing matrix

multiplication (1jk): (*,3)

o e[i][j] isgiven by (1,3)
(i,%) =

taking “dot product” of

i-th row of a with j-th

column of b.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Example: Matrix Multiplication
m Assume a tiny cache with 4 lines of 8 bytes (2 ints each)
© S=1,E=4,B=8

m We'll use the following key:

2 Key

1

Grey = Accessed

. Dark Grey = Currently Accessing

Red Border = In Cache

m Let’s see what happens if we don’t use blocking...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

c a b
. . . Accessed
_ X Currently
Accessing
In Cache
Iteration i 3j k Operation Miss?
0 0 0 0O | ¢c[0][0] += a[0][0] * b[O][O] 27?7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

c a b
_ X Currently
Accessing
In Cache
Iteration i 3j k Operation Miss?
0 0 0 0 [c[0][0] += a[0][0] * b[O][O] (m, m)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

= X

Iteration Operation Miss?
0 c[0]1[0] += a[0][0] * b[O][O] | (m, m)
1 c[0][0] += a[0][1] * b[1l][O] 7?7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

= X

Iteration Operation Miss?
0 c[0]1[0] += a[0][0] * b[O][O] | (m, m)
1 c[0]1[0] += a[0][1] * b[1]1[0] | (h,m)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

19

Carnegie Mellon

c a b

.j . Accessed
_ X | Currently
. Accessing
In Cache

lteration | i | j | k Operation Miss?

0 0 | 0| O |c[0][0] += a[0][0] * b[O][O0] | (m,m)

1 0 0 1 | c[0][0] += a[0][1] * b[1]][O] (h, m)

2 0 0 2 | c[0][0] += a[0][2] * b[2]]0] ?7?7?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

c a b
= X
Previous lines
evicted (LRU)
Iteration i j k Operation Miss?
0 0 0 0 c[0][0] += a[0]1[0] * b[O][O] (m, m)
1 0 0 1 c[0][0] += a[0][1] * b[1]]0] (h, m)
2 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

21

Carnegie Mellon

c a b

.j | . Accessed
_ X Currently
Accessing
._ In Cache

lteration | i | j | k Operation Miss?

0 0 | 0| O |c[0][0] += a[0][0] * b[O][O0] | (m,m)

1 0 0 1 | c[0][0] += a[0][1] * b[1]][O] (h, m)

2 0 | 0| 2 |c[0][0] += a[0]1[2] * b[2][0] | (m,m)

3 0 0 3 [c[0][0] += a[0][3] * b[3][0] ?7?7?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

c a b

.j | . Accessed
_ X Currently
Accessing
.: In Cache

lteration | i | j | k Operation Miss?

0 0 | 0| O |c[0][0] += a[0][0] * b[O][O0] | (m,m)

1 0 0 1 | c[0][0] += a[0][1] * b[1]][O] (h, m)

2 0 | 0| 2 |c[0][0] += a[0]1[2] * b[2][0] | (m,m)

3 0 0 3 [c[0][0] += a[0][3] * b[3][0] (h, m)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

c a b

E. . | | | :- Accessed
_ X Currently
Accessing
In Cache

lteration | i | j | k Operation Miss?

0 0 | 0| O |c[0][0] += a[0][0] * b[O][O0] | (m,m)

1 0 0 1 | c[0][0] += a[0][1] * b[1]][O] (h, m)

2 0 | 0| 2 |c[0][0] += a[0]1[2] * b[2][0] | (m,m)

3 0 0 3 [c[0][0] += a[0][3] * b[3][0] (h, m)

4 0 1 0 [c[0][1] += a[0][0] * b[O][1] ?7?7?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

c a b

[1] _ 1
_ X Currently
Accessing
In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[O][O] (m, m)

1 0 0 1 c[0]1[0] += a[0][1] * b[1]][O] (h, m)

2 0 0 2 c[0][0] += a[0][2] * b[2]][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)
Have these blocks
4 0| 1| 0 |c[0][1] += a[0][0] * b[O][1] | (m,m) been fn the cadhe

before?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

c b

= X

Iteration Operation Miss?
0 c[0][0] += a[0][O] b[0][0] | (m, m)
1 c[0][0] += a[0][1] b[1][0] | (h,m)
2 c[0][0] += a[0][2] b[2][0] | (m,m)
3 c[0][0] += a[0][3] b[3]1[0] | (h,m)
4 c[0][1] += a[0][O] b[0][1] | (m, m)
5 c[0][1] += a[O0][1] b[1][1] ?7??

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

26

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

c b

= X

Iteration Operation Miss?
0 c[0][0] += a[0][O] b[0][0] | (m, m)
1 c[0][0] += a[0][1] b[1][0] | (h,m)
2 c[0][0] += a[0][2] b[2][0] | (m,m)
3 c[0][0] += a[0][3] b[3]1[0] | (h,m)
4 c[0][1] += a[0][O] b[0][1] | (m, m)
5 c[0][1] += a[0][1] b[1][1] | (h,m)

Has this block been
in cache before?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

27

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

c b
[I [

= X —

Iteration Operation Miss?
0 c[0][0] += a[0][0] * b[O][O0] | (m, m)
1 c[0][0] += a[0][1] * b[1]1[0] | (h,m)
2 c[0][0] += a[0][2] * b[2][0] | (m, m)
3 c[0][0] += a[0][3] * b[31[0] | (h,m)
4 c[0][1] += a[0][0] * b[O][1] | (m, m)
5 c[0][1] += a[0][1] * b[1]1[1] | (h,m)
6 c[0][1] += a[0][2] b[2][1] ?7?7?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

28

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

c b
[I B]

= X

Iteration Operation Miss?
0 c[0][0] += a[0][0] * b[O][O0] | (m, m)
1 c[0][0] += a[0][1] * b[1]1[0] | (h,m)
2 c[0][0] += a[0][2] * b[2][0] | (m, m)
3 c[0][0] += a[0][3] * b[31[0] | (h,m)
4 c[0][1] += a[0][0] * b[O][1] | (m, m)
5 c[0][1] += a[0][1] * b[1]1[1] | (h,m)
6 c[0]1[1] += a[0][2] * b[2][1] | (m,m)

Have these blocks
been in the cache
before?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

29

Carnegie Mellon

c a b

E. | . Accessed
_ X Currently
Accessing
]— In Cache

lteration | i | j | k Operation Miss?

0 0 | 0| O |c[0][0] += a[0][0] * b[O][O0] | (m,m)

1 0 0 1 | c[0][0] += a[0][1] * b[1]][O] (h, m)

2 0 | 0| 2 |c[0][0] += a[0]1[2] * b[2][0] | (m,m)

3 0 0 3 [c[0][0] += a[0][3] * b[3][0] (h, m)

4 0 | 1| 0 |c[0][1] += a[0][0] * b[O][1] | (m,m)

5 0 1 1 c[0][1] += a[O0][1] * b[1][1] (h, m)

6 0 | 1| 2 |c[0][1] += a[0]1[2] * b[2][1] | (m,m)

7 0 1 3 [ec[0][1] += a[0][3] * b[3][1] ?7?7?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

c a b

E. | . Accessed
_ X Currently
Accessing
j In Cache

lteration | i | j | k Operation Miss?

0 0 | 0| O |c[0][0] += a[0][0] * b[O][O0] | (m,m)

1 0 0 1 | c[0][0] += a[0][1] * b[1]][O] (h, m)

2 0 | 0| 2 |c[0][0] += a[0]1[2] * b[2][0] | (m,m)

3 0 0 3 [c[0][0] += a[0][3] * b[3][0] (h, m)

4 0 | 1| 0 |c[0][1] += a[0][0] * b[O][1] | (m,m)

5 0 1 1 c[0][1] += a[O0][1] * b[1][1] (h, m)

6 0 | 1| 2 |c[0][1] += a[0]1[2] * b[2][1] | (m,m)

7 0 1 3 [ec[0][1] += a[0][3] * b[3][1] (h, m)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

No Blocking: Analyzing Miss Rate

lteration | i | j | k Operation Miss?
0 0| 0| 0 |c[0][0] += a[0][0] + b[0]1[0] | (m, m)
1 0| 0| 1 |ec[0][0] += a[0][1] + b[11[0] | (h,m)
2 0| 0| 2 |c[0][0] += a[0][2] + b[2]1[0] | (m, m)
3 0| 0| 3 |c[0][0] += a[0]1[3] + b[31[0] | (h,m)
4 0| 1| 0 |ec[0][1] += a[0][0] + b[0][1] | (m, m)
5 0| 1| 1 |c[0][1] += a[0]1[1] + b[1][1] | (h,m)
6 0| 1| 2 |ec[0][1] += a[0]1[2] + b[2][1] | (m, m)
7 0 | 1| 3 |c[0][1] += a[0]1[3] + b[3][1] | (h, m)

m What is the miss rate of a?
o 4/8=50%

m What is the miss rate of b?
o 8/8=100%

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

No Blocking: What went Wrong?

m Bad temporal locality!
m Blocks are used multiple times, but are never in cache when

we need them.
b

IO Tl

Misses on Iteration
4

=

Evictions on
Iteration 2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Example: Matrix Multiplication (with Blocking)

/* multiply 4x4 matrices using blocks of size 2 */
void mm blocking (int a[4][4], int b[4][4], int c[4][4]) {
int i, j, k;
int i ¢, j ¢, k _c;
int B = 2;
// control loops
for (i c=0; i ¢ < 4; i_c += B)
for (j e =0; j c< 4; j_c += B)
for (k. ¢ =0; k ¢ < 4; k_ c += B)
// block multiplications
for (i =i c; i < i c + B; i++)
for (j = j_c; J < j_c + B; j++)
for (k = k ¢c; k < k_c + B; k++t)
c[i][3] += a[i]l[k] * b[k][]]’

c a b

_ _H N

m Let’s see what happens if we use blocking!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

34

Carnegie Mellon

c a b
. . . Accessed
_ X Currently
Accessing
In Cache
Iteration i 3j k Operation Miss?
0 0 0 0O | ¢c[0][0] += a[0][0] * b[O][O] 27?7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

c a b
. . . Accessed
_ X Currently
Accessing
In Cache
Iteration i 3j k Operation Miss?
0 0 0 0 [c[0][0] += a[0][0] * b[O][O] (m, m)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

c a b

. :. Accessed
_ X Currently
Accessing
In Cache

Iteration i Jj k Operation Miss?

0 0 | 0| O |c[0][0] += a[0][0] * b[O][O0] | (m,m)

1 0 0 1 | c[0][0] += a[0][1] * b[1]][O] ?7?7?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

c a b

. :. Accessed
_ X Currently
Accessing
In Cache

Iteration i Jj k Operation Miss?

0 0 | 0| O |c[0][0] += a[0][0] * b[O][O0] | (m,m)

1 0 0 1 | c[0][0] += a[0][1] * b[1]][O] (h, m)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

c a b

:. . :. Accessed
_ X Currently
Accessing
In Cache

lteration | i | j | k Operation Miss?

0 0 | 0| O |c[0][0] += a[0][0] * b[O][O0] | (m,m)

1 0 0 1 | c[0][0] += a[0][1] * b[1]][O] (h, m)

2 0 1 0 [c[0][1] += a[0][0] * b[O][1] ?7?7?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

c a b

:. . :. Accessed
_ X Currently
Accessing
In Cache

lteration | i | j | k Operation Miss?

0 0 | 0| O |c[0][0] += a[0][0] * b[O][O0] | (m,m)

1 0 0 1 | c[0][0] += a[0][1] * b[1]][O] (h, m)

2 0 1 0 [c[0][1] += a[0][0] * b[O][1] (h, h)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

c a b
1 1
lteration | i | 3§ | k Operation Miss?
0 O | 0| 0 |ec[0][0] a[0][0] * b[0][0] | (m,m)
1 0|0 1 | elO0][0] a[0][1] * b[1][0] | (h,m)
2 0 1 0 [c[O0][1] af[0][0] b[0][1] (h, h)
3 0 1 1 | c[0][1] af[0][1] b[1][1] ?7?7?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

41

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

c a b
1 1
lteration | i | 3§ | k Operation Miss?
0 O | 0| 0 |ec[0][0] a[0][0] * b[0][0] | (m,m)
1 0|0 1 | elO0][0] a[0][1] * b[1][0] | (h,m)
2 0 1 0 [c[O0][1] af[0][0] b[0][1] (h, h)
3 0 1 1 | c[0][1] af[0][1] b[1][1] (h, h)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

42

Carnegie Mellon

c a b

. Accessed
_ X Currently
Accessing
In Cache

lteration | i | j | k Operation Miss?

0 0 | 0| O |c[0][0] += a[0][0] * b[O][O0] | (m,m)

1 0 0 1 | c[0][0] += a[0][1] * b[1]][O] (h, m)

2 0 1 0 [c[0][1] += a[0][0] * b[O][1] (h, h)

3 0 1 1 c[0][1] += a[O0][1] * b[1][1] (h, h)

4 1 0 0 [c[1][0] += a[1][0] * b[O][O] ?7?7?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

c a b

. Accessed
. = . X Currently

Accessing

In Cache

lteration | i | j | k Operation Miss?
0 0 0 0 |c[0]1[0] += a[0][0] * b[O][O] | (m, m)
1 0| 0| 1 |ec[0][0] += a[0][1] * b[1]1[0] | (h,m)
2 0| 1| 0 |ec[0][1] += a[0][0] * b[0][1] | (h h)
3 0| 1| 1 |c[0][1] += a[01[1] * b[1][1] | (h h)
4 1| 0| 0 |c[11[0] += a[1]1[0] * b[O][0] | (m,h)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

c a b

Accessed
. _ :. X Currently
Accessing
In Cache

lteration | i | j | k Operation Miss?

0 0 | 0| O |c[0][0] += a[0][0] * b[O][O0] | (m,m)

1 0 0 1 | c[0][0] += a[0][1] * b[1]][O] (h, m)

2 0 1 0 [c[0][1] += a[0][0] * b[O][1] (h, h)

3 0 1 1 c[0][1] += a[O0][1] * b[1][1] (h, h)

4 1 0 0 [c[1][0] += a[1][0] * b[O][O] (m, h)

5 1 0 1 c[1][0] += a[l1][1] * b[1][O0] 27?7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

c a b

Accessed
. _ :. X Currently
Accessing
In Cache

lteration | i | j | k Operation Miss?

0 0 | 0| O |c[0][0] += a[0][0] * b[O][O0] | (m,m)

1 0 0 1 | c[0][0] += a[0][1] * b[1]][O] (h, m)

2 0 1 0 [c[0][1] += a[0][0] * b[O][1] (h, h)

3 0 1 1 c[0][1] += a[O0][1] * b[1][1] (h, h)

4 1 0 0 [c[1][0] += a[1][0] * b[O][O] (m, h)

5 1 0 1 c[1][0] += a[l1][1] * b[1][O0] (h, h)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

c a b

:. Accessed
:. = . X Currently

Accessing

In Cache

lteration | i | j | k Operation Miss?
0 0 0 0 |c[0]1[0] += a[0][0] * b[O][O] | (m, m)
1 0| 0| 1 |ec[0][0] += a[0][1] * b[1]1[0] | (h,m)
2 0| 1| 0 |ec[0][1] += a[0][0] * b[0][1] | (h h)
3 0| 1| 1 |c[0][1] += a[01[1] * b[1][1] | (h h)
4 1| 0| 0 |c[11[0] += a[1]1[0] * b[O][0] | (m,h)
5 1| 0| 1 |e[11[0] += a[1][1] * b[1]1[0] | (h,h)
6 1| 1| 0 |e[11[1] += a[1][0] * b[0][1] | ???

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

c a b

:. Accessed
:. = . X Currently

Accessing

In Cache

lteration | i | j | k Operation Miss?
0 0 0 0 |c[0]1[0] += a[0][0] * b[O][O] | (m, m)
1 0| 0| 1 |ec[0][0] += a[0][1] * b[1]1[0] | (h,m)
2 0| 1| 0 |ec[0][1] += a[0][0] * b[0][1] | (h h)
3 0| 1| 1 |c[0][1] += a[01[1] * b[1][1] | (h h)
4 1| 0| 0 |c[11[0] += a[1]1[0] * b[O][0] | (m,h)
5 1| 0| 1 |e[11[0] += a[1][1] * b[1]1[0] | (h,h)
6 1| 1| 0 |e[11[1] += a[1][0] * b[0I[1] | (h,h)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

c a b

lteration | i | 3§ | k Operation Miss?
0 0 | 0| O |c[0][0] += a[0][0] * b[O][O0] | (m,m)
1 0 0 1 | c[0][0] += a[0][1] b[1][0] (h, m)
2 0 1 0 [c[0][1] += a[O0][O0] b[0][1] (h, h)
3 0 1 1 | c[0][1] += a[0][1] b[1][1] (h, h)
4 1 0 0 [c[1][0] += a[1l][O0] b[0][0] (m, h)
5 1 | 0| 1 |e[11[0] 4= a[1][1] * b[1]1[0]1 | (h h)
6 1 1 0 [c[1][1] += a[1l][O0] b[0][1] (h, h)
7 1 | 1| 1 |e[l]1[1] 4= a[1][1] * b[1]1[1] ??7?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

49

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

c a b
lteration | i | 3§ | k Operation Miss?
0 0 | 0| O |c[0][0] += a[0][0] * b[O][O0] | (m,m)
1 0 0 1 | c[0][0] += a[0][1] b[1][0] (h, m)
2 0 1 0 [c[0][1] += a[O0][O0] b[0][1] (h, h)
3 0 1 1 | c[0][1] += a[0][1] b[1][1] (h, h)
4 1 0 0 [c[1][0] += a[1l][O0] b[0][0] (m, h)
5 1 | 0| 1 |e[11[0] 4= a[1][1] * b[1]1[0]1 | (h h)
6 1 1 0 [c[1][1] += a[1l][O0] b[0][1] (h, h)
7 1 1 1 | c[1][1] += a[1][1] b[1][1] (h, h)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

50

Carnegie Mellon

c a b
Accessed
_ X Currently
Accessing
In Cache
Iteration i 3j k Operation Miss?
8 0 0 2 c[0][0] += a[0][2] * b[2][0] 7?7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

c a b
. .: Accessed
_ X Currently
Accessing
In Cache
Iteration i 3j k Operation Miss?
8 0 0 2 | c[0][0] += a[0][2] * b[2][0] (m, m)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

c a b

. . Accessed
_ X Currently
Accessing
In Cache

Iteration i Jj k Operation Miss?

8 0 | 0| 2 |c[0][0] += a[0]1[2] * b[2][0] | (m,m)

9 0 0 3 [c[0][0] += a[0][3] * b[3][0] ?7?7?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

c a b

. . Accessed
_ X Currently
Accessing
. In Cache

Iteration i Jj k Operation Miss?

8 0 | 0| 2 |c[0][0] += a[0]1[2] * b[2][0] | (m,m)

9 0 0 3 [c[0][0] += a[0][3] * b[3][0] (h, m)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

c a b
= X
Iteration i 3j k Operation Miss?
8 0 0 2 | c[0][0] += a[0][2] * b[2][0] | (m, m)
9 0 0 3 [c[0][0] += a[0][3] * b[3][0] (h, m)
10 0 1 2 | c[0][1] += a[0][2] * b[2][1] ?7??

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

55

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

c a b
= X
Iteration i j k Operation Miss?
8 0 0 2 | c[0][0] += a[0]1[2] * b[2][0] | (m, m)
9 0 0 3 | c[0][0] += a[0][3] * b[3][0] (h, m)
10 0 1 2 | c[0][1] += a[0][2] * b[2][1] (h, h)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

56

Carnegie Mellon

c a b

:. . Accessed
_ X Currently
Accessing
:. In Cache

lteration | i | j | k Operation Miss?

8 0 | 0| 2 |c[0][0] += a[0]1[2] * b[2][0] | (m,m)

9 0 0 3 [c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] * b[3][1] ?7?7?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

c a b

:. . Accessed
_ X Currently
Accessing
:. In Cache

lteration | i | j | k Operation Miss?

8 0 | 0| 2 |c[0][0] += a[0]1[2] * b[2][0] | (m,m)

9 0 0 3 [c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 [ec[0][1] += a[0][3] * b[3][1] (h, h)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

c b

= X

Iteration Operation Miss?
8 c[0][0] += a[0][2] b[2][0] | (m,m)
9 c[0][0] += a[O0][3] b[3]1[0] | (h,m)
10 c[0][1] += a[0][2] b[2] [1] (h, h)
11 c[0][1] += a[O0][3] b[3][1] (h, h)
12 c[1]1[0] += a[l][2] b[2][0] 7?7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

59

Carnegie Mellon

c a b

Accessed
. _ .: X Currently
Accessing
In Cache

lteration | i | j | k Operation Miss?

8 0 | 0| 2 |c[0][0] += a[0]1[2] * b[2][0] | (m,m)

9 0 0 3 [c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 [ec[0][1] += a[0][3] * b[3][1] (h, h)

12 1 0 2 c[1]1[0] += a[1l][2] * b[2][0] (m, h)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

c a b

Accessed
. _ . X Currently
Accessing
. In Cache

lteration | i | j | k Operation Miss?

8 0 | 0| 2 |c[0][0] += a[0]1[2] * b[2][0] | (m,m)

9 0 0 3 [c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 [ec[0][1] += a[0][3] * b[3][1] (h, h)

12 1 0 2 c[1]1[0] += a[1l][2] * b[2][0] (m, h)

13 1 0 3 [ec[1][0] += a[1l][3] * b[3][0] ?7?7?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Carnegie Mellon

c a b

Accessed
. _ . X Currently
Accessing
. In Cache

lteration | i | j | k Operation Miss?

8 0 | 0| 2 |c[0][0] += a[0]1[2] * b[2][0] | (m,m)

9 0 0 3 [c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 [ec[0][1] += a[0][3] * b[3][1] (h, h)

12 1 0 2 c[1]1[0] += a[1l][2] * b[2][0] (m, h)

13 1 0 3 [ec[1][0] += a[1l][3] * b[3][0] (h, h)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

c b

Iteration Operation Miss?
8 c[0][0] += a[0][2] * b[2][0] | (m, m)
9 c[0][0] += a[0][3] * b[31[0] | (h,m)
10 c[0]1[1] += a[0][2] * b[2]1[1] | (h h)
11 c[0][1] += a[0][3] * bI[31[1] | (hh)
12 c[1]1[0] += a[1][2] * b[2]1[0] | (m,h)
13 c[1][0] += a[1l][3] b[3][0] (h, h)
14 c[1]1[1] += a[l][2] b[2][0] ?7?7?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

63

Carnegie Mellon

Accessed

Currently
Accessing

In Cache

c b
Iteration Operation Miss?
8 c[0][0] += a[0][2] * b[2][0] | (m, m)
9 c[0][0] += a[0][3] * b[31[0] | (h,m)
10 c[0]1[1] += a[0][2] * b[2]1[1] | (h h)
11 c[0][1] += a[0][3] * bI[31[1] | (hh)
12 c[1]1[0] += a[1][2] * b[2]1[0] | (m,h)
13 c[1][0] += a[1l][3] b[3][0] (h, h)
14 c[1]1[1] += a[1]l[2] * b[2][1] | (hh)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

64

Carnegie Mellon

c a b

Accessed
:. _ . X Currently
Accessing
:. In Cache

lteration | i | j | k Operation Miss?

8 0 | 0| 2 |c[0][0] += a[0]1[2] * b[2][0] | (m,m)

9 0 0 3 [c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 [ec[0][1] += a[0][3] * b[3][1] (h, h)

12 1 0 2 c[1]1[0] += a[1l][2] * b[2][0] (m, h)

13 1 0 3 [ec[1][0] += a[1l][3] * b[3][0] (h, h)

14 1 1 2 c[1l][1] += a[l1l][2] * b[2][1] (h, h)

15 1 1 3 c[1]1[1] += a[1l][3] * b[3][1] ?7?7?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

c a b

Accessed
:. _ . X Currently
Accessing
:. In Cache

lteration | i | j | k Operation Miss?

8 0 | 0| 2 |c[0][0] += a[0]1[2] * b[2][0] | (m,m)

9 0 0 3 [c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 [ec[0][1] += a[0][3] * b[3][1] (h, h)

12 1 0 2 c[1]1[0] += a[1l][2] * b[2][0] (m, h)

13 1 0 3 [ec[1][0] += a[1l][3] * b[3][0] (h, h)

14 1 1 2 c[1l][1] += a[l1l][2] * b[2][1] (h, h)

15 1 1 3 c[1]1[1] += a[1l][3] * b[3][1] (h, h)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Carnegie Mellon

Blocking: Analyzing Miss Rate

Iteration | Miss? Iteration | Miss?
0 (m, m) 8 (m, m)
1 (h, m) 9 (h, m)
2 (h, h) 10 (h, h)
3 (h, h) 11 (h, h)
4 (m, h) 12 (m, h)
5 (h, h) 13 (h, h)
6 (h, h) 14 (h, h)
7 (h, h) 15 (h, h)

m What is the miss rate of a?

o 25%
m What is the miss rate of b?
o 25%

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Carnegie Mellon

Blocking: What Happened?
m Good temporal locality!

m Blocks are re-used while they are still in the cache.

c a b

_ N N

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

Carnegie Mellon

Blocking: What could go wrong?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

Carnegie Mellon

Blocking with Different Cache

m Great - blocking allows us to better leverage locality! But does
this behavior always appear...?

m Let’s test it out by apply blocking to a cache that is NOT fully

associative!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

Carnegie Mellon

Blocking Continued

m Suppose our cache is now two-way associative with 2 sets
o Notice we still have a total of 4 cache lines

m Assuming C does not interact with the cache (eg. in a register)
and the start of A, B point to set 0, we will observe if there is
any new behavior.

m Try to pay attention to iterations that leverages locality well

versus iterations that are locality’s enemy.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 71

Carnegie Mellon

Group Activity: B-Accesses

m Let’s revisit why we introduced the idea of blocking.

m Ignore all other accesses other than B and first observe the
access pattern and hit/miss pattern for a non-blocking
implementation.

o Where do we see missed opportunities for locality?
m Now do the same analysis but for a blocking implementation.

Do you notice anything “better”?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

Carnegie Mellon

Group Activity: Adding A Back In

m Now we know how blocking works! Let’s return to the original
problem and introduce accesses to A on top of accesses to B.

m What do you observe that is different from a fully associative
cache?

m Can you identify cases of good locality? What about bad
locality?

m Make sure to draw out the cache/matrix states!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73

Carnegie Mellon

Wrapping Up

m cachelab is due Thursday (October 9th).

m Take Home midterm is due Wednesday (Oct 8th)
m Make sure to leave time for both.

m Keep an eye out for an email from your Code Review TA!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 74

Carnegie Mellon

The End

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 75

