
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Recitation
Caches & Blocking

Your TAs

Friday, October 3rd

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminders
■ cachelab is due Thursday (October 9th).

■ malloc lab will be released on the same day.

■ Take Home midterm is due Wednesday (Oct 8th)

○ Should roughly take 1 hour 20 minutes of your time!

■ In Class midterm on Tuesday (October 21st).

■ Drop Deadline: Monday (October 6th)

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Agenda
■ Code Reviews

■ Writing Cache-Friendly Code

■ Blocking

■ Activity: More Blocking!

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Reviews

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Code Reviews?
■ Used in industry

○ Nearly all companies use code reviews

○ Effective at finding bugs

■ Sets you up for success in future systems courses!

Roger G. [Aug 2005]

https://course.ece.cmu.edu/~ece649/lectures/09_reviews_handouts.pdf

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Reviews: Logistics
■ Each of you will be assigned a Code Review TA.

■ Starting with cachelab, you will receive style points (0-4)

on each lab.

■ Watch for an email from your TA so that you can sign up for a

meeting slot!

○ Meetings are short (<= 15 minutes)!

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Reviews: Guidelines
■ First: look at Official 213 Style Guide!

■ Documentation (comments, file header)

■ Modularity

■ Use helper functions!

■ Avoid magic numbers (use #define or static

const)

■ Correctness

○ malloc can fail! Library functions can fail!

○ Are you leaking memory/file descriptors?

https://www.cs.cmu.edu/~213/codeStyle.html

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Cache-Friendly Code

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Temporal and Spatial Locality
■ Temporal Locality:

○ Recently referenced

items are likely to be

referenced again soon!

■ Spatial Locality:

○ Items with nearby

addresses tend to be

referenced close

together in time.

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimizing for Locality

Temporal Spatial

■ Recently referenced items are

likely to be referenced again

soon!

■ To optimize: try to use data

objects as often as possible

once they’re read from

memory.

■ Lecture Example: Blocking.

■ Items with nearby addresses

tend to be referenced close

together in time.

■ To optimize: read objects

sequentially, and with smaller

stride.

■ Lecture Example: Rearranging

loops.

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Cache Configurations

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Configurations
■ Direct Mapped: Cache with E=1

○ one line per set

■ Fully Associative: Cache with s=0

○ all lines in one set

■ k-way Associative: Cache with E=k

○ k lines per set

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Matrix Multiplication

■ “Standard” way of doing matrix

multiplication (ijk):

○ c[i][j] is given by

taking “dot product” of

i-th row of a with j-th

column of b.

/* Multiply 4x4 matrices */
void mm(int a[4][4], int b[4][4], int c[4][4]) {
 int i, j, k;
 for (i = 0; i < 4; i++)
 for (j = 0; j < 4; j++)
 for (k = 0; k < 4; k++)
 c[i][j] += a[i][k] * b[k][j];

a

(i,*)

b

(*,j)

c

(i,j)

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Matrix Multiplication
■ Assume a tiny cache with 4 lines of 8 bytes (2 ints each)

○ S = 1, E = 4, B = 8

■ We’ll use the following key:

Key

Grey = Accessed

a

Dark Grey = Currently Accessing

Red Border = In Cache

■ Let’s see what happens if we don’t use blocking…

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] ???

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] ???

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] * b[2][0] ???

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

Previous lines
evicted (LRU)

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] * b[3][0] ???

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] * b[0][1] ???

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] * b[0][1] (m, m)
Have these blocks
been in the cache

before?

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] * b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] * b[1][1] ???

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] * b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] * b[1][1] (h, m)
Has this block been

in cache before?

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] * b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] * b[1][1] (h, m)

6 0 1 2 c[0][1] += a[0][2] * b[2][1] ???

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] * b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] * b[1][1] (h, m)

6 0 1 2 c[0][1] += a[0][2] * b[2][1] (m, m)

Have these blocks
been in the cache

before?

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] * b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] * b[1][1] (h, m)

6 0 1 2 c[0][1] += a[0][2] * b[2][1] (m, m)

7 0 1 3 c[0][1] += a[0][3] * b[3][1] ???

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] * b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] * b[1][1] (h, m)

6 0 1 2 c[0][1] += a[0][2] * b[2][1] (m, m)

7 0 1 3 c[0][1] += a[0][3] * b[3][1] (h, m)

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Blocking: Analyzing Miss Rate

■ What is the miss rate of a?

○ 4/8 = 50%

■ What is the miss rate of b?

○ 8/8 = 100%

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] + b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] + b[1][0] (h, m)

2 0 0 2 c[0][0] += a[0][2] + b[2][0] (m, m)

3 0 0 3 c[0][0] += a[0][3] + b[3][0] (h, m)

4 0 1 0 c[0][1] += a[0][0] + b[0][1] (m, m)

5 0 1 1 c[0][1] += a[0][1] + b[1][1] (h, m)

6 0 1 2 c[0][1] += a[0][2] + b[2][1] (m, m)

7 0 1 3 c[0][1] += a[0][3] + b[3][1] (h, m)

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Blocking: What went Wrong?
■ Bad temporal locality!

■ Blocks are used multiple times, but are never in cache when

we need them.

Misses on Iteration
4

a b

Evictions on
Iteration 2

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Matrix Multiplication (with Blocking)

■ Let’s see what happens if we use blocking!

/* multiply 4x4 matrices using blocks of size 2 */
void mm_blocking(int a[4][4], int b[4][4], int c[4][4]) {
 int i, j, k;
 int i_c, j_c, k_c;
 int B = 2;
 // control loops
 for (i_c = 0; i_c < 4; i_c += B)
 for (j_c = 0; j_c < 4; j_c += B)
 for (k_c = 0; k_c < 4; k_c += B)
 // block multiplications
 for (i = i_c; i < i_c + B; i++)
 for (j = j_c; j < j_c + B; j++)
 for (k = k_c; k < k_c + B; k++)
 c[i][j] += a[i][k] * b[k][j];

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] ???

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] ???

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] * b[0][1] ???

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] * b[0][1] (h, h)

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] * b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] * b[1][1] ???

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] * b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] * b[1][1] (h, h)

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] * b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] * b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] * b[0][0] ???

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] * b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] * b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] * b[0][0] (m, h)

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] * b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] * b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] * b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] * b[1][0] ???

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] * b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] * b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] * b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] * b[1][0] (h, h)

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] * b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] * b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] * b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] * b[1][0] (h, h)

6 1 1 0 c[1][1] += a[1][0] * b[0][1] ???

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] * b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] * b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] * b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] * b[1][0] (h, h)

6 1 1 0 c[1][1] += a[1][0] * b[0][1] (h, h)

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] * b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] * b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] * b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] * b[1][0] (h, h)

6 1 1 0 c[1][1] += a[1][0] * b[0][1] (h, h)

7 1 1 1 c[1][1] += a[1][1] * b[1][1] ???

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

0 0 0 0 c[0][0] += a[0][0] * b[0][0] (m, m)

1 0 0 1 c[0][0] += a[0][1] * b[1][0] (h, m)

2 0 1 0 c[0][1] += a[0][0] * b[0][1] (h, h)

3 0 1 1 c[0][1] += a[0][1] * b[1][1] (h, h)

4 1 0 0 c[1][0] += a[1][0] * b[0][0] (m, h)

5 1 0 1 c[1][0] += a[1][1] * b[1][0] (h, h)

6 1 1 0 c[1][1] += a[1][0] * b[0][1] (h, h)

7 1 1 1 c[1][1] += a[1][1] * b[1][1] (h, h)

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] ???

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] * b[3][0] ???

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] ???

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] * b[3][1] ???

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] * b[3][1] (h, h)

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] * b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] * b[2][0] ???

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] * b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] * b[2][0] (m, h)

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] * b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] * b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] * b[3][0] ???

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] * b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] * b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] * b[3][0] (h, h)

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] * b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] * b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] * b[3][0] (h, h)

14 1 1 2 c[1][1] += a[1][2] * b[2][0] ???

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] * b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] * b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] * b[3][0] (h, h)

14 1 1 2 c[1][1] += a[1][2] * b[2][1] (h, h)

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] * b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] * b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] * b[3][0] (h, h)

14 1 1 2 c[1][1] += a[1][2] * b[2][1] (h, h)

15 1 1 3 c[1][1] += a[1][3] * b[3][1] ???

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

c a b

= x

Accessed

Currently
Accessing

In Cache

Iteration i j k Operation Miss?

8 0 0 2 c[0][0] += a[0][2] * b[2][0] (m, m)

9 0 0 3 c[0][0] += a[0][3] * b[3][0] (h, m)

10 0 1 2 c[0][1] += a[0][2] * b[2][1] (h, h)

11 0 1 3 c[0][1] += a[0][3] * b[3][1] (h, h)

12 1 0 2 c[1][0] += a[1][2] * b[2][0] (m, h)

13 1 0 3 c[1][0] += a[1][3] * b[3][0] (h, h)

14 1 1 2 c[1][1] += a[1][2] * b[2][1] (h, h)

15 1 1 3 c[1][1] += a[1][3] * b[3][1] (h, h)

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking: Analyzing Miss Rate

■ What is the miss rate of a?

○ 25%

■ What is the miss rate of b?

○ 25%

Iteration Miss?

0 (m, m)

1 (h, m)

2 (h, h)

3 (h, h)

4 (m, h)

5 (h, h)

6 (h, h)

7 (h, h)

Iteration Miss?

8 (m, m)

9 (h, m)

10 (h, h)

11 (h, h)

12 (m, h)

13 (h, h)

14 (h, h)

15 (h, h)

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking: What Happened?
■ Good temporal locality!

■ Blocks are re-used while they are still in the cache.

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking: What could go wrong?

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking with Different Cache
■ Great - blocking allows us to better leverage locality! But does

this behavior always appear…?

■ Let’s test it out by apply blocking to a cache that is NOT fully

associative!

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking Continued
■ Suppose our cache is now two-way associative with 2 sets

○ Notice we still have a total of 4 cache lines

■ Assuming C does not interact with the cache (eg. in a register)

and the start of A,B point to set 0, we will observe if there is

any new behavior.

■ Try to pay attention to iterations that leverages locality well

versus iterations that are locality’s enemy.

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Group Activity: B-Accesses
■ Let’s revisit why we introduced the idea of blocking.

■ Ignore all other accesses other than B and first observe the

access pattern and hit/miss pattern for a non-blocking

implementation.

○ Where do we see missed opportunities for locality?

■ Now do the same analysis but for a blocking implementation.

Do you notice anything “better”?

Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Group Activity: Adding A Back In
■ Now we know how blocking works! Let’s return to the original

problem and introduce accesses to A on top of accesses to B.

■ What do you observe that is different from a fully associative

cache?

■ Can you identify cases of good locality? What about bad

locality?

■ Make sure to draw out the cache/matrix states!

Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Wrapping Up
■ cachelab is due Thursday (October 9th).

■ Take Home midterm is due Wednesday (Oct 8th)

■ Make sure to leave time for both.

■ Keep an eye out for an email from your Code Review TA!

Carnegie Mellon

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The End

