Carnegie Mellon

15-213 Recitation
Attack Lab

Your TAs
Friday, September 19th

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Reminders
m bomblab was due Tuesday (September 16th)
m attacklab has been released, and is due on Thursday

(September 25th)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Agenda

m Review: Structs and Alignment

m Stacks

m Calling Procedures, Stack Frames
m Endianness

m Intro to Attack Lab

m Activity!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Review: structs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Alignment Requirements
m Badly aligned data can harm performance:

o May need multiple memory accesses instead of just one.

m Primitive types have pre-determined alignments:
o char =1 byte

short =2 bytes

int =4 bytes

long = 8 bytes

double = 8 bytes

pointer = 8 bytes

O O O O O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Alighment : Compound Types

m Compound types:
O Arrays
o Structs

o Unions

m Alignment rules for these types:
1. Takes largest alignment requirement of its fields.
2. Initial address and size must both be multiples of the

alignment requirement.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Alignment Requirements: Example

m Whatis the alignment
requirement for d?
O Primitive: has
pre-defined alignment

double d; :
requirement.

o Alignment: 8

m What s its size?

o Size: 8 bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Alignment Requirements: Example

m Whatis the alignment
requirement for y?
o Rule (1): struct
struct y { alignment = max

double d; alignment of fields.

}

o Alignment: 8

m What s its size?

o Size: 8 bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Alignment Requirements: Example

m Whatis the alignment
requirement for y?

struct y { o Alignment: 8
short c; m Whatis its size?
double d;

o Rule (2): have to add
padding after ¢ so that
d is 8-byte aligned

o Size: 16 bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Alignment Requirements: Example

m Whatis the alignment
struct x {

requirement for x?
char a[4];

o Alignment: 8

struct {

short c: m What is its size?

double d; o Remember, the entire
! y; struct must also follow
int b;

alignment rules

o Size: 32 bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

structs: Reordering Fields

8 bytes across

char a[4]

short c

struct y

Padding

m struct xtakes up 32 bytes to store 18 bytes of data.

m Can we reorder the fields to do better?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

structs: Reordering Fields

8 bytes across

short c Padding

struct y
double d

m struct xnow takes up 24 bytes!
m Compiler cannot do this optimization. It’s up to the

programmer (you!)

m Note: Can’t move field into or out of y without also changing

how you access those fields in your code.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Stacks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Manipulating the Stack

m Certain instructions grow the stack, and certain instructions

shrink the stack:

Growing the stack Shrinking the stack

m sub 0x38, S%rsp m add 0x38, %rsp
m push 3rbp B pop 3rbp

m call m ret

m But what does this look like in memory?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Which way does the stack grow?

m We say that the stack grows

“down” because it grows
towards lower addresses:
Addresses

Local Variables d]

0 e.g.sub 0x38, %rsp Fereesng
m We will draw them this way /

Return Address

inattacklab examples < arsp

o But you can draw them

New stack frames

in any way that makes

sense to youl!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Drawing Memory

Conventional Memory Diagram

Carnegie Mellon

Array Example

#define ZLEN 5
typedef int zip dig[ZLEN];

zip digemu = { 1, 5, 2, 1, 3 };

zip dig mit = { 0, 2, 1, 3, 9 };

zip dig ucb = { 9, 4, 7, 2, 0 };

zip digemu; [1 [5 [2 [1 [3]
I 1 1 1 1 1
16 20 24 28 32 36

zip dig mit; | o | 2 | 1 [3 | 9 |
I i 1 1 1
36 40 44 48 52 56

zip digucb; [9 [4 T 7 [2 [o 1]
I 1 i 1 1 1
56 60 64 68 72 76

m Declaration “zip_dig cmu” equivalentto “int cmu[5]”
m Example arrays were allocated in successive 20 byte blocks
® Not guaranteed to happen in general

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Addresses Increasing:
m Towards the right
m Then downwards

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack Diagram

Buffer Overflow Stack Example

Before call to gets

31]r21]r11fro1

4006c3: add

void echo() echo:

Stack Frame { subg $0x18, %rsp

forcall_echo char buf[4]; movqg $rsp, %rdi
gets (buf) ; call gets
00]00]00]00 }
00]|40|06|c3
call_echo:
20 bytes unused 4006be: callg 4006cf <echo>

$0x8, $rsp

buf «<— %rsp

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Addresses Increasing:
m Towards the left
m Then upwards

16

Carnegie Mellon

Calling Procedures, Stack Frames

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Review: Calling Procedures

Procedure Call: call label

m Push return address onto the stack (so that we can pass
control back to the caller!)

m Jumpto label

Procedure Return: ret
m Pop address from stack
m This is the address of the next instruction of the caller

m Jump to that address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Example

m Take a look at the following code snippet:

int outer function() {
int result = inne:_functionkl, 2, 3, 4, 5, 6, 7, 8, 9)}

return result + 1; ‘\‘\~\\\\\\\\\‘

Lots of arguments!

m What would this look like in assembly? How would

having many arguments affect the stack?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Example: outer function/()

m Hereis the assembly for outer function:

00000000004011ba <outer function>: Push extra arguments onto
/

... ,
srip —%4011c6: | push $0x9 / stack (note the order!)
4011c8: | push $0x8

401llca: | push $0x7

401llcc: mov $0x6,%r9d
4011d2: mov $0x5,%r8d
4011d8: mov $0x4,%ecx
4011dd: mov $0x3,%edx
4011le2: mov $0x2,%esi
4011le7: mov $0x1,%edi

Data for

<-- 3rsp
outer function()

40llec: call 401136 <inner function>
4011f1: add $0x18,%rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Example: outer function/()

m Hereis the assembly for outer function:

00000000004011ba <outer function>: Push extra arguments onto
/

.. |
4011c6: | push $0x9 / stack (note the order!)
4011c8: | push $0x8

401llca: | push $0x7

srip —%401llcc: mov $0x6,%r9d

4011d2: mov $0x5,%r8d Data for

outer function()

4011d8: mov $0x4,%ecx =

4011dd: mov $0x3,%edx 0x9

4011le2: mov $0x2,%esi

401le7: mov $0x1,%edi 0x8

40llec: call 401136 <inner function> 0x7 <7 srsp

4011f1: add $0x20,%rsp

T

“Argument Build”
space

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Example: outer function/()

m Hereis the assembly for outer function:

00000000004011ba <outer function>: Load up first 6 arguments

4011c6: push $0x9 / Into argument registers
4011c8: push $0x8

40llca: push $0x7

40llcc: |mov $0x6,%r9d
4011d2: |mov $0x5,%r8d
4011d8: |mov $0x4,%ecx

Data for
outer function()

4011dd: |mov $0x3, %edx 0x9
4011le2: lmov $0x2,%esi
401le7: [mov $0x1,%edi 0x8
0x7 <-- 3rsp

%rip — % 40llec: call 401136 <inner function>
4011f1: add $0x20,%rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Example: outer function/()

m Remember, call loads the return address onto the stack

00000000004011ba <outer function>:

... Now we’re ready to call!
4011c6: push $0x9
4011c8: push $0x8

40llca: push $0x7

401llcc: mov $0x6,%r9d
4011d2: mov $0x5,%r8d
4011d8: mov $0x4,%ecx

Data for
outer function()

4011dd: mov $0x3,%edx 0x9

4011le2: mov $0x2,%esi

4011le7: mov $0x1,%edi 0x8

40llec: call 401136 <inner function> 0x7

4011f1: add $0x20,%rsp 292229 <-- %rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Example: outer function/()

m Whatis the return address we should store? Let’s inspect gdb
to find out!

(gdb) x /4gx S$rsp
Ox7fffffffe3c8: 0x00000000004011f1 0x0000000000000007

Ox7fffffffe3d8: 0x000007v000000008 0x0000000000000009

m Where does this yafue come from?

40llec: call 401136 <inner function>
4011f1] add $0x20,%rsp

m It's the address of the instruction we want to jump to after
completing the call to inner function

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Example: outer function/()

m State of our program before starting inner function

00000000004011ba <outer function>:

4011c6: push $0x9 Data for

4011c8: push $0x8 outer function()

40l11lca: h 7

Ollca: push $0x 0%

401llcc: mov $0x6,%r9d 0x8

4011d2: mov $0x5,%r8d

4011d8: mov $0x4,%ecx 0x7

4011dd: mov $0x3, %edx .
401le2: mov $0x2,%esi 0x4011£1 <-- %rsp

401le7: mov $0x1,%edi

40llec: call 401136 <inner function>
4011f1: add $0x20,%rsp

Pass control to inner function ()
=> Set $ripto 0x401136

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Example: inner function/()

m Hereis the assembly for inner function

0000000000401136 <inner function>:
$rip —»; 401136: endbr64

40113a: push %rbp

40113b: mov %rsp, %$rbp

40113e: sub $0x38,%rsp

4011b9: add $0x38,%rsp
4011bd: pop %rbp
4011lbe: ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Example: inner function/()

m Hereis the assembly for inner function

_ _ Function store the original
0000000000401136 <inner function>: e base pointer and repositions

401136: _endbré64 . .

40113a: | push %rbp / it for this stack frame
40113b: | mov %rsP,%er

$rip—>»| 40113e: sub $0x38,%rsp

Data for
outer function()

4011b9: add $0x38,%rsp
4011bd: pop %rbp 0x9
4011lbe: ret 0x8

ox7

0x4011f1

old $rbp <-- |3rsp,%rbp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Example: inner function/()

m Hereis the assembly for inner function

Function allocates any space it
0000000000401136 <inner function>: / needs

401136: endbr64
40113a: push %rbp
40113b: mov %rsp, %$rbp
40113e: [sub $0x38,%rsp

Data for
Srip —» ... outer function()

0x9
4011b9: add $0x38,%rsp

4011bd: pop %rbp 0x8
4011be: ret

ox7

0x4011f1

old $rbp <-- %rbp

Data for
inner function()

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Example: inner function/()

m Hereis the assembly for inner function

De-allocate any stack space
0000000000401136 <inner function>: / used by the function

401136: endbr64
40113a: push %rbp
40113b: mov %rsp, %$rbp
40113e: sub $0x38,%rsp

Data for
outer function()

0x9

4011b9: | add $0x38,%rsp
srip —» 4011bd: pop %rbp 0x8
401l1lbe: ret

ox7

0x4011f1

old %rbp <-- |%rsp,%rbp

Data for
inner function()

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Example: inner function/()

m Hereis the assembly for inner function

Restore 3rbp to prepare to
0000000000401136 <inner function>: / return to Origina| stack frame
401136: endbr64

40113a: push %rbp
40113b: mov %rsp, %$rbp
40113e: sub $0x38,%rsp

Data for
outer function()

0x9
4011b9: add $0x38,%r

4011bd: | pop %rbp 0x8
$rip — P 4011lbe: ret

ox7

0x4011f1 <-- %rsp

old %$rbp !

Data for
inner function()

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Example: inner function/()

m Hereis the assembly for inner function

Return! We pop the return
0000000000401136 <inner function>: / address and jump
401136: endbr64

40113a: push %rbp
40113b: mov %rsp, %$rbp
40113e: sub $0x38,%rsp

Data for
outer function()

0x9
4011b9: add $0x38

4011bd: pop 5%r 0x8
4011be:| ret

ox7

<-- 3%rsp
I 0x4011£1 i
00000000004011ba <outer £ old %$rbp i
401lec 01136 <inner functi Load popped
srip — | 4011f1: add $0x20,%rsp address into $rip | Datafor ;
r _function() :

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Endianness

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Endianness

m Under the hood, we represent everything as a series of

contiguous bytes.

m Endianness refers to how we order the bytes for “simple”

types (integers and floats).

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Endianness

m Little-Endian:
o Least significant byte is stored at the lowest address.
o Shark Machines are Little-Endian.
o Assume everything in this class is little-endian unless
otherwise stated.
m Big-Endian:
o Most significant byte is stored at the lowest address.

Mem[O] Mem[1] Mem[2] Mem[3]

32-bit nteger iwetndion OXO4 Ox03 0x02 OO
0x01020304
ot it ong sgendon OX01 Ox02 0Ox03 0Ox04

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Endianness: Example
m Suppose we draw our diagram with addresses increasing
towards the left, then upwards.

m How are the bytes ordered on a little endian machine?

0x9 P | 2?2 | 2?22 | ?? | ?? | ?? | ?? | ?°
0x8 P | 2?2 | 2?22 | ?? | ?? | ?? | ?? | ?°?
0x7 P | 2?2 [2?22 | ?? | ?? | ?? | ?? | ?°
0x401201 P | 2?2 | 2?22 | 2?2 | ?? | 2?22 | ?? | ?°
Addresses increasing Addresses increasing |
towards the left then towards the left then
upwards upwards Lowest address

byte

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Endianness: Example

0x9 00 | 00 | OO | OO | OO | OO | OO | OO
0x8 00 | 00 | OO | OO | OO | OO | OO | OB
0x7 00 | 00 | OO | OO | OO | OO | 00 | O7
0x401201 00 | 00 | OO | OO | OO | 40 | 12 | 01
Addresses increasing Addresses increasing
towards the left then towards the left then
upwards upwards Lowest address

byte

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Endianness Example: Comparing with gdb

00 | 00O | OO | OO | OO | OO | OO | 09
Addresses increasing

00 | 00 | OO | OO | OO | OO | OO | OB towards the left then
upwards

00 | OO | 00O | OO | OO | OO | OO | O7

00 | 00 | OO | OO0 | OO | 40 | 12 | 01

(gdb) x /32bx $rsp
Ox7fffffffe3e8: 0x01 0x12 0x40 0x00 0x00 0x00 0x00 0x00 Addresses increasing

Ox7fffffffe3f0: 0x07 0x00 0x00 0x00 0x00 O0x00 0x00 0x00 towards the right then
Ox7fffffffe3f8: 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0xO00 downwards
Ox7fffffffed00: 0x09 0x00 0x00 0x00 0x00 0x00 0x00 0x00

m gdb draws its diagram with addresses increasing towards the
right then downwards.

m Both diagrams are correct, and are still little-endian!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Ko EVANS

avork 8 bytes, many meanings

The same bytes can mean many different things. Here are 8 bytes

and a bunch of things they could pofeﬁ((g mean: Addresses increase

8 bytes— (53) (&) (50 (8) (T5) (7A) (&5) (D) towards the right
[cJTol m[pJ ult el r] 8 ASCII characters

[99 111 [1e9] 112] 117 [116 [101 [114] 8 8-bit integers

| 28515 | 28781 [29813 | 29285 | 4 unsigned 16-bit integers

| 1886220131 | 1919251573 | 2 unsigned 32-bit integers
|
I
|

8243122740717776739 | 1 unsigned 64-bit integer
0x72657475706d6163 | a 64-bit pointer

don't worry if
you don't
understand all

99.111.109.112 | 117.116.101.114 | 2 IPv4 addresses
arpl WORD PTR

; : b)
jo ox7a | je oxbc |-°V'€l y g6 machine code

this right now! [edi+0x6d],bp 0x72

fféf}gfﬁ;ﬁ“g‘" [cT ol m[p[ul t [29285] 6 ASCII characters + 1 16-bit integer
| 2.93930e+29 | 4.54482e+30 | 2 32-bit floating point numbers
| 1.144493e+243 | 1 64-bit floating point numbers

|rgba(99, 111, 109, ©.44)| rgba(117, 116, 101, 0.45)| 2 RGBA colours

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Attack Lab

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Attack Lab: Overview

m Exploit vulnerabilities in target programs using the techniques
you learned in lecture.

m Hijack their control flow and make them do something else!

m Targets do not explode like in bomblab.

m We’ll get some practice right now!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Activity

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Activity 1
m Download this week’s handout from the Schedule page.

m Fornow:

o Just open up the source code under src/activity.c.

o We’'ll start by walking through the code together!

$ wget https://www.cs.cmu.edu/~213/activities/f25-recd. tar
$ tar -xvf f25-rec4d.tar

S cd f25-rec4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Activity 1: solve ()

void solve (void) {
long before = 0xb4;
char buf[1l6];
long after = Oxaf;

src/activity.c

Gets (buf) ;

if (before == 0x3331323531)
win (0x15213) ;

if (after == 0x3331323831)
win (0x18213) ;

m Assume before and after are stored on the stack.
m |sthere any way for solve () tocallwin () ?
m Based on what you learned in lecture, are there any

vulnerabilities we can exploit here?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Recall: Unsafe Functions
m Cstandard library functions like gets () and strcpy ()
write to buffers, but have no length checks!

o Enables buffer overflow attacks.

Stack Frame
forcall_gcho

int echo() { echo-
char buf[4]; subq $0x18 . 3rsp
return ...; call getgs

Compiler making space
for buffer +

Can overwrite anythin
a little bit of padding yrning

before the buffer!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Activity 1: Back to solve ()

m Let’s see if we can find a similar vulnerability in solwve () by
looking at the assembly!

m Source code and assembly code are both reproduced on the
back of the handout.

m Draw a stack diagram to see if you can answer the following:
o What does the stack frame look like?
o Where is the saved return address?
o Where do we store buf, before, and after in relation

to each other?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Activity 1: Stack diagram

8 bytes across

=> Ox4006b5 <+0>: sub $0x38,%rsp rsp

<€—| rsp

A

Addresses increase
towards the top of
the slide

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Activity 1: Stack diagram

0x4006b5 <+0>: sub $0x38,%rsp

rsp+0x38
=> 0x4006b9 <+4>: movq $0xb4,0x28(%rsp)

A

Addresses increase
towards the top of
the slide

< rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Activity 1: Stack diagram

0x4006b5 <+0>: sub $0x38,%rsp rsp+0x38
0x4006b9 <+4>: movq $0xb4,0x28(%rsp)
=> 0x4006Cc2 <+13>: movq $0xaf,0x8(%rsp)
rsp+0x28

A

Addresses increase
towards the top of
the slide

< rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Activity 1: Stack diagram

0x4006b5 <+0>: sub $0x38,%rsp rsp+0x38
0x4006b9 <+4>: movq $0xb4,0x28(%rsp)
0x4006c2 <+13>: movq $0xaf,0x8(%rsp)
0x4006cb <+22>: lea 0x10(%rsp),%rdi
=> 0x4006d0 <+27>: callg 0x40073f <Gets>
rsp+0x28
Addresses increase rsp+0x8
towards the top of
the slide
rsp
49

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 1: Stack diagram

0x4006b5 <+0>: sub $0x38,%rsp rsp+0x38
0x4006b9 <+4>: movq $0xb4,0x28(%rsp)
0x4006c2 <+13>: movq $0xaf,0x8(%rsp)
0x4006cb <+22>: lea 0x10(%rsp),%rdi
0x4006d0 <+27>: callqg 0x40073f <Gets>
=> 0x4006d5 <+32>: mov 0x28(%rsp),%rdx rsp+0x28

rsp+0x10
A
Addresses increase rsp+0x8
towards the top of
the slide
rsp
50

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Activity 1: Exploitation
m Goal:callwin (0x15213)
m Take a few minutes to craft an exploit string!
m Crafting an exploit:
o gets () stopsreading once it sees a newline.

o Will not stop reading when it sees a null terminator.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Activity 2
m Objective: call win (0x18213)

m How is activity 2 different from activity 1?

rsp+0x38

rsp+0x28

We cannot write directly to
after!
(located below our buffer)

rsp+0x10

rsp+0x8

rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Activity 2: Exploitation
m If we cannot overwrite after in order to call
win (0x18213), what is another type of attack we can

perform?

m One possible solution: Instead of setting local variables that
result in calling win (0x18213), we can jump to an

instruction that directly calls win (0x18213) !

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Activity 2

m Change the return address:

rsp+0x38

rsp+0x28 Overwrite our return
address!

rsp+0x10

rsp+0x8

rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Activity 2: Reflection

m What address should we place in our return address?

m Use gdb to find this address!

— Which one?
0x00000000004006b5 <sc

$0x»15213, %6/

40070c: call 0x40064d YKwin>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Activity 2: Reflection

m What address should we place in our return address?

m Use gdb to find this address!

— Correct!

0x00000000004006b5 <so

mov $0x18213,%edi
40070c: call 0x40064d <win>

m Remember that we can’t just call win (), we need to ensure

that the first argument is set to 0x18213.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Activity 2

m We write this address onto our stack:

rsp+0x38
overwritten
rsp+0x28 e T L Remember the address must
be here to be executed when
overwritten invoking ret

buf

rsp+0x10 buf

rsp+0x8 after

rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mello

The End

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

