
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Recitation
Bomblab (Part 2)

Your TAs

Friday, September 12th

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminders

■ bomblab is due on Tuesday (Sept 16th).

■ attacklab will be released on the same day.

■ Bootcamp 2: Debugging & GDB was pre-recorded, and is

available on Ed (#158).

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Important

■ Please do NOT submit a submission.tar (or anything else)

directly to the autolab website. All submissions for

bomblab are done automatically.

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Agenda

■ bomblab demo

■ switch statements and jump tables

■ bomblab activity!

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

bomblab Demo

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

bomblab Demo/Activity

■ Today, we’ll be defusing phases in a recitation-specific bomb.

■ Format is very similar to real bomblab

○ But explosions won’t notify Autolab, or cost you points!

■ Goal is to learn techniques and concepts rather than go

through bomblab answers.

○ Don’t worry about writing everything down

○ Don’t worry if you don’t finish all of the phases

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

bomblab Demo

Getting Started

■ Download today’s activity handout from the Schedule page

■ Also download the bomb

■ Please use the Shark Machines to work on the bomb

■ From there, hang tight. We’ll be starting with a demo!

$ wget http://www.cs.cmu.edu/~213/activities/f25-rec3.tar
$ tar -xvpf f25-rec3.tar
$ cd f25-rec3
$ gdb bomb

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Demo: Phase A

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

switch Statements and Jump Tables

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: switch statements
int main() {

int x;
scanf("%d", &x);

switch (x) {
 case 15205:
 x += 1;
 break;
 case 15206:
 x += 5;
 /* Fall through */
 case 15207:

 x += 2;
 break;
 case 15208:
 x += 1;
 break;
 case 15209:
 x += 3;
 break;
 case 15213:
 x += 1;
 break;
 default:
 x = 0;
 break;

}

return x;
}

Branch on an integer
value

Fall through

Can have “holes”. No case
for 15210!

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Jump Tables

■ Compiler decides how to translate switch based on

heuristics, for example:

○ Number of cases

○ Sparsity of cases

■ Transform the input so we can use it to index into a table of

addresses.

■ Then just jump to the address at that index.

■ Idea: runtime of switch becomes independent of the

number of cases

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Jump Table Assembly: Case 1

 401147: 2d 65 3b 00 00 sub $0x3b65,%eax
 40114c: 83 f8 08 cmp $0x8,%eax
 40114f: 77 4c ja 40119d <main+0x77>
 401151: 89 c0 mov %eax,%eax
 401153: 48 8b 04 c5 10 20 40 mov 0x402010(,%rax,8),%rax
 40115a: 00
 40115b: ff e0 jmp *%rax

■ Jump to default case

■ Unsigned comparison is on

purpose!

Shift range (15205…15213) to use zero-based
indexing (0x3b65 = 15205)

■ Grab address from jump

table

■ Do an indirect jump to that

address

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Jump Table Assembly: Case 1
(gdb) x /9gx 0x402010

0x402010: 0x000000000040115d
 0x0000000000401168
0x402020: 0x0000000000401171
 0x000000000040117c
0x402030: 0x0000000000401187

 0x000000000040119d
0x402040: 0x000000000040119d

0x000000000040119d

0x402050: 0x0000000000401192

40115d: mov -0x4(%rbp),%eax
401160: add $0x1,%eax
401163: mov %eax,-0x4(%rbp)
401166: jmp 4011a5 <main+0x7f>

“Normal” Branches

40119d: movl $0x0,-0x4(%rbp)
4011a4: nop
4011a5: mov -0x4(%rbp),%eax
4011a8: leave
4011a9: ret

default

15205…15209

15210, 15211, 15212

15213

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Jump Table Assembly: Case 2
 401151: cmp $0x8,%eax
 401154: ja 4011b8 <main+0x92>
 401156: mov %eax,%eax
 401158: lea 0x0(,%rax,4),%rdx
 40115f: 00
 401160: lea 0xea1(%rip),%rax # 402008
 401167: mov (%rdx,%rax,1),%eax
 40116a: cltq
 40116c: lea 0xe95(%rip),%rdx # 402008
 401173: add %rdx,%rax
 401176: jmp *%rax

■ rdx = index * 4 (table stores 4 byte offsets)

■ rax = table base address

■ eax = offset stored at table[index]

■ rdx = table base address

■ Final address = (table base address) + (offset at table[index])

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Jump Table Assembly: Case 2

 Final Address = Base Table Address + table[index]

(gdb) x /9wx 0x402008
0x402008: 0xfffff170 0xfffff17b 0xfffff184 0xfffff18f
0x402018: 0xfffff19a 0xfffff1b0 0xfffff1b0 0xfffff1b0
0x402028: 0xfffff1a5
(gdb) print /x 0x402008 + 0xfffff170
$1 = 0x401178

...
401178: 8b 45 fc mov -0x4(%rbp),%eax
40117b: 83 c0 01 add $0x1,%eax
40117e: 89 45 fc mov %eax,-0x4(%rbp)
...

Yep, that’s one of our instructions!

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity: Phases B+C

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase B: Your Turn

■ Now it’s your turn!

■ Take a few minutes to try to

1. Write pseudocode for the phase

2. Find an input string to defuse this phase

■ Don’t guess!

○ Be methodical: use the techniques we’ve learned

○ Reason about the code before jumping into gdb

○ This will be useful for the later phases of bomblab!

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase C

■ Based on what you’ve learned, try to defuse Phase C!

■ Once again, focus first on getting a psuedocode sketch of the

phase!

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase C Tips

■ What should the input for this function look like?

○ Hint: Recall how sscanf works and what info we can tell

from it

■ Given the second call to compare, what can our inputs be?

■ Given the above, what does our jump table look like?

○ Hint: You are given the address of the jump table and the

size of an element in the table

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Phase C Tips

■ Based on your input, how is %eax modified?

○ What is this value multiplied by?

■ Given all this, how do we access into sharkNames and what

is the size of each field?

■ What string do we want to find from sharkNames and which

input will allow us to do this?

○ Hint: Refer back to the jump table. Which field is the one

we want? How do we get %eax to equal this?

