Carnegie Mellon

15-213 Recitation
Bomblab (Part 2)

Your TAs
Friday, September 12th

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Reminders

m bomblab is due on Tuesday (Sept 16th).

m attacklab will be released on the same day.

m Bootcamp 2: Debugging & GDB was pre-recorded, and is
available on Ed (#158).

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Important

m Please do NOT submit a submission.tar (or anything else)
directly to the autolab website. All submissions for

bomblab are done automatically.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Agenda

m bomblab demo
m switch statements and jump tables

m bomblab activity!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

bomblab Demo

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

bomblab Demo/Activity

m Today, we'll be defusing phases in a recitation-specific bomb.
m Format is very similar to real bomblab

o But explosions won’t notify Autolab, or cost you points!
m Goalis to learn techniques and concepts rather than go

through bomblab answers.

o Don’t worry about writing everything down

o Don’t worry if you don’t finish all of the phases

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

bomblab Demo

Getting Started
m Download today’s activity handout from the Schedule page
m Also download the bomb

m Please use the Shark Machines to work on the bomb

From there, hang tight. We’ll be starting with a demo!

wget http://www.cs.cmu.edu/~213/activities/f25-rec3. tar
tar -xvpf f25-rec3.tar

cd £25-rec3
gdb bomb

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Demo: Phase A

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

switch Statements and Jump Tables

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Recall: switch statements

int main() {
int x;
scanf ("%d", &x);

switch (x) <4— Branch on an integer

case 15205:
x 4= 1; value
break;

case 15206:
x += 5;
/* Fall through */ <= Fall through

case 15207:
X += 2;
break;

case 15208:
X += 1;
break;

case 152009:
X += 3;

break; _ Can have “holes”. No case
case 15213:

x 4= 1; for 15210!
break;
default:
x=0;
break;

}

return x;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Recall: Jump Tables

m Compiler decides how to translate switch based on
heuristics, for example:
© Number of cases
o Sparsity of cases

m Transform the input so we can use it to index into a table of
addresses.

m Then just jump to the address at that index.

m /dea: runtime of switch becomes independent of the

number of cases

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Jump Table Assembly: Case 1

Shift range (15205..15213) to use zero-based
indexing (0x3b65 =15205)

|

401147: 2d 65 3b 00 00 sub $0x3b65, %eax
40114c: 83 £8 08 cmp $0x8,%eax

40114f: 77 4c ja 40119d <main+0x77>
401151: 89 cO0 mov %eax,%eax

401153: 48 8b 04 c5 10 40 [mov 0x402010(,%rax,8),%rax
40115a: 00

40115b: ff e0 jmp *%rax

m Jump to default case m Grab address from jump

m Unsigned comparison is on table

ourpose! m Do anindirect jump to that

address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Jump Table Assembly: Case 1

(gdb) x /9gx 0x402010

40115d: mov -0x4 (%rbp) , $eax
401160: add $0x1, %eax
15205...15209 401163: mov %eax,-0x4 ($rbp)

401166: jmp 4011a5 <main+0x7£f>

T
0x402010: 0x000000000040115d

0x0000000000401168 “Norma
0x402020: 0x0000000000401171

0x000000000040117¢c
0x402030: 0x0000000000401187

|II

Branches

15210, 15211, 15212

0x000000000040119d 40119d: movl $0x0,-0x4 (%rbp)

0x402040: 0x000000000040119d 401la4: nop
0x000000000040119d 4011a5: mov -0x4 (%rbp) , $eax

4011a8: leave
4011a9: ret

default

0x402050: 0x0000000000401192

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Jump Table Assembly: Case 2

401151: cmp $0x8,%eax

401154: ja 4011b8 <main+0x92>

401156: mov %eax, %eax

401158: lea 0x0(,%rax,4),%rdx

40115¢f: 00

401160: lea Oxeal (%rip),%rax # 402008
401167: mov (%$rdx,%rax,l), %$eax

40116a: cltg

40116c: lea 0xe95(%rip),%rdx # 402008
401173: add %rdx,%rax

401176: jmp *3rax

m rdx = index * 4 (table stores 4 byte offsets)
m rax =table base address

m eax = offset stored at table [index]

m rdx =table base address

m Final address = (table base address) + (offset at table [index])

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Jump Table Assembly: Case 2

Final Address &l Base Table Address gl table [index]

(gdb) x /9wx 0x402008
0x402008: Oxfff££170 Oxff£f£f£f17b Oxff£f££184 Oxff£f£f£f18f
0x402018: Oxfffffl9a Oxff£££f1b0 Oxff£f££f1b0 Oxff£f££f1b0

0x402028: Oxf££f££1a5
(gdb) print /x 0x402008 + OxEEE£££170
$1 = 0x401178

401178: 8b 45 fc mov -0x4 (%rbp) , %eax
40117b: 83 cO0 01 add $0x1,%eax
40117e: 9 45 fc mov %eax,-0x4 (%rbp)

Yep, that’s one of our instructions!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Activity: Phases B+C

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Phase B: Your Turn

m Now it’s your turn!
m Take a few minutes to try to
1. Write pseudocode for the phase
2. Find an input string to defuse this phase
m Don’t guess!
o Be methodical: use the techniques we’ve learned
O Reason about the code before jumping into gdb

o This will be useful for the later phases of bomblab!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Phase C

m Based on what you’'ve learned, try to defuse Phase C!
m Once again, focus first on getting a psuedocode sketch of the

phase!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Phase C Tips

m What should the input for this function look like?
o Hint: Recall how sscanf works and what info we can tell
from it
m Given the second call to compare, what can our inputs be?
m Given the above, what does our jump table look like?
o Hint: You are given the address of the jump table and the

size of an element in the table

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Phase C Tips

m Based on your input, how is %eax modified?
o What is this value multiplied by?

m Given all this, how do we access into sharkNames and what
is the size of each field?

m What string do we want to find from sharkNames and which
input will allow us to do this?
o Hint: Refer back to the jump table. Which field is the one

we want? How do we get %eax to equal this?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

