
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Recitation
Bomblab

Your TAs

Friday, September 5th

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminders

■ datalab is due on Tuesday (Sep 9).

■ bomblab is out! Due September 16.

■ Bootcamp 2: Debugging & GDB is pre-recorded. Watch Ed for

the link.

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Agenda

■ Assembly Refresher

■ Preview: Calling Conventions

■ Intro to bomblab

■ bomblab defuse kit

■ gdb activity

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Refresher

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Assembly

■ We will use AT&T syntax in this class:

movq Src, Dest
addq Src, Dest

AT&T

movq Dest, Src
addq Dest, Src

Intel

■ If you get stuck, refer to our assembly cheat sheet!

https://www.cs.cmu.edu/afs/cs/academic/class/15213-s20/www/recitations/x86-cheat-sheet.pdf

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Assembly: Operands

Constants (“Immediate” Values)

■ Start with $
$-15213
Decimal

$0x3b6d
Hex

Registers

■ Can store values or addresses

■ Start with %
%rax

“Return” Register
%eax

Low 32 bits of %rax

Memory Locations

■ Parentheses around a register, or an addressing mode

(%rbx)
Normal

0x1c(%rax)
Displacement

0x4(%rcx, %rdi, 0x1)
Indexed

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Assembly: Addressing Modes
Displacement

■ D(R) Mem[Reg[R] + D]

movq 8(%rdi), %rdx

Indexed

■ D(Rb, Ri, S) Mem[Reg[Rb] + S*Reg[Ri] + D]

D: Constant
Displacement

R: Register holding
starting address

movq 0x100(%rcx,%rax,4), %rdx

Rb: Base Register
holding starting address

Ri: Index Register

D: Constant
Displacement

S: Scale
(1, 2, 4, 8)

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Assembly: Examples

Instruction Effect

mov %rbx, %rdx

add (%rdx), %r8

mul $3, %r8

sub $1, %r8

lea (%rdx, %rbx, 2), %rdx

r8 += value at
address in rdx

rdx = rbx

r8--

rdx = rdx + rbx * 2

r8 *= 3

No dereferencing!

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Assembly: Comparisons

Example

cmpl %r9, %r10
jg 8675309

■ “If the value of one register is greater than the value in the

other, then jump to 8675309”

■ But which way around is it?

■ Let’s use the cheat sheet!

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

cmpl %r9, %r10
jg 8675309

■ So we jump if: %r10 > %r9

■ “If the value of %r10 is greater than the value in %r9, then

jump to 8675309”

■ Src1 is %r10, Src2 is %r9
■ Set CCs based on Src1 <op>

Src2, where <op> := >

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Assembly: Jumps
Instruction Condition Description

jmp 1 Unconditional Jump

je/jz ZF Equal/Zero

jne/jnz ~ZF Not Equal/Not Zero

js SF Negative

jns ~SF Non-negative

jg ~(SF^OF)&~ZF Greater (Signed)

jge ~(SF^OF) Greater or Equal (Signed)

jl (SF^OF) Less (Signed)

jle (SF^OF)|ZF Less or Equal (Signed)

ja ~CF & ~ZF Above (unsigned)

jb CF Below (unsigned)

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Assembly: Jumps

cmp $0x15213, %r12
jge deadbeef

cmp %rax, %rdi
jae 15213b

test %r8, %r8
jnz *%rsi

If %r12 >= 0x15213, then
jump to 0xdeadbeef.

If the unsigned value in %rdi is
greater than or equal to the
unsigned value in %rax, jump
to 0x15213b.

If %r8 is not zero, jump to the
address stored in %rsi.

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Preview: Calling Conventions

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Calling Conventions: Passing Control

■ How can we pass control from the assembly for the current

function to the assembly for the function we want to call?

■ How can we pass control back to the caller once we’re done?

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Procedure Call: call label
■ Push return address onto the stack (so that we can pass

control back to the caller!)

■ Jump to label

0000000000400540 <multstore>:
400540: push %rbx # Save %rbx
400541: mov %rdx,%rbx # Save dest
400544: call 400550 <mult2> # mult2(x,y)
400549: mov %rax,(%rbx) # Save at dest
40054c: pop %rbx # Restore %rbx
40054d: ret # Return

0000000000400550 <mult2>:
400550: mov %rdi,%rax # a
400553: imul %rsi,%rax # a * b
400557: ret # Return

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Procedure Return: ret
■ Pop address from stack

■ This is the address of the next instruction of the caller

■ Jump to that address

0000000000400540 <multstore>:
400540: push %rbx # Save %rbx
400541: mov %rdx,%rbx # Save dest
400544: call 400550 <mult2> # mult2(x,y)
400549: mov %rax,(%rbx) # Save at dest
40054c: pop %rbx # Restore %rbx
40054d: ret # Return

0000000000400550 <mult2>:
400550: mov %rdi,%rax # a
400553: imul %rsi,%rax # a * b
400557: ret # Return

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Calling Conventions: Passing Data

■ How can we pass arguments to a procedure?

First 6 arguments passed in
registers.

Remaining arguments put at
the end of the caller’s stack

frame.

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Calling Conventions: Passing Data

■ How can we access the return value?

Return value placed in %rax
by convention.

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Calling Conventions: Caller/Callee-Saved

■ If foo() calls bar():

■ foo() is the caller

■ bar() is the callee

■ Both foo() and bar() want to use registers.

■ How can bar() use a register without overwriting

something foo() was using?

■ Need a consistent convention for saving/overwriting

registers so we don’t lose data.

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Calling Conventions: Caller/Callee-Saved

■ Caller-Saved (“Call Clobbered”)

■ Procedures can overwrite these registers freely

■ So these registers can be “clobbered” (overwritten) by a

call

■ So the caller has to save them!

■ Callee-Saved (“Call Preserved”)

■ The callee will save these values on the stack before

using them.

■ Before the callee returns, it restores these registers from

the stack.

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Calling Conventions: Caller/Callee-Saved

■ Which registers are caller/callee-saved?

Caller-saved Callee-saved

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bomblab

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bomblab: Premise

■ Dr. Evil has planted binary bombs on our shark machines!

■ Your task: defuse your bomb by passing the correct strings

on stdin.

■ You get:

■ A C source file for the main program

■ An executable (no C source code for the phases!)

■ Have to reverse engineer the bomb using only gdb and the

assembly code!

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bomblab: Getting Started
■ Download your bomb from Autolab

■ You must use the Shark Machines to extract (untar) and

work on your Bomb.

■ Run autolab setup

■ 6 Progressively Harder Phases

■ Enter the correct string to move on to the next phase

■ Read the write up! It has an entire page dedicated to hints!

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bomblab: Detonating Your Bomb

■ Solving a phase automatically notifies Autolab and applies

points to your score.

■ If you let the bomb explode, Autolab will deduct 0.5 points

each time.

■ Do not:

■ Use gdb to jump between phases

■ Solve the phases out of order

■ Tamper with the bomb

■ Otherwise the bomb will explode!

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bomblab: Defuse Kit

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defuse Kit: gdb
■ gdb = GNU Debugger

■ Fully-featured debugger:

■ For bomblab, lets you trace the execution of assembly

■ Useful for future labs, and well beyond 213.

■ Expand your debugging toolkit beyond printf!

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defuse Kit: gdb
Examining Program State
print (p)

print $rdi

Print contents of %rdi

(gdb) print /d 0x3b6d
$2 = 15213

Print with format

info
info registers

Print all register contents

x (For eXamine)

■ x /[num][size][format]

■ x /s 0x… Examine contents of address as a string

■ x /64bx 0x… View 64 bytes starting at the given

address in Hex Format

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GDB Demo

If you want to follow along… (you’ll also need this for the activity)

■ Download today’s activity handout from the Schedule page.

$ wget http://www.cs.cmu.edu/~213/activities/f25-rec2.tar
$ tar xvpf f25-rec2.tar
$ cd f25-rec2
$ make

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defuse Kit: Getting the Assembly

■ Use objdump to get assembly code from your executable:

■ Then open and annotate in your favorite text editor!

objdump -d act1 > act1.asm For syntax highlighting!

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defuse Kit: Getting the Assembly (pt2).

■ In gdb, type disassemble <function_name>

■ This will allow you to view the assembly for that function

only (rather than for the entire executable, as in objdump)

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defuse Kit: Identifying inputs to main()
■ We see int main(int argc, char** argv)

■ main is also a function - we follow calling conventions

■ argc => %rdi, argv => %rsi

■ Note that argv is a pointer type (array of arguments),

meaning we must dereference to access the arguments!

■ Look out for addressing mode around %rsi

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defuse Kit: Figuring out Input Format

■ Phases use sscanf to parse input strings:

char *input_string = "123, 456";
int a, b;
sscanf(input_string, "%d, %d", &a, &b);

...
0x0000000000401ab4 <+15>: mov -0x8(%rsi,%rdi,8),%rdi
...
0x0000000000401ac3 <+30>: lea 0xb453a(%rip), %rsi # 0x4b6004
0x0000000000401aca <+37>: mov $0x0,%eax
0x0000000000401acf <+42>: call 0x40ba10 <__isoc99_sscanf>
...

We know that the format string is the
second argument (%rsi)

0x4b6004 is the address of that
string!

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defuse Kit: Figuring out Input Format

■ If we can examine that memory address, we can recover the

format string!

■ Enter gdb:

(gdb) break main
Breakpoint 1 at 0x401aa5
(gdb) x /s 0x4b6004
0x4b6004: "%d, %d"

Examine memory
address as a string.

We need two integers!

...
0x0000000000401ac3 <+30>: lea 0xb453a(%rip), %rsi # 0x4b6004
0x0000000000401aca <+37>: mov $0x0,%eax
0x0000000000401acf <+42>: call 0x40ba10 <__isoc99_sscanf>
...

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Warning: TUI Mode

TUI Mode

■ Is very cool (can view assembly alongside gdb prompt).

■ But can unexpectedly explode your bomb.

■ You will not get these points back.

■ Can use vim/VSCode splitting instead.

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GDB Activity

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GDB Activity

■ View the assembly and source code for act2

■ Our objective is to match the source code to the assembly,

identifying which sections correspond to each other!

■ Get into groups of 3-4 and discuss together on how to

interpret the assembly!

■ If you understand the correlation fully along with the control

flow in the assembly, feel free to try and solve the puzzle.

