15-213 Recitation: How to Succeed in x13 + Datalab

Your TAs Friday, August 29th

Agenda

- Introduction
- Course Details
- Office hours
- x13 Advice from TAs
- Datalab

Introduction

- Welcome to 15-213/15-513/14-513!
- Recitations are for...
 - Reviewing lectures
 - Discussing homework problems
 - Interactively exploring concepts
 - Previewing future lecture material
- Please, PLEASE ask questions!

Course Details

- How do I get help?
 - Course website: http://cs.cmu.edu/~213
 - Office hours
 - \circ Ed
 - Definitely consult the course textbook
 - Carefully read the assignment writeups!
- All labs are submitted on Autolab
- All labs should be worked on using our shark machines

Office hours

- Office Hours start Tuesday, September 2!
- Queue link: https://213ohq.com/ohq/
- Please locate the TA in the specified location!
- Semester's OH schedule (subject to change)
 - Will be added in a pinned post in Ed.

OH Etiquette

- Office hours are for getting ideas on how to debug or better approach your homework!
- Please try to narrow down your problem area as much as possible to help TAs help you!

Write a description!

 If you don't have a description, you may be frozen/removed from the queue. Make sure to use the tags!

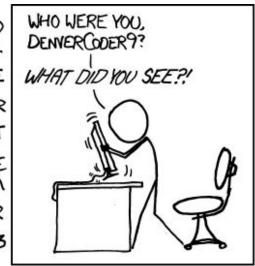
OH Etiquette

- TAs will only spend 10 minutes per student and then you can rejoin the queue
- We will close the queue early so everyone can be helped, so please keep this in mind and come early!

Advice from your TAs:)

What is success in x13?

- Some of you (probably most) see success as getting an A
- ... BUT you can still succeed without getting an A in fact, true success in x13 is learning the material!
- This can be difficult because we cover a wide range of different topics, many of which will probably be new to you (and that's okay!!)


How do I learn the material?

- Engage with the topics in lecture
- Read the textbook
- Learn the material before having to apply it
- Ask questions!

What if I'm still confused?

- It's okay to be confused! These topics can be difficult and take time to truly understand.
- (Some) online resources are okay to use, but a general google search probably won't give you helpful results...

NEVER HAVE I FELT SO
CLOSE TO ANOTHER SOUL
AND YET SO HELPLESSLY ALONE
AS WHEN I GOOGLE AN ERROR
AND THERE'S ONE RESULT
A THREAD BY SOMEONE
WITH THE SAME PROBLEM
AND NO ANSWER
LAST POSTED TO IN 2003

Source: https://xkcd.com/979/

I need help with a concept

- Read the textbook
- Come to OH and ask your TAs :)
- Come to Prof. OH (they don't bite, we promise)
- Ask on Ed
- Ask your recitation TAs to cover the topic again
 - *cough cough wink wink*

I need help with a problem/bug

- Step away and come back after a small break
- Try to solve on your own first! (debugging for an hour is not that long)
 - Generally, give yourself a day to mull over the problem (your brain will continue to think about it while you do other tasks!)

I need help with a problem/bug

- If it is a general bug, try some reputable sites to find similar problems (see next slide)
- Come to OH!
- Post on Ed!
- Rubber duck method

Good online resources

- https://itsfoss.com/linux-man-page-guide/
- https://man7.org/linux/man-pages/
- https://en.cppreference.com/w/c
 - Make sure to use the C (not C++) version!
- https://www.cs.virginia.edu/~evans/cs216/guides/x86.html
- https://beej.us/guide/
- http://www.stackgrowsdown.com/

Other helpful advice!

- Learn GDB early before you have to rely on it to debug
- Read the writeups (yes, there can be, and will be, relevant material on all 20 pages of a writeup)
- Don't start labs late
- Save some grace days for malloclab!
 - (~40 hours is average)

Other helpful advice!

- You don't have to pass every test case of every assignment
- Be comfortable with the command line (it's not that scary!)
- Be comfortable with different editors
 - I'm looking at you VScode ••
 - But Vim is also cool :)
- If you need help, ask! We are here to help you!

Introduction to Datalab

Datalab: Getting Started

- Download the handout from autolab
- Method 1:
 - o scp <path to datalab.tar>
 <andrewid>@shark.ics.cs.cmu.edu:<my course
 directory>
 - o ssh <andrewid>@shark.ics.cs.cmu.edu
 - o cd to the datalab.tar file
 - tar -xf datalab.tar

Datalab: Getting Started

- Download the handout from autolab
- Method 2:
 - o autolab download 15213-f25:datalab
 - o cd into the datalab folder
 - tar -xf datalab-handout.tar

Datalab: Getting Started

- Upload bits.c file to Autolab for submission
 - o make submit

Datalab: Running your code

- dlc: a modified C compiler
- **btest**: runs your solutions on random values
- bddcheck: exhaustively tests your solutions
 - Checks all values, formally verifying the solution
- driver.pl: Runs both dlc and bddcheck
 - Exactly matches Autolab's grading script
 - You will likely only need to submit once
- For more information, read the writeup
 - Available under autolab as "View writeup"
 - Read the writeup please!

Datalab: Reminders

- Casting between int and long is ok, in either direction
- Be aware of operations and their types!
 - ! returns an int even if the argument is a long
- Good idea to append "L" suffix to every integer constant
 - (1L << 63) is not the same as (1 << 63)</p>
 - \circ (!x << 63) is not the same as ((long)!x) << 63

Datalab Activity

Form groups of 3 - 4

- We'll be working on a series of exercises
 - Operators and Puzzles
- There's a handout on the website download this!

- Objective: Count how many bits are set in a number.
- For each challenge, you can use any operator allowed in the integer problems in datalab.
- Let's start simple: for a 1-bit number, we just return the value itself!

```
int bitCount1bit(int x) {return x;}
```

What if there are two bits in the input? (4 ops max)

```
int bitCount2bit(int x) {
  int bit1 = ____ & ___;
  int bit2 = ___ & ___;
  return ___ + bit2;
}
```

■ What if there are four bits in the input? (8 ops max)

```
int bitCount4bit(int x) {
  int mask = _____;
  int halfSum = _____;
  int mask2 = _____;
  return _____ + ____;
}
```

- What was the partition strategy we employed in the previous example?
- How did we combine the results of each partition?

Let's apply these ideas to a 8-bit input now!

■ What if there are eight bits in the input? (12 ops max)

```
int bitCount8bit(int x) {
 int mask = ;
 int quarterSum =
 int mask2 =
 int halfSum =
 int mask3 =
 return
```

Reminders

- C-programming lab is due Sep 2 (Tuesday)
- datalab is due Sep 9
 - We recommend you start just a BIT early!
 - Read the lab writeup!