Full Name:

Andrew ID:

15-213/513

Practice Final Exam Solutions

Instructions:

e Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

e The problems are of varying difficulty. Focus on questions you can answer first and come back to
harder ones.

e The only resource you may refer to is your hand-written notes on two A4 / legal-sized papers. You
may not use any electronic devices during the exam.

e If you have any questions, raise your hand and a staff member will come help.

Do not write below this line

Page 1 of 21

Problem 1. (2 points):

1. Explain the differences between big endianness and little endianness.

Little endianness and big endianness refer to byte ordering conventions, within a multi-byte word, in
computer memory. In a system with little endianness, the least significant byte has the lowest address.
In a system with big endianness, the most significant byte has the lowest address.

2) What does the following code segment output. Why?

char ¢ = O0xff;

unsigned int s = c;

if (s > 0x100) printf ("High!\n");
else printf ("Low!\n");

This code segment outputs “High!” because c is implicitly sign-extended before being casted to an unsigned
integer. In other words, c is casted to an int, then to an unsigned int.

Page 2 of 21

Problem 2. (1 points):

Explain what the function interesting_fn performs:

(gdb) disassemble interesting_fn

Dump of assembler code for function interesting fn:
0x0000000000401122 <+0>: mov $0x1,%eax
0x0000000000401127 <+5>: mov $0x0, %edx
0x000000000040112¢c <+10>: cmp %hedi,Yeax
0x000000000040112e <+12>: jg 0x401137 <interesting_fn+21>
0x0000000000401130 <+14>: add %eax,hedx
0x0000000000401132 <+16>: add $0x2, %eax
0x0000000000401135 <+19>: jmp 0x40112c <interesting_fn+10>
0x0000000000401137 <+21>: mov hedx , feax
0x0000000000401139 <+23>: retq

End of assembler dump.

The function interesting_fn can be translated to the following C code:

int interesting fn(int n) {
int i = 1;
int accumulator = O;
while(i <= n) {
accumulator += i;
i=1i+ 2;
}

return accumulator;

}

This function returns the sum 1 + 3 + 5 + ... + n including n. In other words, it returns the sum of the
odd numbers up to n.

Page 3 of 21

Problem 3. (1 points):

Given the following assembly code for a factorial function:

(gdb) disas factorial

Dump of assembler code for function factorial:
0x0000000000401122 <+0>: cmp $0x1,%edi
0x0000000000401125 <+3>: jle 0x401137 <factorial+21>
0x0000000000401127 <+5>: push %rbx
0x0000000000401128 <+6>: mov %edi, %ebx
0x000000000040112a <+8>: lea -0x1 (%rdi) ,%edi
0x000000000040112d <+11>: callqg 0x401122 <factorial>
0x0000000000401132 <+16>: imul %ebx,%eax
0x0000000000401135 <+19>: pop hrbx
0x0000000000401136 <+20>: retq
0x0000000000401137 <+21>: mov $0x1, Yeax
0x000000000040113c <+26>: retq

End of assembler dump.

You run factorial(5). When you start running factorial(5), the value of %rsp is at Ox7{Iffffdf68.
1. Draw the stack diagram when factorial(4) is called, factorial(3), and factorial(2).

2. Draw the stack diagram when factorial(2) returns.

Page 4 of 21

When factorial(4) is called:

return address of
factorial (5)

OxTfE£E£££Af68B

old $rbx

0x401132 (return address
of factorial (4))

Srsp

When factorial(3) is called:

OxTfEffff£df68

return address of
factorial (5)

old 3 rbx

0x401132 (return address
of factorial (4))

Ox5

0x401132 (return address
of factorial (3))

%rsp

When factorial(2) is called:

return address of
factorial (5)

OxXVEEfEEEf£AERR

old % rbx

0x401132 (return address
of factorial (4))

0x5

0x401132 (return address
of factorial (3))

0x4

0x401132 (return address
of factorial (2))

srsp

When factorial(2) returns:

return address of
factorial (5)

OxTEEffE£Ef£df68

old $rbx

0x401132 (return address
of factorial (4))

0x5

0x401132 (return address
of factorial (3))

0x4

%rsp

0x401132 (return address
of factorial (2))

0x3

0x401132 (return address
of factorial (1))

Page 5 of 21

Problem 4. (1 points):

Given the following struct

typedef struct yeet {
int a;
double b;
char *str;
char d;
short e;
} yeet;

Is there a way to reduce the size of struct? If so, give the new size of the struct and how to build it. If
not, then why?

NOTE: Please also understand the offsets from the starting address for each value within the struct.

Yes, you can reduce the size of this struct by 8 bytes, by reordering the fields such that d and e end up
in the same 8 byte section as field a. An example is:

typedef struct yeet {
int a;
char d;
short e;
double b;
char *str;

Page 6 of 21

Problem 5. (1 points):

Here is an array with 6 elements:
short arr[] = {0x1234, 0x8326, 0x9742, 0x4200, 0x1521, 0x3531};
Given the array’s starting address is Ox7{ffffdf86, what do these statements print? Justify your answers.

printf("2: %1lx\n", *((long*)&arr[2]));

printf("3: %x\n", (unsigned char)x*((char*)&arr[3]));
printf("4: %x\n", (unsigned char) *(((charx*)arr)+ 3));
printf("5: %x\n", ((int*)arr)[1]);

2: 3531152142009742
3: 0

4: 83

5: 42009742

Page 7 of 21

Problem 6. (1 points):

As a security engineer for a software company, it is your job to perform attacks against your company’s
software and try to break it. One of your developers, Harry Q. Bovik, has written a password validator
that he thinks is unbreakable! Below is the front-end to his system.

int main() {
char buffer[20];
printf ("Enter your password here: ");
scanf ("%s", buffer);
if (validate(buffer)) {
getOnTheBoat () ;
exit (0);
}
printf ("Sorry, you do not have access.");
return O;

Note that scanf reads data from standard input and places it in the buffer passed into the second argument.
Briefly explain how you could attack this program with a buffer overflow.

You can overwrite the return address on the stack to be the address of getOnTheBoat.

Page 8 of 21

Problem 7. (3 points):

A fellow 213 student works on cutting edge research finding prime numbers. He wants to speed up his code
by making it multi-threaded. He is running into some issues while implementing a thread safe version of
the next_prime function and asks for your help.

struct big_number *next_prime(struct big_number current_prime) {
static struct big_number next;
next = current_prime;
addOne (next) ;
while (isNotPrime(next)) {
addOne (next) ;
}

return &next;

struct big_number *ts_next_prime(struct big_number current_prime) {
return next_prime(current_prime);

}

1. Why is the function ts_next_prime thread-unsafe?

next_prime computes a result in a *static* structure and returns a pointer to that structure

2. Assume the mutex guarding the call to next_prime is initialized correctly in the following code.

struct big_number *ts_next_prime(struct big_number current_prime) {
struct big_number *value_ptr;
sem_wait (&mutex) ;
value_ptr = next_prime(current_prime);
sem_post (&mutex) ;
return value_ptr;

The following modification to the function is still not thread safe. Explain why and describe an example
execution with two threads showing the problem.

Thread 1 might unlock the mutex and before it returns thread 2 might call next_prime. The key is that
ts_next_prime still computes a result in a static structure and returns a pointer to that structure.

Page 9 of 21

3. Use the code below for the next three questions.

struct big_number *ts_next_prime(struct big_number current_prime) {
struct big_number *value_ptr;
struct big_number *ret_ptr = ____A____;
sem_wait (&mutex) ;
value_ptr = next_prime(current_prime);

sem_post (&mutex) ;
return ret_ptr;

What is the correct fix for A?

malloc(sizeof(struct big_ number))

Which of the following is the correct fix for B?

*ret_ptr = *value_ptr

Please explain why these fixes are correct.

This works because the returned pointer now points to malloced space that is not shared between threads.

Page 10 of 21

Problem 8. (2 points):

Consider the following code sample. You may assume that no call to ‘fork‘, ‘exec’, ‘wait‘, or ‘printf* will
ever fail, and that ‘stdout’ is immediately flushed following every call to ‘printf‘.

int global_x = 0;

int main(int argc, char *argv[]) {
global_x = 17;
/* Assume fork never fails */
if ('fork()) {

global_x++;

printf("Child: %d\n", global_x);
}
else {

wait (NULL) ;

global _x--;

printf ("Parent: %d\n", global_x);
}
return O;

1. What is printed by this program?
e child: 18; parent: 16
e parent: 16; child: 18
e child: 16; parent: 18
e child: 17; parent: 17

e child: 16; parent: 16

2. Assume we removed the call to ‘wait‘. What is printed by this program?

e child: 18; parent: 16

parent: 16; child: 18

child: 16; parent: 18

child: 17; parent: 17

child: 16; parent: 16

Page 11 of 21

Problem 9. (3 points):

This problem tests your understanding of exceptional control flow. Consider the following program. You
may assume that ‘printf* is unbuffered and executes atomically. The program /bin/echo‘ prints its com-
mand line argument to‘stdout.

1 sigset_t si;

2 static int count = O;

3

4 char *argv[] = {"/bin/echo", "Hello", NULL};
5

6 pid_t pid;

7

8 void handler () {

9 printf ("Bye\n");

10 }

11

12 int main () {

13 int i = 0;

14

15 signal (SIGCHLD, handler);

16

17 sigemptyset (&sl);

18 sigaddset (&s1, SIGCHLD);

19

20 sigprocmask (SIG_BLOCK, &s1, NULL);
21

22 for (i = 0; 1 < 3; i++) {

23 if (fork() == 0) {

24 count++;

25 execve ("/bin/echo", argv, NULL);
26 }

27 wait (NULL) ;

28 }

29

30 sigprocmask (SIG_UNBLOCK, &s1, NULL);
31

32 }

1. What are the possible outputs of the program?
Hello, Hello, Hello, Bye

Page 12 of 21

2. When the program reaches line 31, what are the possible values that count may have?

0

3. Consider the same code, without blocking SIGCHLD, i.e. with lines 20, and 30 removed. Would the
output be similar? If you answered no, list one possible output.

Not similar. Hello, Bye, Hello, Bye, Hello, Bye

Page 13 of 21

Problem 10. (1 points):

The following problem refer to a file called ‘numbers.txt‘, with contents the ASCII string 0123456789. You
may assume calls to ‘read() are atomic with respect to each other. The following file, ‘read_and_print_one.h’,
is used in the ‘main‘ function below.

#ifndef READ_AND_PRINT_ONE

#define READ_AND_PRINT_ONE

#include <stdio.h>

#include <unistd.h>

static inline void read_and_print_one(int fd) {
char c;
read(fd, &c, 1);
printf ("%c", c); fflush(stdout);

}

#ENDIF

Now consider the following code:

#include "read_and_print_one.h"
#include <stdlib.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/wait.h>
int main() {
int filel;
int file2;
int file3;
int pid;
filel = open("numbers.txt", O_RDONLY);
file3 = open("numbers.txt", O_RDONLY);
file2 = dup2(file3d, file2);
read_and_print_one(filel);
read_and_print_one(file2);
pid = fork();
if (1pid) {
read_and_print_one(file3);
close(file3);
file3 = open("numbers.txt", O_RDONLY);
read_and_print_one(file3);
} else {
wait (NULL) ;
read_and_print_one(file3);
read_and_print_one(file2);
read_and_print_one(filel);

}
read_and_print_one(file3);
return O;

Page 14 of 21

List all the possible outputs of the code above.

001012314

Page 15 of 21

Problem 11. (3 points):
Assume a System that has
e A two way set associative TLB
e A TLB with 8 total entries

28 byte page size

216 bytes of virtual memory

[TLB |
Index || Tag Frame Number Valid
0 Ox13 0x30 1

0x34 0x58 0
I Ox1F 0x80 0

0x2A 0x72 |
2 0x1F 0x95 1
= Ox20 OxAA ()
3 Ox3F Ox20 |
) 0x3E OxFF 0

1. Given the virtual address ‘Ox7E85¢, use the table above to get the physical address. If there is not
enough information to get the address, enter ”Not enough information”.

0x9585

2. Given the physical address ‘0x3020¢, use the table above to get the virtual address. If there is not
enough information to get the address, enter ”Not enough information”.

0x4C20

3. Given the virtual address ‘0xD301‘, use the table above to get the physical address. If there is not
enough information to get the address, enter ”Not enough information”.

Not enough information

Page 16 of 21

Problem 12. (2 points):

In this question, we will consider the utilization score of various malloc implementations on the following
code:

#define N 64
void *pointers[N];
int i;

for (1 = 0; i < N; i++) {
pointers[i] = malloc(8);

for (i = 0; i < N; i++) {
free(pointers[i]);

for (i = 0; i < N; i++) {
pointers[i] = malloc(24);

1. Consider a malloc implementation that uses an implicit list with headers of size 8 bytes and no footers.
In order to keep payloads aligned to 8 bytes, every block is always constrained to have size a multiple of
8. The header of each block stores the size of the block, and since the 3 lowest order bits are guaranteed
to be 0, the lowest order bit is used to store whether the block is allocated or free. A first-fit allocation
policy is used. If no unallocated block of a large enough size to service the request is found, ‘sbrk‘ is called
for the smallest multiple of 8 that can service the request. No coalescing or block splitting is done.

NOTE: You do NOT need to simplify any mathematical expressions. Your final answer may include
multiplications, additions, and divisions.
a) After the given code sample is run, how many total bytes have been requested from ‘sbrk‘?

16%64 + 32%64

b) How many of those bytes are used for currently allocated blocks, including internal fragmentation and
header information?

32%64

¢) How many of those bytes are used to store free blocks, including header information?

16*64

d) Give the fraction of the total number of bytes requested by the user by the end of the trace (not including
calls to malloc that have subsequently been freed) over total number of bytes allocated by ‘sbrk‘. You do
not need to simplify the fraction.

1/2

Page 17 of 21

2. Consider another malloc implementation that never calls ‘sbrk‘ for a size less than 32 bytes. In every
other way the implementation is identical to the implementation in question A. Note that since no block
splitting is done, this means the size of each block, including the header, will always be at least 32 bytes.
Again, there is no need to simplify mathematical expressions.

a) After the given code sample is run, how many total bytes have been requested from ‘sbrk‘?

32*64

b) How many of those bytes are used for currently allocated blocks, including internal fragmentation and
header information?

32*64

¢) How many of those bytes are used to store free blocks, including header information?

0

d) Give the fraction of the total number of bytes requested by the user by the end of the trace (not including
calls to malloc that have subsequently been freed) over total number of bytes allocated by ‘sbrk‘. You do
not need to simplify the fraction.

3/4

Page 18 of 21

Problem 13. (1 points):

Consider a computer with an 8-bit address space and a direct-mapped 64-byte data cache with 8-byte
cache blocks.

How many bits will be needed to represent the block offset?
3

How many bits will be needed to represent the set index?

3

How many bits will be needed to represent the cache tag?

2

The table below shows a trace of load addresses accessed in the data cache. Assume the cache is initially
empty. For each row in the table, please write down the values for each row in the two rightmost columns,
indicating (i) the set number (in decimal notation) for that particular load, and (ii) whether that loads
hits (H) or misses (M) in the cache (write either “H” or “M” accordingly).

Load No. | Hex Address | Binary Address
1 43 0100 0011
2 b2 1011 0010
3 40 0100 0000
4 9 1111 1001
5 b2 1011 0010
6 93 1001 0011
7 do 1101 0000
8 b0 1011 0000
9 67 0110 0111
10 07 0000 0111

Load Hex Binary Set Number? | Hit or Miss?
No. | Address Address {(in Decimal) | (Circle onc)

1 43 | 0foo o1l
b2 | 1471010

H

[&*]

H (M

3 40 01@9)00 @ M
4 | o | udldoor (M)
5 b2 | 1arf do1o (1) M
f 9 | |:@n| H (ﬁ

7 do |1Q1_90¢m
8 b0 l:@mn

10 07 0000 011

(1) M
H_f4)
H_ (M)

N7

Gl |8 |V S| o

Page 19 of 21

Problem 14. (2 points):

In this problem you will estimate the miss rates for some C functions. Assumptions:

e 16-way set associative L1 cache (E = 16) with a block size of 32 bytes (B = 32).
e N is very large, so that a single row or column cannot fit in the cache.

e sizeof(int) ==

e Variables i, k, and sum are stored in registers.

e The cache is cold before each function is called.
1. Given the code below, choose the closest miss rate for suml.

int suml(int A[N][N], int BIN][N]) {
int i, k, sum = O;
for (i = 0; 1 < Nj; i++)
for (k = 0; k < N; k++)
sum += A[i] [k] + B[k][i];
return sum;

e 1/16
1/8
1/4
1/2
e 9/16
o1

2. Given the code below, choose the closest miss rate for sum2.

int sum2(int A[N]([N], int B[N][N]) {
int i, k, sum = O;
for (i = 0; i < N; i++)
for (k = 0; k < N; k++)
sum += A[i] [k] + B[i][k];
return sum;

o 1/16
o 1/8
o 1/4
o 1/2
9/16
o1

Page 20 of 21

Problem 15. (1 points):

Consider a multi-threaded proxy that handles requests concurrently and a single-threaded proxy that
handles requests serially.

Under which circumstances would the multi-threaded proxy perform better than the single-threaded proxy?

When multiple requests arrive at once and the proxy has to spend a lot of time blocking on the network.

Under which circumstances would the single-threaded proxy perform no worse than the multi-threaded
proxy?

When each request does not arrive until the proxy had time to finish processing the previous request.

Page 21 of 21

