Carnegie Mellon

A e

= . B Y | 5 .“ lli s

<20 AN g et

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Code Optimization

15-213/15-513/14-513: Introduction to Computer Systems
15t Lecture, October 23, 2025

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Code Optimization is Hard

m Code optimization is fun
= |f you like solving puzzles and mysteries
= Reading and understanding diverse code bases
= And you like using *all* of your computer science knowledge

m Performance / Efficiency is in every part of the system

= Compilers and computer architecture research is focused on these
objectives

= Data structures and algorithms make huge differences

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Today

Principles and goals of compiler optimization
Examples of optimizations

Obstacles to optimization
Machine-dependent optimization

Benchmark example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Back in the Good Old Days,

when the term "software" sounded funny

and Real Computers were made out of drums
and vacuum tubes,

Real Programmers wrote in machine code.

Not FORTRAN. Not RATFOR. Not, even,
assembly language.

Machine Code.
Raw, unadorned, inscrutable hexadecimal numbers. Directly.

— “The Story of Mel, a Real Programmer”
Ed Nather, 1983

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Rear Admiral Grace Hopper

" First person to find an
actual bug (a moth)

" |Invented first compilerin
1951 (precursor to COBOL)

= “l decided data processors
ought to be able to write
their programs in English,
and the computers would
translate them into
machine code”

QZ‘.’\:» *70 ?A,\\._(=

AT WMaTh) 'n Celay -

-

el LTt e :
Fiest actial case o bug bein { 18
0%/ Gadampdd stads). i 1 (e 2 o

1yue :J.u,i‘,iw : 6

Carnegie Mellon

John Backus

= Developed FORTRAN in
1957 for the IBM 704

= Oldest machine-
independent programming
language still in use today

= “Much of my work has
come from being lazy. |
didn't like writing
programs, and so, when |
was working on the IBM
701, | started work on a
programming system to
make it easier to write
programs”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Fran Allen

= Pioneer of many optimizing
compilation techniques

= Wrote a paper in 1966 that
introduced the concept of
the control flow graph,

which is still central to
compiler theory today

" First woman to win the
ACM Turing Award

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Goals of compiler optimization

m Minimize number of instructions
= Don’t do calculations more than once
= Don’t do unnecessary calculations at all
= Avoid slow instructions (multiplication, division)
m Avoid waiting for memory
= Keep everything in registers whenever possible
= Access memory in cache-friendly patterns
" Load data from memory early, and only once
m Avoid branching
= Don’t make unnecessary decisions at all

= Make it easier for the CPU to predict branch destinations
= “Unroll” loops to spread cost of branches over more instructions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Limits to compiler optimization

m Generally cannot improve algorithmic complexity
" Only constant factors, but those can be worth 10x or more...

m Must not cause any change in program behavior

" Programmer may not care about “edge case” behavior,
but compiler does not know that

= Exception: language may declare some changes acceptable

m Often only analyze one function at a time
" Whole-program analysis (“LTO”) expensive but gaining popularity
= Exception: inlining merges many functions into one

m Tricky to anticipate run-time inputs
" Profile-guided optimization can help with common case, but...
= “Worst case” performance can be just as important as “normal”

= Especially for code exposed to malicious input
(e.g. network servers)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Two kinds of optimizations

entry
m Local optimizations |
work inside a single setup
basic block |
= Constant folding, Easy?
strength reduction, dead IV
code elimination, (local) —

CSE, ... easy complex

m Global optimizations l
process the entire l
control flow graph of a L
function l

" |Loop transformations, Done? —
code motion, (global) ,
CSE, ... !

exit

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Examples of optimizations

H

H

m Obstacles to optimization

m Machine-dependent optimization
H

Benchmark example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Next several slides done live...

m https://godbolt.org/z/Es5s8qsvj

m Go to Godbolt (the compiler explorer) to play around with
C and the resulting assembly generated under different
compiler optimizations (change the flag from —03 to —Og,
etc. to see more or less aggressive optimization).

m If you missed class, a lot of the concepts we explored
during the live demo are explained in the next few slides,
so peek at them and then try playing with the compiler
explorer!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

https://godbolt.org/z/Es5s8qsvj
https://godbolt.org/z/Es5s8qsvj

Carnegie Mellon

Constant folding

m Do arithmetic in the compiler

long mask = OxFF << 8; -
long mask = OxFF0O0O;

m Any expression with constant inputs can be folded
m Might even be able to remove library calls...

size t namelen
size t namelen

strlen("Harry Bovik"); -
11;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Dead code elimination

m Don’t emit code that will never be executed

nmy 2 my
J

iF{(1)—{ puts("Only bozos on this bus"); +

m Don’t emit code whose result is overwritten

X—=235
X = 42;

m These may look silly, but...

= Can be produced by other optimizations
= Assignments to X might be far apart

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Common subexpression elimination

m Factor out repeated calculations, only do them once

norm[i] = v[i].x*v[i].x + v[i].y*v[i].y;
9

elt = &v[i];

X = elt->x;

y = elt->y;

norm[i] = x*x + y*y;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Code motion

m Move calculations out of a loop
m Only valid if every iteration would produce same result

long 7j;

for (j = 0; j < n; Jj++)
a[n*i+j] = b[J];

9

long 7j;

int nit = n*i;

for (j = 0; j < n; Jj++)
a[ni+j] = b[J];

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

[] []
Inlining

m Copy body of a function into its caller(s)
= Can create opportunities for many other optimizations
= Can make code much bigger and therefore slower (size; i-cache)

int pred(int x) { int func(int y) {
if (x == 0) int tmp;
return 0; £ = 8) tmp = 8¢ else tmp = 1.
else if (y == @) tmp = 0; else tmp =y - 1;
return x - 1; if (0 == 0) tmp += 0; else tmp += 0 - 1;
} if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
int func(int y) { return tmp;
return pred(y) ¥
+ pred(9)

+ pred(y+1);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

[] []
Inlining

m Copy body of a function into its caller(s)
= Can create opportunities for many other optimizations
= Can make code much bigger and therefore slower

int pred(int x) { int func(int y) {
if (x == 0) int tmp;
return ©; if (y == 0) tmp = 0; else tmp = 1;
else if (y == 0) tmp = 0; else tmp =y - 1;
return x - 1; if (6 == 0) tmp += @; else tmp += 0 - 1;
} if (y+1 == @) tmp += @; else tmp += (y + 1) - 1;
int func(int y) { return tmp;
return pred(y) ¥
+ pred(9)
+ pred(y+1); Always true Does nothing Can constant fold

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

[] []
Inlining

m Copy body of a function into its caller(s)

= Can create opportunities for many other optimizations
= Can make code much bigger and therefore slower

int func(int y) { int func(int y) {

int tmp; int tmp = 0;
if (y == 0) 'tmp = @; else tmp =y - 1; if (y = @) tmp =y - 1;
if (y+1 == @) tmp += @; else tmp += (y + 1) - 1; if (y != -1) tmp += y;
return tmp; return tmp;

} }

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

H

H

m Obstacles to optimization

m Machine-dependent optimization
H

Benchmark example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Memory Aliasing

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rowsl(double *a, double *b, long n) {

long i, j;
for (1 =0; 1 < n; i++) {
b[i] = @;

for (j = 0; j < n; j++)
b[i] += a[i*n + j];

mov($0, (%rsi)

pxor %Xmmo, %xmmo
.L4:

addsd (%rdi), %xmmo

movsd %xmm@, (%rsi)

addq $8, %rdi

cmpq »rcx, %rdi

jne .L4

" Code updates b[1] on every iteration
= Why couldn’t compiler optimize this away?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Memory Aliasing

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rowsl(double *a, double *b, long n) {

long i, j;
for (1 =0; 1 < n; i++) {
b[i] = @;

for (j = 0; j < n; j++)
b[i] += a[i*n + j];

)

)
Value of B:

d°‘{1bge A[i] -, d°‘{1bge A[i] -, init: [4, 8, 16]

4, 8, 16}, 3, 22, 224}, C

32, 64, 128}; 32, 64, 128}; 1T s 2, Ey e
double B[3] = A+3; i=1: [3, 22, 16]
sum rowsl(A, B, 3); i=2: [3, 22, 224]

" Code updates b[1] on every iteration
= Must consider possibility that these updates will affect program behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Avoiding Aliasing Penalties

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows2(double *a, double *b, long n) {
long 1, J;
for (1 = 0; 1< n; i++) {
double val = 9;
for (j = 0; j < n; j++)
val += a[i*n + j];
b[i] = val;

pxor %Xmmo, %xmmo
.L4:

addsd (%rdi), %xmmo

addq $8, %rdi

cmpq %rax, %rdi

jne .L4

movsd %xmm@, (%rsi)

= Use a local variable for intermediate results
= Use restrict keyword
= Tells compiler that this is the “only” pointer to that memory location

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Can’t move function calls out of loops

void lower_quadratic(char *s) {
size_t i;

for (i = @; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z") Sevary foration
s[i] += "a' - 'A’; 75M 1
}
void lower_still quadratic(char *s) {
size_t i, n = strlen(s); é
. . . QO 50M -
for (1 = 0; 1 < n; i++) g
if (s[i] >= 'A'" && s[i] <= 'Z") { g
S[i] += la 1 - IAI; é
n = strlen(s); £
} 25M 4 strlen called
after each change
}
void lower_linear(char *s) {
. . strlen called once
size_t i, n = strlen(s); 01
for (1 = 0; i < n; i++) 0kB 8 kB 16 kB 24kB 32 kB
if (S[i] s= 'A' && S[i] <= lzl) String size (characters)
s[i] += 'a' - 'A'; . .
} Lots more examples of this kind of bug:

accidentallyquadratic.tumblr.com

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Can’t move function calls out of loops

void lower_quadratic(char *s) {
size t i;
for (i = @; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z") M1 foration
s[i] += 'a' - 'A’;

void lower_still quadratic(char *s) { o

size_t i, n = strlen(s);
for (i = 0; i < n; i++)
if (s[i] >= 'A" && s[i] <= 'Z") {
s[i] += 'a' - 'A’;
n = strlen(s);

500K 1

Instructions executed

} 250K

void lower_linear(char *s) {
size_t i, n = strlen(s);
for (1 =0; 1 < n; i++) . | | |
if (S[i] >= 'A" && S[i] <= 'Z') °e o Stringsizlzs(lt(:?\aracters) e e
s[i] += 'a' - 'A';

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Quiz

https://canvas.cmu.edu/courses/49105/quizzes/150048/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

https://canvas.cmu.edu/courses/49105/quizzes/150048/

Carnegie Mellon

Today

H

H

H

m Machine-dependent optimization
m Benchmark example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Modern CPU Design

Instruction Control
Control - .
Instruction

: Retirement

...... Unit

. Register ST Instructions
File Decode |}

Cache

Operations

Register Updates Prediction OK?

\ 4

3 Load ore Functlorfal
Units
a 7 A

4 a

\ 4 \ 4 A 4 A 4 A\ 4 A\ 4

Operation Results

Addr. Addr.

Data Data

Execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Branches Are A Challenge

m Instruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep EU busy

404663: mov $0x0,%eax } :
404668: cmp %$rdi) ,%rsi Executlng
40466b: jge 404685 < Need to know

40466d: mo 0x8 (%$rdi) , %ra .
M xS (rdi), srax which way to

branch ...

404685: repz retq

If the CPU has to wait for the result of the cmp before continuing
to fetch instructions, may waste tens of cycles doing nothing!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Branch Prediction

m Guess which way branch will go

= Begin executing instructions at predicted position
= But don’t actually modify register or memory data

404663: mov $0x0, %$eax
404668: cmp $rdi) ,%rsi

40466d: mov 0x8 (%$rdi) , %rax

Continue
Fetching
Here

404685: repz retq

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Branch Prediction Through Loop

401029: mulsd (%rdx), $xmmO,$xmmO Assume
40102d: add $0x8, $rdx array Iength =100
401031: cmp srax,srdx
401034: jne 401029 I =98
Predict Taken (OK)
401029: mulsd $rdx) , $xmm0 , $xmmO
40102d: add $0x8, $rdx
401031: cmp Srax,srdx .
401034: jne 401029 i =99
— 7 Predict Taken

401029: mulsd (%rdx),%xmm0,%xmmO (Oops) T
40102d: add $0x8,%rdx T
401031: cmp Srax,srdx Read Executed
401034: Jjne 401029 i=100 invalid

7 location
401029: mulsd $rdx) , $xmm0 , $xmmO
40102d: add $0x8,%rdx Fetched
401031: cmp %rax,%rdx _L
401034: jne 401029 i=101

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

32

Branch Misprediction Invalidation

401029: mulsd (%rdx), $xmmO,$xmmO Assume

40102d: add $0x8, $rdx array Iength =100
401031: cmp srax,srdx

401034: jne 401029 I=9

Predict Taken (OK)

401029: mulsd (%rdx) ,$xmmO, $xmmO
40102d: add $0x8, $rdx
401031: cmp Srax,srdx

401034: jne 401029 i=99
— Predict Taken

: o o o 7 (Oops)

. 7 7 \
40102d:—add —$0x8,%rdx
401034: 3ne 401029 i=100

) > Invalidate

40102d:—add —$0x8,%rdx
401034: 3ne 401029 i=101 Y,

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Branch Misprediction Recovery

401029: mulsd $rdx) , $xmmO , $xmmO

40102d: add $0x8, $rdx i = 99

401031: cmp %rax,%rdx o Definitely not taken
401034: Jne 401029

401036: Jmp 401040 — Reload

401040: movsd $xmm0, (3rl2) } Pipeline

m Performance Cost

= Multiple clock cycles on modern processor
= Can be a major performance limiter

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Branch Prediction Numbers

m A simple heuristic:

= Backwards branches are often loops, so predict taken
= Forwards branches are often ifs, so predict not taken

m Fancier algorithms track behavior of each branch
= Branch behavior often correlates

m Other notes:
= Subject of ongoing research
= 2011 record (https://www.jilp.org/jwac-2/program/JWAC-2-
program.htm): 34.1 mispredictions per 1000 instructions

® Current research focuses on the remaining handful of
“impossible to predict” branches (strongly data-dependent,
no correlation with history)

Bryant and O’Hallaron, Compuger Systrit B Rrofrehnes s@erevetive Xars Editbol /pub/PruettPatt BranchRunahead.pdf 35

https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://www.jilp.org/jwac-2/program/JWAC-2-program.htm
https://hps.ece.utexas.edu/pub/PruettPatt_BranchRunahead.pdf

Carnegie Mellon

Optimizing for Branch Prediction

m Reduce # of branches

" Transform loops
= Unroll loops
= Use conditional moves
= Not always a good idea
m Make branches
predictable
= Sort data

https://stackoverflow.com/questions/11227809

= Avoid indirect branches

= function pointers

= virtual methods

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

.Loop:
movzbl @(%rbp,%rbx), %edx
leal -65(%rdx), %ecx
cmpb $25, %cl
addl $32, %edx
movb %dl, @(%rbp,%rbx)
add $1, %rbx
cmpq %rax, %rbx
jb .Loop

.Loop:
movzbl @(%rbp,%rbx), %edx
movl %edx, %esi
leal -65(%rdx), %ecx
addl $32, %edx
cmpb $25, %cl
cmova %esi, %edx
movb %dl, @(%rbp,%rbx)
addl $1, %rbx
cmpq %rax, %rbx Memory write

jb .Loop now
unconditional!

36

https://stackoverflow.com/questions/11227809

Carnegie Mellon

Loop Unrolling

m Amortize cost of loop condition by duplicating body
m Creates opportunities for CSE, code motion, scheduling
m Prepares code for vectorization

m Can hurt performance by increasing code size

for (size t i = @; i < nelts; i++) { for (size_ t i = 0; i < nelts - 4; i += 4) {
A[i] = B[i]*k + C[i]; A[i] =B[i 1*k + C[i 1;
} A[i+1] = B[i+1]*k + C[i+1];
A[i+2] = B[i+2]*k + C[i+2];
A[i+3] = B[i+3]*k + C[i+3];
}

When would this change be incorrect?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Scheduling

m Rearrange instructions to make it easier for the CPU
to keep all functional units busy

m Forinstance, move all the loads to the top of an
unrolled loop
= Now maybe it’s more obvious why we need lots of registers

for (size t i = 0; i < nelts - 4; i += 4) { for (size t i = 0; i < nelts - 4; i += 4) {
A[i] =B[i]*k + C[i 1]; BO = B[i]; Bl = B[i+1]; B2 = B[i+2]; B3 = B[i+3];
A[i+1] = B[i+1]*k + C[i+1]; Co = C[i]; C1 = C[i+1], C2 = C[i+2]; C3 = B[i+3];
A[i+2] = B[i+2]*k + C[i+2]; A[i] = Bo*k + Co;
A[i+3] = B[i+3]*k + C[i+3]; A[i+1] = B1*k + C1;
} A[i+2] = B2*k + C2;
A[i+3] = B3*k + C3;
}

When would this change be incorrect?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Today

Benchmark example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Benchmark Example: Data Type for Vectors

/* data structure for vectors */
typedef struct{

size t len;

data t *data;
} vec;

m Data Types

= Use different declarations
fordata_t

" int

" long

" float
" double

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

len 0O 1
data

len-1

/* retrieve vector element
and store at wval */
int get vec_element
(*vec v, size t idx, data_t *val)
{
if (idx >= wv->len)
return O;
*val v->data[idx];
return 1;

40

Benchmark Computation

void combinel (vec_ptr v, data t *dest)
{ long int i; Compute sum or
*dest = IDENT; product of vector
for (i = 0; i < vec length(v); i++) { elements
data t wval;
get vec element(v, i, &val);
*dest = *dest OP val;

}

}

m Data Types m Operations
= Use different declarations = Use different definitions of

fordata t OP and IDENT
= int = + /0
" long = x /]
" float

" double

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Cycles Per Element (CPE)

m Convenient way to express performance of program that operates on
vectors or lists

m Length=n
m In our case: CPE = cycles per OP
m Cycles = CPE*n + Overhead

= CPE is slope of line

2500
2000
psuml
Slope = 9.0
1500
N
°
o
>
O 1000
/ psum2
500 = Slope = 6.0
0 T T T
0 50 100 150 200
Elements

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Benchmark Performance

void combinel (vec_ptr v, data t *dest)
{
long int i; Compute sum or
*dest = IDENT; product of vector
for (i = 0; i < vec length(v); i++) { | elements
data t wval;
get vec element(v, i, &val);
*dest = *dest OP val;
}
}
Method Integer Double FP
Operation Add Mult Add Mult
Combinel unoptimized 22.68 20.02 19.98 20.18
Combinel -01 10.12 10.12 10.17 11.14
Combinel -03 4.5 4.5 6 7.8

Results in CPE (cycles per element)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Basic Optimizations

void combined (vec_ptr v, data t *dest)
{

long i;

long length = vec length(v);

data t *d = get vec start(v);

data t t = IDENT;

for (1 = 0; 1 < length; i++)

t =t OP d[i];
*dest = t;

m Move vec_length out of loop
m Avoid bounds check on each cycle
m Accumulate in temporary

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Effect of Basic Optimizations

void combined (vec_ptr v, data t *dest)
{

long i;

long length = vec length(v);

data t *d = get vec start(v);

data t t = IDENT;

for (1 = 0; 1 < length; i++)

t =t OP d[i];

*dest = t;
}
Method Integer Double FP
Operation Add Mult Add Mult
Combinel unoptimized 22.68 20.02 19.98 20.18
Combinel -01 10.12 10.12 10.17 11.14
Combinel -03 4.5 4.5 6 7.8
Combine4 1.27 3.01 3.01 5.01

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Loop Unrolling

void unroll2a combine(vec_ptr v, data t *dest)

{
long length = vec_length(v);
long limit = length-1;

data t *d = get vec_start(v);
data_t x0 = IDENT;

data_t x1 = IDENT;

long 1i;

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
x0 = x0 OP d[i];
x1l = x1 OP d[i+1];
}
/* Finish any remaining elements */
for (; 1 < length; i++) {
x0 = x0 OP d[i];
}
*dest = x0 OP x1;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Loop Unrolled Assembly

m Remember modern CPU designs
= Multiple functional units

m So how many cycles should this loop take to execute?

.L3:
addqg (%rdx), %rcx
addqg $16, %$rdx
addq -8 (%rdx), %rdi
cmpq %r8, %rdx
jne .L3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Effect of Loop Unrolling

Method Integer Double FP
Operation Add Mult Add Mult
Combinel unoptimized 22.68 20.02 19.98 20.18
Combinel -0O1 10.12 10.12 10.17 11.14
Combinel —-03 4.5 4.5 6 7.8
Combine4 1.27 3.01 3.01 5.01
Unroll 0.81 1.51 1.51 2.51
Multiple
instructions
every cycle!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Going Further

m Compiler optimizations are an easy gain
= 20 CPE down to 3-5 CPE

m With careful hand tuning and computer architecture
knowledge
= 4-16 elements per cycle
= Newest compilers are closing this gap

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Summary: Getting High Performance

m Good compiler and flags

m Don’t do anything sub-optimal
= Watch out for hidden algorithmic inefficiencies
= Write compiler-friendly code

= Watch out for optimization blockers:
procedure calls & memory references

= |ook carefully at innermost loops (where most work is done)

m Tune code for machine
= Exploit instruction-level parallelism
= Avoid unpredictable branches
= Make code cache friendly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

