Carnegie Mellon

o ——

IS=213"
el saies i,

<« AN g i taniai

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Dynamic Memory Allocation:
Advanced Concepts

15-213/15-513/14-513: Introduction to Computer Systems
14t Lecture, Oct 9, 2025

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Reminders

m Extension Requests
= ~100 so far
" 95+% have been granted
= Most “rejects”:

— Two requests for the same assighment so the first is
rejected and the second approved

= Grace days can still apply to the extended deadline

m Ethics Reminder
= Cachelab is the first “major” programming assignment
= Jtis a stressful time in the semester
= Several students have used the “no questions withdraw” policy

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Review: Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Heap

m Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at runtime

" For data structures whose size
is only known at runtime

m Dynamic memory allocators
manage an area of process
VM known as the heap

0x400000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 0

Kernel virtual memory

User stack
(created at runtime)

v
T

Memory-mapped region for
shared libraries

T

|

Memory
invisible to
user code

+«—3rsp

(stack
pointer)

- brk

Run-time heap
(created by malloc)

A

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Unused

Loaded
from

the
executable
file

Carnegie Mellon

Review: Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

Unused oo™ saL eemmTTTTmmel e Need to tag

nused _-- Sa -7 T~ g s

7 3'2 ‘Zé ‘;2' 16 each block as
A allocated/free

m Method 2: Explicit list among the free blocks using pointers

T~ T\

7739 48 39| 16 Need space
Z for pointers

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g., Red-Black tree) with pointers within
each free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Review: Implicit Lists Summary

m Implementation: very simple

m Allocate cost:
" [inear time worst case

m Free cost:
= constant time worst case
= even with coalescing

m Memory Overhead:
= Depends on placement policy
= Strategies include first fit, next fit, and best fit

m Not used in practice formalloc/free because of linear-
time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

Unused - SaalemmTT TN -

7/ 32 48 32 16

i

-y
-~ S

m Method 2: Explicit list among the free blocks using pointers

N\

732 48 32 7 16

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding

Optional

N

Size a Size a

m Maintain list(s) of free blocks, not all blocks
= Luckily we track only free blocks, so we can use payload area
" The “next” free block could be anywhere

= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing
= To find adjacent blocks according to memory order

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Explicit Free Lists

m Logically:

\ 4

\ 4

L 3

m Physically: blocks can be in any order

—
v

/ Forward (next) links
A ‘/Q 8

32 —7 32|32 3248 /|~ 4832 3232 ' , 32

/
C \/ .
K Back (prev) links

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Allocating From Explicit Free Lists

conceptual graphic

Before

2

After (with splitting)

W

= malloc(..)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?
m Unordered
= LIFO (last-in-first-out) policy
= Insert freed block at the beginning of the free list
= FIFO (first-in-first-out) policy
= |nsert freed block at the end of the free list
" Pro: simple and constant time

" Con: studies suggest fragmentation is worse than address ordered

m Address-ordered policy

" |nsert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

= Con:requires search

" Pro: studies suggest fragmentation is lower than LIFO/FIFO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Freeing With a LIFO Policy (Case 1)

Allocated Allocated

conceptual graphic

Before
free(p)

Root a o)

m Insert the freed block at the root of the list

After

Root I ‘v@

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Freeing With a LIFO Policy (Case 2)

Allocated Free

conceptual graphic
Before free (p)

Root ! I % O

m Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

After

Root I "W

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Freeing With a LIFO Policy (Case 3)

Free Allocated

conceptual graphic

LIO

m Splice out adjacent predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

After P
Root > LO n % »

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Before free (p)

Root i I

Freeing With a LIFO Policy (Case 4)

Free Free

conceptual graphic

it

m Splice out adjacent predecessor and successor blocks, coalesce
all 3 blocks, and insert the new block at the root of the list

After

Before free (p)

Root i I

Root I————p

§

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

o ¢
@

Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full
= Slightly more complicated allocate and free
= Need to splice blocks in and out of the list
= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Segregated List (Seglist) Allocators

m Have several free lists, one for each size class of blocks

l

A 4
A 4

16

\ 4
A 4

32-48

64—inf —

m Which blocks go in which size classes is a design decision
= Can have major impact on both utilization and throughput
= Common choices include:
" One class for each small size (16, 32, 48, 64, ...)
= At some point switch to powers of two: [2¢ + 1,2!+1]

m The list for the largest blocks must have no upper limit
= (well, 2°4)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:

= Search appropriate free list for block of size m = n (i.e., first fit)
= |f an appropriate block is found:

= Split block and place fragment on appropriate list

= |If no block is found, try next larger class
= Repeat until block is found

m If no block is found:
= Request additional heap memory from OS (using sbrk ())
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in appropriate size class.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Seglist Allocator (cont.)

m To free a block:

= Coalesce and place on appropriate list

m Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
= Higher throughput
= |og time for power-of-two size classes vs. linear time
= Better memory utilization

= First-fit search of segregated free list approximates a best-fit
search of entire heap.

= Extreme case: Giving each block its own size class is equivalent to
best-fit.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

More Info on Allocators

m D. Knuth, The Art of Computer Programming, vol 1, 37 edition,
Addison Wesley, 1997

"= The classic reference on dynamic storage allocation

m Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

= Comprehensive survey
= Available from CS:APP student site (csapp.cs.cmu.edu)

m Railing, et al, “Implementing Malloc: Students and Systems
Programming”, SIGCSE’18, Feb 2018.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Quiz

https://canvas.cmu.edu/courses/49105/quizzes/150038/

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

https://canvas.cmu.edu/courses/49105/quizzes/150038/

Carnegie Mellon

Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Dereferencing Bad Pointers

m The classic scanf bug

int val; case 'd': {
int *valp = va_arg(ap, int *);
*valp = (int)strtol(valbuf, &endp, 10);

L \

scanf("%d", val);

Crash here ...
if you’re lucky

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = malloc (N*sizeof (int));
int i, j;

for (i=0; i<N; i++)
for (j=0; IJ<N; jJ++)
yl[i] += A[i][J]1*x[]];
return y;

m Can avoid by using calloc

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = malloc (N*sizeof (lnt)) ’
for (i=0; i<N; i++) {

pl[i] = malloc (M*sizeof (int)) ;

}

m Can you spot the bug?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Overwriting Memory

m Off-by-one errors

char **p;
p = malloc (N*sizeof (int *)) ;

for (i=0; i<=N; i++) {
pl[i] = malloc(M*sizeof (int)) ;

char *p;

p = malloc(strlen(s))
strcpy (p,s) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Overwriting Memory

m Not checking the max string size

char s[8];
int 1i;

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Overwriting Memory

m Misunderstanding pointer arithmetic

int *search(int *p, int wval) {

while (p && *p != val)
p += sizeof (int);

return p;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Overwriting Memory

m Referencing a pointer instead of the object it points to

int *BinheapDelete (int **binheap, int *size) {
int *packet;
packet = binheap[O0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);
return (packet) ;

m What gets decremented?
= (See next slide)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Overwriting Memory

m Referencing a pointer instead of the object it points to

int *BinheapDelete (int **binheap, int *size) {
int *packet;
packet = binheap[O0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);
return (packet) ; .
Operators Associativity

} () [1 -> . ++ left to right
! ++ == + - & (type) sizeof right to left

% left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left
= 4= -= *= [= 3= &= = = <<= >>= right to left
p left to right

I~ 1

m Same effect as

" size--;

AA+ o
A
v
A%

A
= i
v
v
Il

m Rewrite as

" (*size)--;

W— = >
-—

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo () {
int wval;

return &val;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Freeing Blocks Multiple Times

m Nasty!

X = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int));
<manipulate y>
free (x) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Referencing Freed Blocks

m Evil!

x = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int));
for (i=0; i<M; i++)
y[i] = x[i]++;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Failing to Free Blocks (Memory Leaks)

m Slow, long-term killer!

foo() {
int *x = malloc(N*sizeof (int)) ;

return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int wval;
struct list *next;

};

foo () {
struct list *head = malloc(sizeof (struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Dealing With Memory Bugs
m Debugger: gdb

® Good for finding bad pointer dereferences
= Hard to detect the other memory bugs

m Data structure consistency checker
= Runs silently, prints message only on error
= Use as a probe to zero in on error
m Binary translator: valgrind
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
= Checks each individual reference at runtime
= Bad pointers, overwrites, refs outside of allocated block

m glibc malloc contains checking code
" setenv MALLOC CHECK 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

	Slide 1
	Slide 2: Dynamic Memory Allocation: Advanced Concepts 15-213/15-513/14-513: Introduction to Computer Systems 14th Lecture, Oct 9, 2025
	Slide 3: Reminders
	Slide 4: Review: Dynamic Memory Allocation
	Slide 5: Review: Keeping Track of Free Blocks
	Slide 6: Review: Implicit Lists Summary
	Slide 7: Today
	Slide 8: Keeping Track of Free Blocks
	Slide 9: Explicit Free Lists
	Slide 10: Explicit Free Lists
	Slide 11: Allocating From Explicit Free Lists
	Slide 12: Freeing With Explicit Free Lists
	Slide 13: Freeing With a LIFO Policy (Case 1)
	Slide 14: Freeing With a LIFO Policy (Case 2)
	Slide 15: Freeing With a LIFO Policy (Case 3)
	Slide 16: Freeing With a LIFO Policy (Case 4)
	Slide 18: Explicit List Summary
	Slide 19: Today
	Slide 20: Segregated List (Seglist) Allocators
	Slide 21: Seglist Allocator
	Slide 22: Seglist Allocator (cont.)
	Slide 23: More Info on Allocators
	Slide 24: Quiz
	Slide 25: Today
	Slide 26: Memory-Related Perils and Pitfalls
	Slide 27: Dereferencing Bad Pointers
	Slide 28: Reading Uninitialized Memory
	Slide 29: Overwriting Memory
	Slide 30: Overwriting Memory
	Slide 31: Overwriting Memory
	Slide 32: Overwriting Memory
	Slide 33: Overwriting Memory
	Slide 35: Overwriting Memory
	Slide 36: Referencing Nonexistent Variables
	Slide 37: Freeing Blocks Multiple Times
	Slide 38: Referencing Freed Blocks
	Slide 39: Failing to Free Blocks (Memory Leaks)
	Slide 40: Failing to Free Blocks (Memory Leaks)
	Slide 41: Dealing With Memory Bugs

