
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation:
Advanced Concepts

15-213/15-513/14-513: Introduction to Computer Systems
14th Lecture, Oct 9, 2025

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminders

 Extension Requests
▪ ~100 so far

▪ 95+% have been granted

▪ Most “rejects”:

– Two requests for the same assignment so the first is
rejected and the second approved

▪ Grace days can still apply to the extended deadline

 Ethics Reminder
▪ Cachelab is the first “major” programming assignment

▪ It is a stressful time in the semester

▪ Several students have used the “no questions withdraw” policy

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Dynamic Memory Allocation

 Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at runtime
▪ For data structures whose size

is only known at runtime

 Dynamic memory allocators
manage an area of process
VM known as the heap

Application

Dynamic Memory Allocator

Heap

Kernel virtual memory

Memory-mapped region for
shared libraries

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Run-time heap
(created by malloc)

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
▪ Different free lists for different size classes

 Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g., Red-Black tree) with pointers within

each free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Implicit Lists Summary
 Implementation: very simple

 Allocate cost:
▪ linear time worst case

 Free cost:
▪ constant time worst case

▪ even with coalescing

 Memory Overhead:
▪ Depends on placement policy

▪ Strategies include first fit, next fit, and best fit

 Not used in practice for malloc/free because of linear-
time allocation
▪ used in many special purpose applications

 However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Explicit free lists

 Segregated free lists

 Memory-related perils and pitfalls

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
▪ Different free lists for different size classes

 Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists

 Maintain list(s) of free blocks, not all blocks
▪ Luckily we track only free blocks, so we can use payload area

▪ The “next” free block could be anywhere

▪ So we need to store forward/back pointers, not just sizes

▪ Still need boundary tags for coalescing

▪ To find adjacent blocks according to memory order

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Optional

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists

 Logically:

 Physically: blocks can be in any order

A B C

32 32 32 32 4848 3232 32 32

Forward (next) links

Back (prev) links

A B

C

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With Explicit Free Lists

 Insertion policy: Where in the free list do you put a newly
freed block?

 Unordered
▪ LIFO (last-in-first-out) policy

▪ Insert freed block at the beginning of the free list

▪ FIFO (first-in-first-out) policy

▪ Insert freed block at the end of the free list

▪ Pro: simple and constant time

▪ Con: studies suggest fragmentation is worse than address ordered

 Address-ordered policy

▪ Insert freed blocks so that free list blocks are always in address order:

 addr(prev) < addr(curr) < addr(next)

▪ Con: requires search

▪ Pro: studies suggest fragmentation is lower than LIFO/FIFO

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 1)

 Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic
Allocated Allocated

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 2)

 Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphicAllocated Free

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 3)

 Splice out adjacent predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic
AllocatedFree

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 4)

 Splice out adjacent predecessor and successor blocks, coalesce
all 3 blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic
Free Free

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit List Summary

 Comparison to implicit list:
▪ Allocate is linear time in number of free blocks instead of all blocks

▪ Much faster when most of the memory is full

▪ Slightly more complicated allocate and free

▪ Need to splice blocks in and out of the list

▪ Some extra space for the links (2 extra words needed for each block)

▪ Does this increase internal fragmentation?

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Explicit free lists

 Segregated free lists

 Memory-related perils and pitfalls

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Segregated List (Seglist) Allocators

 Have several free lists, one for each size class of blocks

 Which blocks go in which size classes is a design decision
▪ Can have major impact on both utilization and throughput

▪ Common choices include:

▪ One class for each small size (16, 32, 48, 64, …)

▪ At some point switch to powers of two: [2𝑖 + 1, 2𝑖+1]

 The list for the largest blocks must have no upper limit
▪ (well, 264)

16

32-48

64–inf

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator

 Given an array of free lists, each one for some size class

 To allocate a block of size n:
▪ Search appropriate free list for block of size 𝑚 ≥ 𝑛 (i.e., first fit)

▪ If an appropriate block is found:

▪ Split block and place fragment on appropriate list

▪ If no block is found, try next larger class

▪ Repeat until block is found

 If no block is found:
▪ Request additional heap memory from OS (using sbrk())

▪ Allocate block of n bytes from this new memory

▪ Place remainder as a single free block in appropriate size class.

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator (cont.)

 To free a block:
▪ Coalesce and place on appropriate list

 Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
▪ Higher throughput

▪ log time for power-of-two size classes vs. linear time

▪ Better memory utilization

▪ First-fit search of segregated free list approximates a best-fit

search of entire heap.

▪ Extreme case: Giving each block its own size class is equivalent to

best-fit.

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More Info on Allocators

 D. Knuth, The Art of Computer Programming, vol 1, 3rd edition,
Addison Wesley, 1997
▪ The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.
▪ Comprehensive survey

▪ Available from CS:APP student site (csapp.cs.cmu.edu)

 Railing, et al, “Implementing Malloc: Students and Systems
Programming”, SIGCSE’18, Feb 2018.

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz

https://canvas.cmu.edu/courses/49105/quizzes/150038/

https://canvas.cmu.edu/courses/49105/quizzes/150038/

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Explicit free lists

 Segregated free lists

 Memory-related perils and pitfalls

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Related Perils and Pitfalls

 Dereferencing bad pointers

 Reading uninitialized memory

 Overwriting memory

 Referencing nonexistent variables

 Freeing blocks multiple times

 Referencing freed blocks

 Failing to free blocks

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dereferencing Bad Pointers

 The classic scanf bug

int val;

...

scanf("%d", val);

case 'd': {
 int *valp = va_arg(ap, int *);
 *valp = (int)strtol(valbuf, &endp, 10);
}

Crash here …
if you’re lucky

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Uninitialized Memory

 Assuming that heap data is initialized to zero

 Can avoid by using calloc

/* return y = Ax */

int *matvec(int **A, int *x) {

 int *y = malloc(N*sizeof(int));

 int i, j;

 for (i=0; i<N; i++)

 for (j=0; j<N; j++)

 y[i] += A[i][j]*x[j];

 return y;

}

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory

 Allocating the (possibly) wrong sized object

 Can you spot the bug?

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {

 p[i] = malloc(M*sizeof(int));

}

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory

 Off-by-one errors

char **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {

 p[i] = malloc(M*sizeof(int));

}

char *p;

p = malloc(strlen(s));

strcpy(p,s);

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
 Not checking the max string size

 Basis for classic buffer overflow attacks

char s[8];

int i;

gets(s); /* reads “123456789” from stdin */

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory

 Misunderstanding pointer arithmetic

int *search(int *p, int val) {

 while (p && *p != val)

 p += sizeof(int);

 return p;

}

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory

 Referencing a pointer instead of the object it points to

 What gets decremented?
▪ (See next slide)

int *BinheapDelete(int **binheap, int *size) {

 int *packet;

 packet = binheap[0];

 binheap[0] = binheap[*size - 1];

 *size--;

 Heapify(binheap, *size, 0);

 return(packet);

}

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory

 Referencing a pointer instead of the object it points to

 Same effect as
▪ size--;

 Rewrite as
▪ (*size)--;

int *BinheapDelete(int **binheap, int *size) {

 int *packet;

 packet = binheap[0];

 binheap[0] = binheap[*size - 1];

 *size--;

 Heapify(binheap, *size, 0);

 return(packet);

}

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Nonexistent Variables

 Forgetting that local variables disappear when a function
returns

int *foo () {

 int val;

 return &val;

}

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing Blocks Multiple Times

 Nasty!

x = malloc(N*sizeof(int));

 <manipulate x>

free(x);

y = malloc(M*sizeof(int));

 <manipulate y>

free(x);

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Freed Blocks

 Evil!

x = malloc(N*sizeof(int));

 <manipulate x>

free(x);

 ...

y = malloc(M*sizeof(int));

for (i=0; i<M; i++)

 y[i] = x[i]++;

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)

 Slow, long-term killer!

foo() {

 int *x = malloc(N*sizeof(int));

 ...

 return;

}

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)

 Freeing only part of a data structure

struct list {

 int val;

 struct list *next;

};

foo() {

 struct list *head = malloc(sizeof(struct list));

 head->val = 0;

 head->next = NULL;

 <create and manipulate the rest of the list>

 ...

 free(head);

 return;

}

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dealing With Memory Bugs
 Debugger: gdb

▪ Good for finding bad pointer dereferences

▪ Hard to detect the other memory bugs

 Data structure consistency checker
▪ Runs silently, prints message only on error

▪ Use as a probe to zero in on error

 Binary translator: valgrind
▪ Powerful debugging and analysis technique

▪ Rewrites text section of executable object file

▪ Checks each individual reference at runtime

▪ Bad pointers, overwrites, refs outside of allocated block

 glibc malloc contains checking code
▪ setenv MALLOC_CHECK_ 3

	Slide 1
	Slide 2: Dynamic Memory Allocation: Advanced Concepts 15-213/15-513/14-513: Introduction to Computer Systems 14th Lecture, Oct 9, 2025
	Slide 3: Reminders
	Slide 4: Review: Dynamic Memory Allocation
	Slide 5: Review: Keeping Track of Free Blocks
	Slide 6: Review: Implicit Lists Summary
	Slide 7: Today
	Slide 8: Keeping Track of Free Blocks
	Slide 9: Explicit Free Lists
	Slide 10: Explicit Free Lists
	Slide 11: Allocating From Explicit Free Lists
	Slide 12: Freeing With Explicit Free Lists
	Slide 13: Freeing With a LIFO Policy (Case 1)
	Slide 14: Freeing With a LIFO Policy (Case 2)
	Slide 15: Freeing With a LIFO Policy (Case 3)
	Slide 16: Freeing With a LIFO Policy (Case 4)
	Slide 18: Explicit List Summary
	Slide 19: Today
	Slide 20: Segregated List (Seglist) Allocators
	Slide 21: Seglist Allocator
	Slide 22: Seglist Allocator (cont.)
	Slide 23: More Info on Allocators
	Slide 24: Quiz
	Slide 25: Today
	Slide 26: Memory-Related Perils and Pitfalls
	Slide 27: Dereferencing Bad Pointers
	Slide 28: Reading Uninitialized Memory
	Slide 29: Overwriting Memory
	Slide 30: Overwriting Memory
	Slide 31: Overwriting Memory
	Slide 32: Overwriting Memory
	Slide 33: Overwriting Memory
	Slide 35: Overwriting Memory
	Slide 36: Referencing Nonexistent Variables
	Slide 37: Freeing Blocks Multiple Times
	Slide 38: Referencing Freed Blocks
	Slide 39: Failing to Free Blocks (Memory Leaks)
	Slide 40: Failing to Free Blocks (Memory Leaks)
	Slide 41: Dealing With Memory Bugs

