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Reminders

m Extension Requests
= ~100 so far
" 95+% have been granted
= Most “rejects”:

— Two requests for the same assighment so the first is
rejected and the second approved

= Grace days can still apply to the extended deadline

m Ethics Reminder
= Cachelab is the first “major” programming assignment
= Jtis a stressful time in the semester
= Several students have used the “no questions withdraw” policy
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Review: Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Heap

m Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at runtime

" For data structures whose size
is only known at runtime

m Dynamic memory allocators
manage an area of process
VM known as the heap
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Review: Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

Unused oo™ saL eemmTTTTmmel e Need to tag

nused _-- Sa -7 T~ g s

7 3'2 ‘Zé ‘;2' 16 each block as
A allocated/free

m Method 2: Explicit list among the free blocks using pointers

T~ T\

7739 48 39| 16 Need space
Z for pointers

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g., Red-Black tree) with pointers within
each free block, and the length used as a key
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Review: Implicit Lists Summary

m Implementation: very simple

m Allocate cost:
" [inear time worst case

m Free cost:
= constant time worst case
= even with coalescing

m Memory Overhead:
= Depends on placement policy
= Strategies include first fit, next fit, and best fit

m Not used in practice formalloc/free because of linear-
time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators
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Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls
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Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks
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m Method 2: Explicit list among the free blocks using pointers

N\

732 48 32 7 16

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
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Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding

Optional

N

Size a Size a

m Maintain list(s) of free blocks, not all blocks
= Luckily we track only free blocks, so we can use payload area
" The “next” free block could be anywhere

= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing
= To find adjacent blocks according to memory order
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Explicit Free Lists

m Logically:

\ 4

\ 4

L 3

m Physically: blocks can be in any order

—
v

/ Forward (next) links
A ‘/Q 8

32 —7 32|32 3248 /|~ 4832 3232 ' , 32

/
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K Back (prev) links
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Allocating From Explicit Free Lists

conceptual graphic

Before

2

After (with splitting)

W

= malloc(..)
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Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?
m Unordered
= LIFO (last-in-first-out) policy
= Insert freed block at the beginning of the free list
= FIFO (first-in-first-out) policy
= |nsert freed block at the end of the free list
" Pro: simple and constant time

" Con: studies suggest fragmentation is worse than address ordered

m Address-ordered policy

" |nsert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

= Con:requires search

"  Pro: studies suggest fragmentation is lower than LIFO/FIFO
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Freeing With a LIFO Policy (Case 1)

Allocated Allocated

conceptual graphic

Before
free(p)

Root a o)

m Insert the freed block at the root of the list

After

Root I ‘v@
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Freeing With a LIFO Policy (Case 2)

Allocated Free

conceptual graphic
Before free (p)

Root ! I % O

m Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

After

Root I "W
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Freeing With a LIFO Policy (Case 3)

Free Allocated

conceptual graphic

LIO

m Splice out adjacent predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

After P
Root > LO n % »
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Freeing With a LIFO Policy (Case 4)

Free Free

conceptual graphic

it

m Splice out adjacent predecessor and successor blocks, coalesce
all 3 blocks, and insert the new block at the root of the list

After

Before free (p)

Root i I

Root I————p

§

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

o ¢
@




Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full
= Slightly more complicated allocate and free
= Need to splice blocks in and out of the list
= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?
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Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls
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Segregated List (Seglist) Allocators

m Have several free lists, one for each size class of blocks

l

A 4
A 4

16

\ 4
A 4

32-48

64—inf —

m Which blocks go in which size classes is a design decision
= Can have major impact on both utilization and throughput
= Common choices include:
" One class for each small size (16, 32, 48, 64, ...)
= At some point switch to powers of two: [2¢ + 1,2!+1]

m The list for the largest blocks must have no upper limit
= (well, 2°4)
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Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:

= Search appropriate free list for block of size m = n (i.e., first fit)
= |f an appropriate block is found:

= Split block and place fragment on appropriate list

= |If no block is found, try next larger class
= Repeat until block is found

m If no block is found:
= Request additional heap memory from OS (using sbrk ())
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in appropriate size class.
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Seglist Allocator (cont.)

m To free a block:

= Coalesce and place on appropriate list

m Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
= Higher throughput
= |og time for power-of-two size classes vs. linear time
= Better memory utilization

= First-fit search of segregated free list approximates a best-fit
search of entire heap.

= Extreme case: Giving each block its own size class is equivalent to
best-fit.
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More Info on Allocators

m D. Knuth, The Art of Computer Programming, vol 1, 37 edition,
Addison Wesley, 1997

"= The classic reference on dynamic storage allocation

m Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

= Comprehensive survey
= Available from CS:APP student site (csapp.cs.cmu.edu)

m Railing, et al, “Implementing Malloc: Students and Systems
Programming”, SIGCSE’18, Feb 2018.
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Quiz

https://canvas.cmu.edu/courses/49105/quizzes/150038/
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Today

m Explicit free lists
m Segregated free lists
m Memory-related perils and pitfalls
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Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26



Carnegie Mellon

Dereferencing Bad Pointers

m The classic scanf bug

int val; case 'd': {
int *valp = va_arg(ap, int *);
*valp = (int)strtol(valbuf, &endp, 10);

L \

scanf("%d", val);

Crash here ...
if you’re lucky
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Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = malloc (N*sizeof (int));
int i, j;

for (i=0; i<N; i++)
for (j=0; IJ<N; jJ++)
yl[i] += A[i][J]1*x[]];
return y;

m Can avoid by using calloc
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Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = malloc (N*sizeof (lnt) ) ’
for (i=0; i<N; i++) {

pl[i] = malloc (M*sizeof (int)) ;

}

m Can you spot the bug?
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Overwriting Memory

m Off-by-one errors

char **p;
p = malloc (N*sizeof (int *)) ;

for (i=0; i<=N; i++) {
pl[i] = malloc(M*sizeof (int)) ;

char *p;

p = malloc(strlen(s))
strcpy (p,s) ;
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Overwriting Memory

m Not checking the max string size

char s[8];
int 1i;

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks
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Overwriting Memory

m Misunderstanding pointer arithmetic

int *search(int *p, int wval) {

while (p && *p != val)
p += sizeof (int);

return p;
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Overwriting Memory

m Referencing a pointer instead of the object it points to

int *BinheapDelete (int **binheap, int *size) {
int *packet;
packet = binheap[O0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);
return (packet) ;

m What gets decremented?
= (See next slide)
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Overwriting Memory

m Referencing a pointer instead of the object it points to

int *BinheapDelete (int **binheap, int *size) {
int *packet;
packet = binheap[O0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);
return (packet) ; .
Operators Associativity

} () [1 -> . ++ left to right
! ++ == + - & (type) sizeof right to left

% left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left
= 4= -= *= [= 3= &= = = <<= >>= right to left
p left to right

I~ 1

m Same effect as

" size--;

AA+ o
A
v
A%

A
= i
v
v
Il

m Rewrite as

" (*size)--;

W— = >
-—
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Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo () {
int wval;

return &val;
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Freeing Blocks Multiple Times

m Nasty!

X = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int));
<manipulate y>
free (x) ;
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Referencing Freed Blocks

m Evil!

x = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int));
for (i=0; i<M; i++)
y[i] = x[i]++;
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Failing to Free Blocks (Memory Leaks)

m Slow, long-term killer!

foo() {
int *x = malloc(N*sizeof (int)) ;

return;
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Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int wval;
struct list *next;

};

foo () {
struct list *head = malloc(sizeof (struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;
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Dealing With Memory Bugs
m Debugger: gdb

® Good for finding bad pointer dereferences
= Hard to detect the other memory bugs

m Data structure consistency checker
= Runs silently, prints message only on error
= Use as a probe to zero in on error
m Binary translator: valgrind
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
= Checks each individual reference at runtime
= Bad pointers, overwrites, refs outside of allocated block

m glibc malloc contains checking code
" setenv MALLOC CHECK 3
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