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Reminders

 Extension Requests
▪ ~100 so far

▪ 95+% have been granted

▪ Most “rejects”:

– Two requests for the same assignment so the first is 
rejected and the second approved

▪ Grace days can still apply to the extended deadline

 Ethics Reminder
▪ Cachelab is the first “major” programming assignment

▪ It is a stressful time in the semester

▪ Several students have used the “no questions withdraw” policy
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Review: Dynamic Memory Allocation 

 Programmers use dynamic 
memory allocators (such as 
malloc) to acquire virtual 
memory (VM) at runtime
▪ For data structures whose size 

is only known at runtime

 Dynamic memory allocators 
manage an area of process 
VM known as the heap 

Application

Dynamic Memory Allocator

Heap

Kernel virtual memory

Memory-mapped region for
shared libraries

User stack
(created at runtime)

Unused
0

%rsp 
(stack 
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded 
from 
the 
executable 
file

Run-time heap
(created by malloc)
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Review: Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
▪ Different free lists for different size classes

 Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g., Red-Black tree) with pointers within 

each free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16
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Review: Implicit Lists Summary
 Implementation: very simple

 Allocate cost: 
▪ linear time worst case

 Free cost: 
▪ constant time worst case

▪ even with coalescing

 Memory Overhead: 
▪ Depends on placement policy

▪ Strategies include first fit, next fit, and best fit

 Not used in practice for malloc/free because of linear-
time allocation
▪ used in many special purpose applications

 However, the concepts of splitting and boundary tag 
coalescing are general to all allocators
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Today

 Explicit free lists 

 Segregated free lists

 Memory-related perils and pitfalls
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Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
▪ Different free lists for different size classes

 Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

Unused

32 48 32 16

32 48 32 16
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Explicit Free Lists

 Maintain list(s) of free blocks, not all blocks
▪ Luckily we track only free blocks, so we can use payload area

▪ The “next” free block could be anywhere

▪ So we need to store forward/back pointers, not just sizes

▪ Still need boundary tags for coalescing

▪ To find adjacent blocks according to memory order

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Optional
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Explicit Free Lists

 Logically:

 Physically: blocks can be in any order

A B C

32 32 32 32 4848 3232 32 32

Forward (next) links

Back (prev) links

A B

C
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Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic
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Freeing With Explicit Free Lists

 Insertion policy: Where in the free list do you put a newly 
freed block?

 Unordered
▪ LIFO (last-in-first-out) policy

▪ Insert freed block at the beginning of the free list

▪ FIFO (first-in-first-out) policy

▪ Insert freed block at the end of the free list

▪ Pro: simple and constant time

▪ Con: studies suggest fragmentation is worse than address ordered

 Address-ordered policy

▪ Insert freed blocks so that free list blocks are always in address order: 

          addr(prev) < addr(curr) < addr(next)

▪  Con: requires search

▪  Pro: studies suggest fragmentation is lower than LIFO/FIFO
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Freeing With a LIFO Policy (Case 1)

 Insert the freed block at the root of the list

free( )

Root

Root

Before

After

conceptual graphic
Allocated Allocated
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Freeing With a LIFO Policy (Case 2)

 Splice out adjacent successor block, coalesce both memory 
blocks, and insert the new block at the root of the list

free( )

Root

Before

Root

After

conceptual graphicAllocated Free
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Freeing With a LIFO Policy (Case 3)

 Splice out adjacent predecessor block, coalesce both memory 
blocks, and insert the new block at the root of the list

free( )

Root

Before

Root

After

conceptual graphic
AllocatedFree
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Freeing With a LIFO Policy (Case 4)

 Splice out adjacent predecessor and successor blocks, coalesce 
all 3 blocks, and insert the new block at the root of the list

free( )

Root

Before

Root

After

conceptual graphic
Free Free
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Explicit List Summary

 Comparison to implicit list:
▪ Allocate is linear time in number of free blocks instead of all blocks

▪ Much faster when most of the memory is full 

▪ Slightly more complicated allocate and free

▪ Need to splice blocks in and out of the list

▪ Some extra space for the links (2 extra words needed for each block)

▪ Does this increase internal fragmentation?



Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Explicit free lists 

 Segregated free lists

 Memory-related perils and pitfalls
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Segregated List (Seglist) Allocators

 Have several free lists, one for each size class of blocks

 Which blocks go in which size classes is a design decision
▪ Can have major impact on both utilization and throughput

▪ Common choices include:

▪ One class for each small size (16, 32, 48, 64, …)

▪ At some point switch to powers of two: [2𝑖 + 1, 2𝑖+1]

 The list for the largest blocks must have no upper limit
▪ (well, 264)

16

32-48

64–inf
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Seglist Allocator

 Given an array of free lists, each one for some size class

 To allocate a block of size n:
▪ Search appropriate free list for block of size 𝑚 ≥ 𝑛 (i.e., first fit)

▪ If an appropriate block is found:

▪ Split block and place fragment on appropriate list 

▪ If no block is found, try next larger class

▪ Repeat until block is found

 If no block is found:
▪ Request additional heap memory from OS (using sbrk())

▪ Allocate block of n bytes from this new memory

▪ Place remainder as a single free block in appropriate size class.
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Seglist Allocator (cont.)

 To free a block:
▪ Coalesce and place on appropriate list 

 Advantages of seglist allocators vs. non-seglist allocators 
(both with first-fit)
▪ Higher throughput

▪  log time for power-of-two size classes vs. linear time

▪ Better memory utilization

▪ First-fit search of segregated free list approximates a best-fit 

search of entire heap.

▪ Extreme case: Giving each block its own size class is equivalent to 

best-fit.
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More Info on Allocators

 D. Knuth, The Art of Computer Programming, vol 1, 3rd edition, 
Addison Wesley, 1997
▪ The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and 
Critical Review”, Proc. 1995 Int’l Workshop on Memory 
Management, Kinross, Scotland, Sept, 1995.
▪ Comprehensive survey

▪ Available from CS:APP student site (csapp.cs.cmu.edu)

 Railing, et al, “Implementing Malloc: Students and Systems 
Programming”, SIGCSE’18, Feb 2018.



Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz

https://canvas.cmu.edu/courses/49105/quizzes/150038/ 

https://canvas.cmu.edu/courses/49105/quizzes/150038/
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Today

 Explicit free lists 

 Segregated free lists

 Memory-related perils and pitfalls
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Memory-Related Perils and Pitfalls

 Dereferencing bad pointers

 Reading uninitialized memory

 Overwriting memory

 Referencing nonexistent variables

 Freeing blocks multiple times

 Referencing freed blocks

 Failing to free blocks
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Dereferencing Bad Pointers

 The classic scanf bug

int val;

...

scanf("%d", val);

case 'd': {
    int *valp = va_arg(ap, int *);
    *valp = (int)strtol(valbuf, &endp, 10);
}

Crash here …
if you’re lucky



Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Uninitialized Memory

 Assuming that heap data is initialized to zero

 Can avoid by using calloc

/* return y = Ax */

int *matvec(int **A, int *x) { 

   int *y = malloc(N*sizeof(int));

   int i, j;

   for (i=0; i<N; i++)

      for (j=0; j<N; j++)

         y[i] += A[i][j]*x[j];

   return y;

}
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Overwriting Memory

 Allocating the (possibly) wrong sized object

 Can you spot the bug?

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {

   p[i] = malloc(M*sizeof(int));

}
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Overwriting Memory

 Off-by-one errors

char **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {

   p[i] = malloc(M*sizeof(int));

}

char *p;

p = malloc(strlen(s));

strcpy(p,s);
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Overwriting Memory
 Not checking the max string size

 Basis for classic buffer overflow attacks

char s[8];

int i;

gets(s);  /* reads “123456789” from stdin */ 
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Overwriting Memory

 Misunderstanding pointer arithmetic

int *search(int *p, int val) {

   

   while (p && *p != val)

      p += sizeof(int);

   return p;

}
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Overwriting Memory

 Referencing a pointer instead of the object it points to

 What gets decremented?
▪ (See next slide)

int *BinheapDelete(int **binheap, int *size) {

   int *packet;

   packet = binheap[0];

   binheap[0] = binheap[*size - 1];

   *size--;

   Heapify(binheap, *size, 0);

   return(packet);

}
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Overwriting Memory

 Referencing a pointer instead of the object it points to

 Same effect as
▪ size--;

 Rewrite as
▪ (*size)--;

int *BinheapDelete(int **binheap, int *size) {

   int *packet;

   packet = binheap[0];

   binheap[0] = binheap[*size - 1];

   *size--;

   Heapify(binheap, *size, 0);

   return(packet);

}
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Referencing Nonexistent Variables

 Forgetting that local variables disappear when a function 
returns

int *foo () {

   int val;

   return &val;

}  
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Freeing Blocks Multiple Times

 Nasty!

x = malloc(N*sizeof(int));

        <manipulate x>

free(x);

y = malloc(M*sizeof(int));

        <manipulate y>

free(x);
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Referencing Freed Blocks

 Evil! 

x = malloc(N*sizeof(int));

  <manipulate x>

free(x);

   ...

y = malloc(M*sizeof(int));

for (i=0; i<M; i++)

   y[i] = x[i]++;
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Failing to Free Blocks (Memory Leaks)

 Slow, long-term killer! 

foo() {

   int *x = malloc(N*sizeof(int));

   ...

   return;

}
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Failing to Free Blocks (Memory Leaks)

 Freeing only part of a data structure

struct list {

   int val;

   struct list *next;

};

foo() {

   struct list *head = malloc(sizeof(struct list));

   head->val = 0;

   head->next = NULL;

   <create and manipulate the rest of the list>

    ...

   free(head);

   return;

}
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Dealing With Memory Bugs
 Debugger: gdb

▪ Good for finding  bad pointer dereferences

▪ Hard to detect the other memory bugs

 Data structure consistency checker
▪ Runs silently, prints message only on error

▪ Use as a probe to zero in on error

 Binary translator:  valgrind 
▪ Powerful debugging and analysis technique

▪ Rewrites text section of executable object file

▪ Checks each individual reference at runtime

▪ Bad pointers, overwrites, refs outside of allocated block

 glibc malloc contains checking code
▪ setenv MALLOC_CHECK_ 3 
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