
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory: Concepts

15-213/15-513/14-513: Introduction to Computer Systems
11th Lecture, Sept 30, 2025

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Midterm “Exam”

⬛ Take home exam (15-213/15-513/14-513) :
▪ In-person take home exam released on Wed, Oct 1

▪ Due on Wed, Oct 8 at 11:59pm

▪ Submitted to Gradescope

▪ 5% of course grade for 15-213/14-513 students

▪ 15% of course grade ONLY for 15-503 students

⬛ In person exam (15-213/14-513-only):
▪ In-person individual exam on 10/21 at 12:30pm

▪ 80 minutes to complete, worth 10% of course grade

▪ 2 double sided (letter or A4) sheets of notes allowed

▪ Worth 10% of final grade

▪ Questions may be similar or identical to take home questions

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

This Picture is a Lie

⬛This is RAM, we said…

⬛But the computer can run
more than one program at
a time!

⬛Where are all the other
programs?

⬛Let’s investigate.

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes

⬛ Definition: A process is an instance of a running
program.
▪ One of the most profound ideas in computer science

▪ Not the same as “program” or “processor”

⬛ Unix: A parent process creates a new child process
by calling fork

▪ Child is (sort of) a copy of the parent

▪ fork returns twice—once in each process

▪ Different return value in each

⬛ Parent can wait for child to finish by calling
waitpid

▪ For now, think of this as “what main returns to”

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hmmm, How Does This Work?!
Process 1 Process 2 Process n

Solution: Virtual Memory (today and next lecture)

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A System Using Physical Addressing

⬛ Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A System Using Virtual Addressing

⬛ Used in all modern servers, laptops, and smart phones

⬛ One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM as a Tool for Memory Management

⬛ Key idea: each process has its own virtual address space
▪ It can view memory as a simple linear array

▪ Mapping function scatters addresses through physical memory

▪ Well-chosen mappings can improve locality

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM as a Tool for Memory Management
⬛ Simplifying memory allocation

▪ Each virtual page can be mapped to any physical page

▪ A virtual page can be stored in different physical pages at different times

⬛ Sharing code and data among processes
▪ Map virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simplifying Linking and Loading

⬛Linking
▪ Each program has similar virtual

address space

▪ Code, data, and heap always start
at the same addresses.

⬛Loading
▪ execve allocates virtual pages

for .text and .data sections &
creates PTEs marked as invalid

▪ The .text and .data sections
are copied, page by page, on
demand by the virtual memory
system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp

(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Spaces

⬛ Linear address space: Ordered set of contiguous non-negative integer
addresses:

{0, 1, 2, 3 … }

⬛ Virtual address space: Set of N = 2n virtual addresses
{0, 1, 2, 3, …, N-1}

⬛ Physical address space: Set of M = 2m physical addresses
{0, 1, 2, 3, …, M-1}

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Virtual Memory (VM)?

⬛ Uses main memory efficiently
▪ Use DRAM as a cache for parts of a virtual address space

⬛ Simplifies memory management
▪ Each process gets the same uniform linear address space

⬛ Isolates address spaces
▪ One process can’t interfere with another’s memory

▪ User program cannot access privileged kernel information and code

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM Address Translation

⬛ Virtual Address Space
▪ V = {0, 1, …, N–1}

⬛ Physical Address Space
▪ P = {0, 1, …, M–1}

⬛ Address Translation
▪ MAP: V → P U {∅}

▪ For virtual address a:

▪ MAP(a) = a’ if data at virtual address a is at physical address a’ in P

▪ MAP(a) = ∅ if data at virtual address a is not in physical memory

– Either invalid or stored on disk

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MAP: V -> P

⬛ Mapping function from virtual pages to physical pages
▪ Page is the granularity of mapping set by the ISA

⬛ Function must be simple and efficient
▪ Implemented in hardware

▪ Significant design constraints

⬛ K-nary tree aka Page Table
▪ Each node of the tree is 1 page in size

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enabling Data Structure: Page Table

⬛ A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages.
▪ Per-process kernel data structure in DRAM

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register (PTBR)

(CR3 in x86)

Page table

Physical page table
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Valid bit = 1

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Page Hit

⬛ Page hit: reference to VM word that is in physical memory
(DRAM cache hit)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip
PTEA

PTE
1

2

3

4

5

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Page Fault

⬛ Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation: Page Fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
⬛ Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
⬛ Page miss causes page fault (an exception)

⬛ Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
⬛ Page miss causes page fault (an exception)

⬛ Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
⬛ Page miss causes page fault (an exception)

⬛ Page fault handler selects a victim to be evicted (here VP 4)

⬛ Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Key point: Waiting until the miss to copy the page to
DRAM is known as demand paging

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating Pages

⬛ Allocating a new page (VP 5) of virtual memory.

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM as a Tool for Memory Protection
⬛ Extend PTEs with permission bits
⬛ MMU checks these bits on each access

Process i: AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

Yes

SUP

No

No

Yes

AddressREAD WRITE

PP 9Yes No

PP 6Yes Yes

PP 11Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8

PP 9

PP 11

EXEC

Yes

EXEC

Yes

Yes

Yes

Yes

No

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM is also Caching

⬛ Programs allocate virtual address ranges
▪ Implicitly via binaries / libraries

▪ Explicitly through heap / stack

⬛ The operating system decides which virtual pages should
be resident (i.e., in physical memory)
▪ OS manages the placement / replacement policies between

DRAM and disk

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM as a Tool for Caching

⬛ Conceptually, virtual memory is an array of N contiguous
bytes stored on disk.

⬛ The contents of the array on disk are cached in physical
memory (DRAM cache)
▪ These cache blocks are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP 0

PP 1

Empty

Cached

0

N-1

M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

DRAM Cache Organization

⬛ DRAM cache organization driven by the enormous miss penalty
▪ DRAM is about 10x slower than SRAM

▪ Disk is about 10,000x slower than DRAM

⬛ Consequences
▪ Large page (block) size: typically 4 KB, sometimes 4 MB

▪ Fully associative

▪ Any VP can be placed in any PP

▪ Requires a “large” mapping function – different from cache memories

▪ Highly sophisticated, expensive replacement algorithms

▪ Too complicated and open-ended to be implemented in hardware

▪ Write-back rather than write-through

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Integrating VM and Cache

VA
CPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA
miss

PTEA
hit

PA
hit

Data

PTE

L1
cache

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality to the Rescue Again!

⬛ Virtual memory seems terribly inefficient, but it works
because of locality.

⬛ At any point in time, programs tend to access a set of active
virtual pages called the working set
▪ Programs with better temporal locality will have smaller working sets

⬛ If (working set size < main memory size)
▪ Good performance for one process after compulsory misses

⬛ If (SUM(working set sizes) > main memory size)
▪ Thrashing: Performance meltdown where pages are swapped (copied)

in and out continuously

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Speeding up Translation with a TLB

⬛ Page table entries (PTEs) are cached in L1 like any other
memory word

▪ PTEs may be evicted by other data references

▪ PTE hit still requires a small L1 delay

⬛ Solution: Translation Lookaside Buffer (TLB)
▪ Small set-associative hardware cache in MMU

▪ Maps virtual page numbers to physical page numbers

▪ Contains complete page table entries for small number of pages

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing the TLB

⬛ MMU uses the VPN portion of the virtual address to
access the TLB:

TLB tag (TLBT) TLB index (TLBI)

0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

T = 2t sets

TLBI selects the set

TLBT matches tag
of line within set

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB Hit

MMU
Cache/
Memory

CPU

CPU Chip

VA

1

PA

4

Data

5

A TLB hit eliminates a memory access

TLB

2

VPN

PTE

3

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Address Translation Symbols

⬛ Basic Parameters
▪ N = 2n : Number of addresses in virtual address space

▪ M = 2m : Number of addresses in physical address space

▪ P = 2p : Page size (bytes)

⬛ Components of the virtual address (VA)
▪ TLBI: TLB index

▪ TLBT: TLB tag

▪ VPO: Virtual page offset

▪ VPN: Virtual page number

⬛ Components of the physical address (PA)
▪ PPO: Physical page offset (same as VPO)

▪ PPN: Physical page number

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz

https://canvas.cmu.edu/courses/49105/quizzes/150041/

https://canvas.cmu.edu/courses/49105/quizzes/150041/

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

We have a problem

...

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

1023
unallocated

pages

VP 9215

Virtual

memory

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs

220 Entries of
4 bytes each

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multi-Level Page Tables

⬛ Suppose:
▪ 4KB (212) page size, 48-bit address space, 8-byte PTE

⬛ Problem:
▪ Would need a 512 GB page table!

▪ 248 * 2-12 * 23 = 239 bytes

⬛ Common solution: Multi-level page table

⬛ Example: 2-level page table
▪ Level 1 table: each PTE points to a page table (always

memory resident)

▪ Level 2 table: each PTE points to a page
(paged in and out like any other data)

Level 1

Table

..
.

Level 2

Tables

..
.

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2

page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages

VP 9215

Virtual

memory

(1K - 9)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Translating with a k-level Page Table

Page table
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

the Level 1

page table

a Level 2

page table

a Level k

page table

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLBs and k-level Page Tables

⬛ TLBs cache the complete virtual to physical mapping
▪ Regardless of the levels of page tables,

the TLB stores the VPN -> PPN

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

⬛ Programmer’s view of virtual memory
▪ Each process has its own private linear address space

▪ Cannot be corrupted by other processes

⬛ System view of virtual memory
▪ Uses memory efficiently by caching virtual memory pages

▪ Efficient only because of locality

▪ Simplifies memory management and programming

▪ Simplifies protection by providing a convenient interpositioning point
to check permissions

	Slide 1
	Slide 2: Virtual Memory: Concepts 15-213/15-513/14-513: Introduction to Computer Systems 11th Lecture, Sept 30, 2025
	Slide 3: Midterm “Exam”
	Slide 4: This Picture is a Lie
	Slide 5: Processes
	Slide 6: Hmmm, How Does This Work?!
	Slide 7: A System Using Physical Addressing
	Slide 8: A System Using Virtual Addressing
	Slide 9: VM as a Tool for Memory Management
	Slide 10: VM as a Tool for Memory Management
	Slide 11: Simplifying Linking and Loading
	Slide 12: Address Spaces
	Slide 13: Why Virtual Memory (VM)?
	Slide 14: VM Address Translation
	Slide 15: MAP: V -> P
	Slide 16: Enabling Data Structure: Page Table
	Slide 17: Address Translation With a Page Table
	Slide 18: Page Hit
	Slide 19: Address Translation: Page Hit
	Slide 20: Page Fault
	Slide 21: Address Translation: Page Fault
	Slide 22: Handling Page Fault
	Slide 23: Handling Page Fault
	Slide 24: Handling Page Fault
	Slide 25: Handling Page Fault
	Slide 26: Allocating Pages
	Slide 27: VM as a Tool for Memory Protection
	Slide 28: VM is also Caching
	Slide 29: VM as a Tool for Caching
	Slide 30: DRAM Cache Organization
	Slide 31: Integrating VM and Cache
	Slide 32: Locality to the Rescue Again!
	Slide 33: Speeding up Translation with a TLB
	Slide 34: Accessing the TLB
	Slide 35: TLB Hit
	Slide 36: TLB Miss
	Slide 37: Summary of Address Translation Symbols
	Slide 38: Quiz
	Slide 39: We have a problem
	Slide 40: Multi-Level Page Tables
	Slide 41: A Two-Level Page Table Hierarchy
	Slide 42: Translating with a k-level Page Table
	Slide 43: TLBs and k-level Page Tables
	Slide 44: Summary

