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Midterm “Exam”

⬛ Take home exam (15-213/15-513/14-513) :
▪ In-person take home exam released on Wed, Oct 1

▪ Due on Wed, Oct 8 at 11:59pm

▪ Submitted to Gradescope

▪ 5% of course grade for 15-213/14-513 students

▪ 15% of course grade ONLY for 15-503 students

⬛ In person exam (15-213/14-513-only):
▪ In-person individual exam on 10/21 at 12:30pm

▪ 80 minutes to complete, worth 10% of course grade

▪ 2 double sided (letter or A4) sheets of notes allowed

▪ Worth 10% of final grade

▪ Questions may be similar or identical to take home questions
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This Picture is a Lie

⬛This is RAM, we said…

⬛But the computer can run 
more than one program at 
a time!

⬛Where are all the other 
programs?

⬛Let’s investigate.
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Processes

⬛ Definition: A process is an instance of a running 
program.
▪ One of the most profound ideas in computer science

▪ Not the same as “program” or “processor”

⬛ Unix: A parent process creates a new child process 
by calling fork

▪ Child is (sort of) a copy of the parent

▪ fork returns twice—once in each process

▪ Different return value in each

⬛ Parent can wait for child to finish by calling 
waitpid

▪ For now, think of this as “what main returns to”
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Hmmm, How Does This Work?!
Process 1 Process 2 Process n

Solution: Virtual Memory (today and next lecture)
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A System Using Physical Addressing

⬛ Used in “simple” systems like embedded microcontrollers in 
devices like cars, elevators, and digital picture frames
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A System Using Virtual Addressing

⬛ Used in all modern servers, laptops, and smart phones

⬛ One of the great ideas in computer science
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VM as a Tool for Memory Management

⬛ Key idea: each process has its own virtual address space
▪ It can view memory as a simple linear array

▪ Mapping function scatters addresses through physical memory

▪ Well-chosen mappings can improve locality
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VM as a Tool for Memory Management
⬛ Simplifying memory allocation

▪ Each virtual page can be mapped to any physical page

▪ A virtual page can be stored in different physical pages at different times

⬛ Sharing code and data among processes
▪ Map virtual pages to the same physical page (here: PP 6)
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Simplifying Linking and Loading

⬛Linking
▪ Each program has similar virtual 

address space

▪ Code, data, and heap always start 
at the same addresses.

⬛Loading 
▪ execve allocates virtual pages 

for .text and .data sections & 
creates PTEs marked as invalid

▪ The .text and .data sections 
are copied, page by page, on 
demand by the virtual memory 
system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0
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(stack 
pointer)

Memory
invisible to
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(.init, .text, .rodata)

Loaded 
from 
the 
executable 
file
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Address Spaces

⬛ Linear address space: Ordered set of contiguous non-negative integer 
addresses:

{0, 1, 2, 3 … }

⬛ Virtual address space: Set of N = 2n virtual addresses
{0, 1, 2, 3, …, N-1}

⬛ Physical address space: Set of M = 2m physical addresses
{0, 1, 2, 3, …, M-1}
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Why Virtual Memory (VM)?

⬛ Uses main memory efficiently
▪ Use DRAM as a cache for parts of a virtual address space

⬛ Simplifies memory management
▪ Each process gets the same uniform linear address space

⬛ Isolates address spaces
▪ One process can’t interfere with another’s memory

▪ User program cannot access privileged kernel information and code
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VM Address Translation

⬛ Virtual Address Space
▪ V = {0, 1, …, N–1}

⬛ Physical Address Space
▪ P = {0, 1, …, M–1}

⬛ Address Translation
▪ MAP:  V →  P  U  {∅}

▪ For virtual address a:

▪ MAP(a)  =  a’ if data at virtual address a is at physical address a’ in P

▪ MAP(a)  = ∅ if data at virtual address a is not in physical memory

– Either invalid or stored on disk
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MAP: V -> P

⬛ Mapping function from virtual pages to physical pages
▪ Page is the granularity of mapping set by the ISA

⬛ Function must be simple and efficient
▪ Implemented in hardware

▪ Significant design constraints

⬛ K-nary tree aka Page Table
▪ Each node of the tree is 1 page in size
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Enabling Data Structure: Page Table

⬛ A page table is an array of page table entries (PTEs) that 
maps virtual pages to physical pages. 
▪ Per-process kernel data structure in DRAM
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Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table 
base register (PTBR)

(CR3 in x86)

Page table 

Physical page table 
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Valid bit = 1
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Page Hit

⬛ Page hit: reference to VM word that is in physical memory 
(DRAM cache hit)
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Address Translation: Page Hit

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
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CPU
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2
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4

5



Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Page Fault

⬛ Page fault: reference to VM word that is not in physical 
memory (DRAM cache miss)
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Address Translation: Page Fault

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction
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Handling Page Fault
⬛ Page miss causes page fault (an exception)
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Handling Page Fault
⬛ Page miss causes page fault (an exception)

⬛ Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
⬛ Page miss causes page fault (an exception)

⬛ Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
⬛ Page miss causes page fault (an exception)

⬛ Page fault handler selects a victim to be evicted (here VP 4)

⬛ Offending instruction is restarted: page hit!
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Key point: Waiting until the miss to copy the page to 
DRAM is known as demand paging
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Allocating Pages

⬛ Allocating a new page (VP 5) of virtual memory.
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VM as a Tool for Memory Protection
⬛ Extend PTEs with permission bits
⬛ MMU checks these bits on each access

Process i: AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2:

•
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•

Process j:
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PP 11

EXEC
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VM is also Caching

⬛ Programs allocate virtual address ranges
▪ Implicitly via binaries / libraries

▪ Explicitly through heap / stack

⬛ The operating system decides which virtual pages should 
be resident (i.e., in physical memory)
▪ OS manages the placement / replacement policies between 

DRAM and disk
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VM as a Tool for Caching

⬛ Conceptually, virtual memory is an array of N contiguous 
bytes stored on disk. 

⬛ The contents of the array on disk are cached in physical 
memory (DRAM cache)
▪ These cache blocks are called pages (size is P = 2p bytes)
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DRAM Cache Organization

⬛ DRAM cache organization driven by the enormous miss penalty
▪ DRAM is about 10x slower than SRAM

▪ Disk is about 10,000x slower than DRAM

⬛ Consequences
▪ Large page (block) size: typically 4 KB, sometimes 4 MB

▪ Fully associative 

▪ Any VP can be placed in any PP

▪ Requires a “large” mapping function – different from cache memories

▪ Highly sophisticated, expensive replacement algorithms

▪ Too complicated and open-ended to be implemented in hardware

▪ Write-back rather than write-through
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Integrating VM and Cache

VA
CPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA
miss

PTEA 
hit

PA 
hit

Data

PTE

L1
cache

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Locality to the Rescue Again!

⬛ Virtual memory seems terribly inefficient, but it works 
because of locality. 

⬛ At any point in time, programs tend to access a set of active 
virtual pages called the working set
▪ Programs with better temporal locality will have smaller working sets

⬛ If (working set size < main memory size) 
▪ Good performance for one process after compulsory misses

⬛ If ( SUM(working set sizes) > main memory size ) 
▪ Thrashing: Performance meltdown where pages are swapped (copied) 

in and out continuously
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Speeding up Translation with a TLB

⬛ Page table entries (PTEs) are cached in L1 like any other 
memory word

▪ PTEs may be evicted by other data references

▪ PTE hit still requires a small L1 delay

⬛ Solution: Translation Lookaside Buffer (TLB)
▪ Small set-associative hardware cache in MMU

▪ Maps virtual page numbers to  physical page numbers

▪ Contains complete page table entries for small number of pages
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Accessing the TLB

⬛ MMU uses the VPN portion of the virtual address to 
access the TLB:

TLB tag (TLBT) TLB index (TLBI)

0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

T = 2t sets

TLBI selects the set

TLBT matches tag 
of line within set
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TLB Hit

MMU
Cache/
Memory

CPU

CPU Chip

VA

1

PA

4

Data

5

A TLB hit eliminates a memory access

TLB

2

VPN

PTE

3
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TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?
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Summary of Address Translation Symbols

⬛ Basic Parameters
▪ N = 2n : Number of addresses in virtual address space

▪ M = 2m : Number of addresses in physical address space

▪ P = 2p : Page size (bytes)

⬛ Components of the virtual address (VA)
▪ TLBI: TLB index

▪ TLBT: TLB tag

▪ VPO: Virtual page offset 

▪ VPN: Virtual page number 

⬛ Components of the physical address (PA)
▪ PPO: Physical page offset (same as VPO)

▪ PPN: Physical page number
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Quiz

https://canvas.cmu.edu/courses/49105/quizzes/150041/

https://canvas.cmu.edu/courses/49105/quizzes/150041/
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We have a problem

...

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

1023 
unallocated

pages

VP 9215

Virtual

memory

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated  pages

1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs

220 Entries of 
4 bytes each
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Multi-Level Page Tables

⬛ Suppose:
▪ 4KB (212) page size, 48-bit address space, 8-byte PTE 

⬛ Problem:
▪ Would need a 512 GB page table!

▪ 248 * 2-12  * 23 = 239 bytes

⬛ Common solution: Multi-level page table

⬛ Example: 2-level page table
▪ Level 1 table: each PTE points to a page table (always 

memory resident)

▪ Level 2 table: each PTE points to a page 
(paged in and out like any other data)

Level 1

Table

..
.

Level 2

Tables

..
.
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A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2

page tables

VP 0

...

VP 1023

VP 1024

...
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Gap

0

PTE 0
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PTE 1023
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PTE 0

PTE 1
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PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated  pages

1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs
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Translating with a k-level Page Table

Page table 
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

the Level 1

page table

a Level 2

page table

a Level k

page table
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TLBs and k-level Page Tables

⬛ TLBs cache the complete virtual to physical mapping
▪ Regardless of the levels of page tables, 

the TLB stores the VPN -> PPN
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Summary

⬛ Programmer’s view of virtual memory
▪ Each process has its own private linear address space

▪ Cannot be corrupted by other processes

⬛ System view of virtual memory
▪ Uses memory efficiently by caching virtual memory pages

▪ Efficient only because of locality

▪ Simplifies memory management and programming

▪ Simplifies protection by providing a convenient interpositioning point 
to check permissions
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