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Today

m Cache memory organization and operation CSAPP 6.4-6.5
m Performance impact of caches

"= The memory mountain CSAPP 6.6.1

= Rearranging loops to improve spatial locality CSAPP 6.6.2

= Using blocking to improve temporal locality CSAPP 6.6.3
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Recall: Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

C /

m Spatial locality:

" |tems with nearby addresses tend
to be referenced close together in time
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Recall: General Cache Concepts

Smaller, faster, more expensive

Cache 4 9 14 3 memory caches a subset of
the blocks

Data is copied in block-sized

4 transfer units
Larger, slower, cheaper memory
Memory 0 1 2 3 viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15
0 0000000000000 0O0O0CO
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Recall: Cache Hit

Request: 14 Data in block b is needed
Cach 2 5 2 3 Block b is in cache:
ache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
00000000000 O0COCOGEOOO
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Recall: Cache Miss

Cache

Memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Request: 12

12 9 14 3
12 Request: 12

0 1 2 3

4 5 6 7
8 9 10 11
12 13 14 15

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)



Recall: General Caching Concepts:

3 Types of Cache Misses

m Cold (compulsory) miss
= Cold misses occur because this is the first reference to the block.

(Misses with infinitely large cache with no placement restrictions)

m Capacity miss

= Occurs when the set of active cache blocks is larger than the cache.
(Additional misses from finite-sized cache with no placement restrictions)

m Conflict miss

= QOccurs when the cache is large enough, but too many data objects all
map (by the placement policy) to the same limited set of blocks
(Additional misses due to actual placement policy)
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General Cache Organization (S, E, B)

E = 2¢ lines per set

A
'd Y
4 «—
TR —
eooe
S=Zssets< TR

\.
Cache size
=S X E x B data bytes
v tag 01112 ¢ccce- B-1
T N— _/
. . V
valid bit B = 2 bytes per cache block (the data)
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caChe Read * Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
r A ~ * Locate data starting
4 at offset
o000

Address of word:

t bits s bits | b bits
= s S~

S=2 sets< eoooe tag set block

index offset

data begins at this offset

Vv tag 0]1]|2] ¢ec°- B-1

N— 7

valid bit B = 2° bytes per cache block (the data)
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

4 - Tilalalal=lclo Address of int:
v s thits | 0..01 | 100

Vv ta 0l112]|3]l41)51]16]|7 -
g find set

S$=2 sets<

v tag 0|1]2]314]|5]|6]7

v tag 01112314 ]|5]|6]7
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: if yes (= hit)

v tag 0|j1]2]|3]|4]|5]|6]|7

block offset
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: if yes (= hit)

v tag 0]1]112)1314]|5]6]7

block offset

int (4 Bytes) is here

If tag doesn’t match (= miss): old line is evicted and replaced
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Direct-Mapped Cache Simulation

t=1 s=2 b=l 4-bit addresses (address space size M=16 bytes)
X XX X S=4 sets, E=1 Blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] miss
v Tag Block
Set0 | 1 0 M[O-1]
Set1| O
Set2 | O
Set3 | 1 0 M[6-7]
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

2 lines per set t bits 0..01 | 100
A
' Y
(
vl | tag | |o]1]2]3|4a]5]6]7 vl | tag | [o]1]2]3]|a]5]6]|7
vl [ tag | [o[1]2]3Tals6[7l| |[v] [ tag | [o[z[2]3]a[5[6][7|| — find set
< vl | tag | |o]1]2]3|4a]5]6]7 vl | tag | [o]1]2]3]|a]5]6]|7
OO0 000000000000 000000 0C0O0COCOCGCOGEOSNOSOEOSEONEONOEONOEONONOOOOEOOEOOO
vl | tag | |o]2]2]3|4a]5]6]7 vl | tag | [o]2]2]3]|a]5]6]|7
\.
S sets
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

vV tag 0]11|2]|3]|4]|5]|6]|7 v tag 011|2|3]|4]|5]|6]|7|] —

block offset
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

vV tag 011]2]|3]14]5]6]|7 v tag 011|2|3]|4]|5]|6]|7|] —

block offset

short int (2 Bytes) is here

No match or not valid (= miss):
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...
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2-Way Set Associative Cache Simulation

t=2 s=1 b=l
XX X X 4-bit addresses (M=16 bytes)

S=2 sets, E=2 blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block

sero LL_100 | Mmi0-1]
1 |10 [ M[8-9]
cet 1 Cl) 01 | m[6-7]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18



What about writes?

m Multiple copies of data exist: LVT dl| tag | |o]2]2]:---- B-1
= L1, L2, L3, Main Memory

m What to do on a write-hit?
= Write-through (write immediately to memory)

I — =
valid bit dirty bit B = 2° bytes

= Write-back (defer write to memory until replacement of line)
= Each cache line needs a dirty bit (set if data has been written to)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)

L1 cache
(SRAM)

» Good if more writes to the location will follow

" No-write-allocate (writes straight to memory, L2 cache
does not load into cache) (SRAM)

| Typical L3 cache
(SRAM)

= Write-through + No-write-allocate

= Write-back + Write-allocate Main memory
(DRAM)
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Practical Write-back Write-allocate

. L. vil|d tag O]1]2] - B-1
m A write to address X is issued T
N— __/
m Ifitis a hit valid bit dirty bit B = 2% bytes

= Update the contents of block
= Set dirty bit to 1 (bit is sticky and only cleared on eviction)

m Ifitis a miss

= Fetch block from memory (per a read miss)
" The perform the write operations (per a write hit)

m If alineis evicted and dirty bit is setto 1

= The entire block of 2° bytes are written back to memory
= Dirty bit is cleared (set to 0)
= Lineis replaced by new contents
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Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3 L1 i-cache and d-cache:
R R 32 KB, 8-way,
€gs €8s Access: 4 cycles
L1 L1 L1 L1 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,
eee Access: 10 cycles
L2 unified cache L2 unified cache L3 unified cache:
8 MB, 16-way,

Access: 40-75 cycles

L3 unified cache .
(shared by all cores) Block size: 64 bytes for
all caches.

Main memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21
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Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hitrate
= Typical numbers (in percentages):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m HitTime
"= Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2
m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)
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Let’s think about those numbers

m Huge difference between a hit and a miss

= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider this simplified example:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”
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Writing Cache Friendly Code

m Make the common case go fast

= Focus on the inner loops of the core functions

m Minimize the misses in the inner loops

= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories
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Quiz

https://canvas.cmu.edu/courses/49105/quizzes/150049
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Today

m Performance impact of caches

= The memory mountain

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26



Carnegie Mellon

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.
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Memory Mountain Test Function

long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

* array "data" with stride of "stride", Call test () with many
* RELEE] it AEED MAEE L) combinations of elems
*/

int test(int elems, int stride) { and stride.

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long accO0 = 0, accl = 0, acec2 = 0, ace3 = 0; For each elems and
long length = elems, limit = length - sx4; stride:

/* Combine 4 elements at a time */

for (i = 0; i < limit; i += sx4) { 1. Call test() once to

accO0 = accO + data[i]; warm up the caches.
accl = accl + data[i+stride];
acc2 = acc2 + data[i+sx2]; 2. Call test() again and

acc3 = acc3 + data[i+sx3]; measure the read

} throughput (MB/s)

/* Finish any remaining elements */
for (; i < length; i++) {
acc0 = accO0 + data[i]:;

}

return ((accO0 + accl) + (acc2 + acec3l));

} mountain/mountain.c

28
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Core i7 Haswell
- 2.1 GHz
The Memory MOuntaln 32 KB L1 d-cache
256 KB L2 cache

Aggressfve 8 MB L3 cache
prefetching 64 B block size
16000 ’

14000

Q

11]

= 12000

-

2 10000 ‘

=1

E 8000 \ A Ridges

| —
8 6000 > Z z’::;;:coral
(14 N\
4000
2000 (
Slopes /;
of spatial <5 o 32k
locality s3 128k
o5 512k
<7 2m
Stride (x8 bytes) 32m 8m Size (bytes)

s11
128m
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Today

= Rearranging loops to improve spatial locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30
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Remember matrix multiplication

B

e — Outli, j] =
b, b, ; _ :lz;p(roduct(A[l, ..], B[..,j])
b,,|b,; a[i, 0] * b[0, j],

I - all, 1] * b[1, ]

1 1= ’
a,q.|a;, % O

A as1|33, Ee—— o
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Matrix Multiplication Example

Variable sum

= Description: /* ij]_{ */ _ _ held in register
= Multiply N x N matrices for (i=0; i<n; i++) {
= Matrix elements are for (J=0; Jj<n; Jj++) {

doubles (8 bytes) sum = 0.0; <
for (k=0; k<n; k++)

sum += a[i] [k] * b[k][]j];
c[i] [J] = sum;

= O(N3) total operations

= N reads per source
element

= N values summed per }
destination

matmult/mm. c

= but may be able to
hold in register
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Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

m Analysis Method:

= Look at access pattern of inner loop

C A B
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Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order

a a a a a a
[0 |+ « « | [01] (11|« « «|[1] R (12555 [ BERER 128§
[0] [N-1]| [0] [N-1] [0] [N-1]

m Stepping through columns in one row:
" for (1 = 0; 1 < N; i++)
sum += a[0][i]
= if block size (B) > sizeof(a;) bytes, exploit spatial locality
* miss rate = sizeof(a;) / B
m Stepping through rows in one column:
" for (1 = 0; 1 < M; i++)
sum += a[i][0];
= accesses distant elements: no spatial locality!
= miss rate =1 (i.e. 100%)
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Matrix Multiplication (1ijk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { *)
sum = 0.0; g - ﬁ (i‘j)
for (k=0; k<n; k++) (i,%)
sum += a[i] [k] * b[k][j]; A B C

c[i] [§] = sum; ‘ ‘ ‘
}

} matmult/mm.c Row-wise Column- Fixed
wise

Inner loop:

Miss rate for inner loop iterations:
A B C

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35
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Matrix Multiplication (1ijk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { *)
sum = 0.0; g - ﬁ (i‘j)
for (k=0; k<n; k++) (i,%)
sum += a[i] [k] * b[k][j]; A B C

c[i] [§] = sum; ‘ ‘ ‘
}

} matmult/mm.c Row-wise Column- Fixed
wise

Inner loop:

Miss rate for inner loop iterations:
A B C

0.25 1.0 0.0

Block size = 32B (four doubles)
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Matrix Multiplication (ki)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i,k) E(k'*)g
r = a[i] [k]; O (i,%)
B C

for (j3=0; j<n; j++) A
c[i][]J] += r * Db[k][]]’ ‘ ‘ ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Miss rate for inner loop iterations:

A B C

Block size = 32B (four doubles)
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Matrix Multiplication (ki)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i,k) E(k'*)g
r = a[i] [k]; O (i,%)
B C

for (j3=0; j<n; j++) A
c[i][]J] += r * Db[k][]]’ ‘ ‘ ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Miss rate for inner loop iterations:

A B ¢
0.0 0.25 0.25

Block size = 32B (four doubles)
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Matrix Multiplication (jki)

/* ki */ Inner loop:
for (j=0; j<n; j++) { (*,k) (*))
for (k=0; k<n; k++) { (kj)
r = b[k][j]; ” " [
for (i=0; i<n; i++) A B C
c[i] [j] += al[il[k] * r; ‘ ‘ ‘
T e Column- Fixed Column-

wise wise

Miss rate for inner loop iterations:
A B C

Block size = 32B (four doubles)
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Matrix Multiplication (jki)

/* ki */ Inner loop:
for (j=0; j<n; j++) { (*,k) (*))
for (k=0; k<n; k++) { (kj)
r = b[k][j]; ” " [
for (i=0; i<n; i++) A B C
c[i] [j] += al[il[k] * r; ‘ ‘ ‘
T e Column- Fixed Column-

wise wise

Miss rate for inner loop iterations:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)
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Summary of Matrix Multiplication

Bryant and O’Hallaron,

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)

sum += a[i] [k] * b[k]l[j];

c[i][j] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (jJ=0; j<n; j++)
c[i]l[3] += r * b[k][]];
}
}

for (3j=0; j<n; j++) {

for (k=0; k<n; k++) {
r = b[k][]j]’
for (i=0; i<n; i++)
c[i][]J] += al[i]l[k] * r;

ijk (& jik):
¢ 2 |loads, O stores
e avg misses/iter = 1.25

kij (& ikj):
e 2 |oads, 1 store
e avg misses/iter = 0.5

jki (& kji):
e 2 loads, 1 store
e avg misses/iter = 2.0

41
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Core i7 Matrix Multiply Performance

Cycles per inner loop iteration
100

jki/kji (2.0)

——jki
—-kji
——ijk
—7jik

ijk/ jik (1.25)

10

_——r
kij/ik3j (0.5)
1 I I I I I I I I I I I I 1

50 100 150 200 250 300 350 400 450 500 550 600 650 700

Array size (n)
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Today

= Using blocking to improve temporal locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43
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Example: Matrix Multiplication

¢ = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i++)
for (J = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

I
X
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Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)

m First iteration: r ~N
" n/8+ n=9n/8 misses

I
X

= Afterwards in cache:
(schematic) " —

]
X

8 wide
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45
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Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)

n
m Second iteration: —N
= Again: :
n/8 + n =9n/8 misses _
- X
8 wide

m Total misses:
" 9n/8 n%?=(9/8) n?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46
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Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (i1l = i; il < i+B; il++)
for (31 = j; jl < j+B; jl++)
for (k1 = k; k1l < k+B; kl++)
c[il*n+jl1l] += a[il*n + k1l]*b[kl*n + jl];

} matmult/bmm. c
jl
< a 2 € Notation Note
= X + This “B” is not the
] ilgms e cache block size B
A

Block size B x B 47
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Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

. ] ] n/B blocks
m First (block) iteration: A
= B*B/8 misses for each block BEEEE B
= 2n/BxB?/8 = nB/4 _ —
(omitting matrix c) - X ]

Block size B x B

= Afterwards in cache ] EEEEE

(schematic)

X
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Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B?< C

. . n/B blocks
m Second (block) iteration: A
= Same as first iteration [ ] T ] |
= 2n/BxB2/8 =nB/4 _ X
m Total misses: Block size B x B

= nB/4 * (n/B)?=n3/(4B)
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Blocking Summary

m No blocking: (9/8) n3® misses
m Blocking: (1/(4B)) n® misses

m Use largest block size B, such that B satisfies 3B2< C

® Fit three blocks in cache! Two input, one output.

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |Input data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly
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Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!
= Focus on the inner loops, where bulk of computations and memory
accesses occur.
= Try to maximize spatial locality by reading data objects sequentially
with stride 1.

= Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.
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Supplemental slides
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Recall: Modern CPU Design

Instruction Control
Control - .
Instruction

Retirement

Sennnns Unit
: Register Instruction PLRITTLNE
File Decode |

Cache

Operations

Register Updates Prediction OK?

\ 4

. Functional
Bra Load pre .
Units
A A A A y

A a

\ 4 A 4 A 4 A 4 A 4 A 4

Operation Results

Addr. Addr.

Data Data

Execution
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What it Really Looks Like

CPU chip

Register file

Cache <—> |:> ALU
memory (]

Bus interface

Core i7-39_60X _

Queue, Uncore E
& I/O

Ud w.HodsueladAH

HyperTransport™ Ph
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What it Really Looks Like (Cont.)

Intel Sandy Bridge
Processor Die

~~4 L1: 32KB Instruction + 32KB Data
== L2: 256KB
L3: 3-20MB
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Why Index Using Middle Bits?

Direct mapped: One line per set
Assume: cache block size 8 bytes

/Standard Method: \
Middle bit indexing
4 Address of int:
vi [ tae | |011]2]314]15]6f7 tbits | 0..01 | 100
v tag 0|1]2]314]|5]|6]7 -
find set /
S=2s sets<
- tag 0j112]3]4>5]e}7 /Alternative Method: \
High bit indexing
OO0 0000000 OGDEOGEOGOEOOEOONOONOSOOO
Address of int:
v tag 01]1(2]3]14]|5]|6]7 1..11 t bits 100
\ .
find set

\_ J
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lllustration of Indexing 0000sx
Approaches PoDLe
0010xx

m 64-byte memory 001 1xx
" 6-bit addresses 0100xx

m 16 byte, direct-mapped cache 010L5x
m Block size = 4. (Thus, 4 sets; why?) 0110xx
m 2 bits tag, 2 bits index, 2 bits offset 011lxx
1000xx

1001xx

Set 0 1010xx

Set1l 1011xx

Set 2 1100xx

Set 3 1101xx

1110xx

1111xx
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Middle Bit Indexing

m Addresses of form TTSSBB

= TT Tag bits
= SS Set index bits
"= BB Offset bits

m Makes good use of spatial locality

Set O

Set1

Set 2

Set 3
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High Bit Indexing

m Addresses of form SSTTRBB

= SS Set index bits
= TT Tag bits
"= BB Offset bits

m Program with high spatial locality
would generate lots of conflicts

Set O

Set1

Set 2

Set 3
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Example: Core i7 L1 Data Cache

N
>
& 3
W a2
L. E = 2¢ lines per set \e@"' 000 6\(\
32 kB 8-way set associative e A N 0 [ 0 [ 0000
64 bytes/block I I eee e ; ; 88%
47 bit address range | I By 2 2 8%(1)
S=2setsg | I Jeeee [ ] 5 | 5 | 0101
B= 6 | 6 | 0110
_ s- 00 00 000000000000 0060OCOCOGIOGOSINISIOIOS !7 !7 0111
= 8 | 8 | 1000
- - .| J \Qg — 9 | 9 [ 1001
! A 101010
C= Cache size: B [11 1011
~ 1 [oTil2] - C =S x E x B data bytes C |12 ] 1100
L] Cooe Jlofaaf o fon] D [13]1101
I_("b_ — E |14 1110
validbit F |15[ 1111
Address of word:
| thits | sbits | b bits |
T
tag set block
. . 27
index offset Stack Address: Blocfk offset: 0x?"
0x00007£7262ale010 Set index: 0x??
Block offset: . bits Tag: 0x??
Set index: . bits
Tag: . bits
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Example: Core i7 L1 Data Cache

\
&S
E = 2¢ lines per set Q@.‘- 000\6\(\‘3‘
32 kB 8-way set associative e = N 0 T0 10000
64 bytes/block I [ oeee ; ; 88%
47 bit address range | I By 2 2 8%(1)
_ S=2sets{ | | Jeeee ] 5 | 5 | 0101
B =64 6 | 6 | 0110
S=64,s=6 | ceemeeemmemeeeseceaesene 77 ToL1T
8 | 8 | 1000
E=8,e=3 L | J I — 9 [ 9 [ 1001
10 | 1010
C=64x64x8=32,768 o 1T IoLs
I_Trll e | [o]i]2] [61] C =S x E x B data bytes C |12 | 1100
| D |13 ]| 1101
valid bit H/_/ E 14 1110
F |15 1111
Address of word:
| thits | sbits | b bits |
T
tag i:de:x ::f;:; Stack Address: Block offset: 0x10
0x00007£f7262ale010 Set index: 0x0
Block offset: 6 bits Tag: 0x7f£f7262ale
Set index: 6 bits
Tag: 35 bits 0000 0001 0000
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The Memory Mountain

Carnegie Mellon

Core i5 Haswell
3.1 GHz
32 KB L1 d-cache

256 KB L2 cache

Aggressive
prefetching 8 MB L3 cache
64 B block size
32000
28000

g 24000
=
5
s
o)
3 Ridges
S of temporal
: / locality
(14

Slopes

of spatial 128k Sk

localit 5 7~ 512k

y - s <7 M em ( 2m -
Stride (x8 bytes) s9 ~ Size (bytes)
1 28m
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Cache Capacity Effects from Core i7 Haswell

3.1 GHz
Memorv Mountain 32 KB L1 d-cache
€ O y ou ta 256 KB L2 cache
8 MB L3 cache
30000 64 B block size
25000 ||
0
E 20000 ||
H Main
£, 15000 13 L2 11
o Memory Slice through
K
b memory
g ' mountain with
stride=8
5000
O 3
B @ 55 A \Qq,b* B

Working set size (bytes)
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Cache Block Size Effects from Core 17 Haswell
H 32 KB L1 d-cache
Memory Mountain g L
8 MB L3 cache
Throughput for size = 128K 64 B block size
35000
30000 & /\
\Miss rate = s/8
25000 \,/\
@ 20000 \ Miss rate = 1.0
N
g 15000 l =0=\easured
/l
10000
5000
0

sl s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 Strides
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Modeling Block Size Effects
from Memory Mountain

Throughput for size = 128K

Carnegie Mellon

Core i7 Haswell
2.26 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

35000
6
AN 10
30000
\ Throughput =
25000 / 8.0s+24.3
8 20000
§ =0=Vleasured
2 15000 =@=Model
10000
5000
0
sl s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 Strides
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Core 2 Duo

2008 Memory Mountain 2.4 Gz

32 KB L1 d-cache
No

\ 6MB L2 cache
prefetching

64 B block size

20000
18000
16000
14000

12000
10000
8000

Read throughput (MB/s)

6000

4000

2000

s1 128K

3
° s5 512k
2m

Stride (x8 bytes) Size (bytes)
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Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { * i
sum = 0.0; L;;;J - ﬁ]i&: (&D
for (k=0; k<n; k++) (i,%)
sum += a[i] [k] * b[k][j]; A B C

c[i][] = sum ‘ ‘ ‘
}

matmult/mm. c Row-wise Column- Fixed
wise

Inner loop:

Misses per inner loop iteration:

A B C

0.25 1.0 0.0
Block size = 32B (four doubles)
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Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i,k) E(k’*)g
r = a[i] [k]; O (i,*)
B C

for (j3=0; j<n; j++) A
c[i][]J] += r * b[k][]]~ ‘ ‘ ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25

Block size = 32B (four doubles)
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Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {

for (j=0; j<n; j++) { * k) *
r = b[k][j]; (k.J)
for (i=0; i<n; i++) -

Inner loop:

A . A B C
c[i][]J] += a[i]l[k] * r; ‘ ‘ ‘
matmult/mm.c
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)
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