
Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Hierarchy

15-213/14-513/15-513: Introduction to Computer Systems
9th Lecture, Sept 23, 2025

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Announcements
⬛ Tomorrow:

▪ Written #3 peer review due
▪ Written #4 due

⬛ Thursday:
▪ Attack lab due
▪ Cache lab goes out

⬛ Friday:
▪ Recitation on Caches and C Review
▪ Written #5 goes out

⬛ Sunday:
▪ Bootcamp video on C Programming

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processors need Data
⬛ Most computations need complex input, have side effects,

etc
▪ This data is stored in “memory”

⬛ But what is “memory”?

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Writing & Reading Memory

⬛Write
▪ Transfer data from CPU to memory
movq %rax, 8(%rsp)

▪ “Store” operation

⬛Read
▪ Transfer data from memory to CPU
movq 8(%rsp), %rax

▪ “Load” operation

From 5th lecture

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

The CPU-Memory Gap
The gap between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Disk seek time
SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

DRAM

CPU

SSD

Disk

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

“Memory Wall” or Von Neumann bottleneck

⬛ The performance gap between computation and data storage

⬛ Three approaches:
▪ Build a hierarchy (covered in 213)
▪ Find other stuff to do (346, 418)
▪ Move computation (346, 7xx?)

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
⬛ The memory abstraction CSAPP 6.1.1
⬛ RAM : main memory building block CSAPP 6.1.1
⬛ Locality of reference CSAPP 6.2
⬛ The memory hierarchy CSAPP 6.3
⬛ Storage technologies and trends CSAPP 6.1.2-6.1.4

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Modern Connection between CPU and Memory

⬛ A bus is a collection of parallel wires that carry address,
data, and control signals.

⬛ Buses are typically shared by multiple devices.

Main
memoryMemory Controller

ALU

Register file

CPU chip

Memory bus

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Memory Read Transaction (1)
⬛ CPU places address A on the memory bus.

ALU

Register file

Memory Controller
A 0

Ax

Main memory

%rax

Load operation: movq A, %rax

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Memory Read Transaction (2)
⬛ Main memory reads A from the memory bus, retrieves

word x, and places it on the bus.

ALU

Register file

Memory Controller

x 0

Ax

Main
memory

%rax

Load operation: movq A, %rax

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Memory Read Transaction (3)
⬛ CPU reads word x from the bus and copies it into register
%rax.

ALU

Register file

Memory Controller x

Main memory
0

A

%rax

Load operation: movq A, %rax

x

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Memory Write Transaction (1)
⬛ CPU places address A on bus. Main memory reads it and

waits for the corresponding data word to arrive.

y
ALU

Register file

Memory Controller
A

Main memory
0

A

%rax

Store operation: movq %rax, A

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Memory Write Transaction (2)
⬛ CPU places data word y on the bus.

y
ALU

Register file

Memory Controller
y

Main memory
0

A

%rax

Store operation: movq %rax, A

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Memory Write Transaction (3)
⬛ Main memory reads data word y from the bus and stores

it at address A.

y
ALU

Register file

Memory Controller y

Main memory
0

A

%rax

Store operation: movq %rax, A

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Today
⬛ The memory abstraction
⬛ RAM : main memory building block
⬛ Locality of reference
⬛ The memory hierarchy
⬛ Storage technologies and trends

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Random-Access Memory (RAM)
⬛ Key features

▪ RAM is traditionally packaged as a chip.
▪ or embedded as part of processor chip

▪ Basic storage unit is normally a cell (one bit per cell).
▪ Multiple RAM chips form a memory.

⬛ RAM comes in two varieties:
▪ SRAM (Static RAM)
▪ DRAM (Dynamic RAM)

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

RAM Technologies

⬛DRAM

⬛1 Transistor + 1 capacitor
/ bit
▪ Capacitor oriented

vertically

⬛Must refresh state
periodically

⬛SRAM

⬛6 transistors / bit
⬛Holds state

indefinitely

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

SRAM vs DRAM Summary

⬛ Trends
▪ SRAM scales with semiconductor technology

▪ Reaching its limits
▪ DRAM scaling limited by need for minimum capacitance

▪ Aspect ratio limits how deep can make capacitor
▪ Also reaching its limits

Trans. Access Needs Needs
per bit time refresh? EDC? Cost Applications

SRAM 6 or 8 1x No Maybe 100x Cache memories

DRAM 1 10x Yes Yes 1x Main memories,
frame buffers

EDC: Error detection and correction

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Today
⬛ The memory Abstraction
⬛ RAM : main memory building block
⬛ Locality of reference
⬛ The memory hierarchy
⬛ Storage technologies and trends

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

The CPU-Memory Gap
The gap between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Disk seek time
SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

DRAM

CPU

SSD

Disk

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Locality to the Rescue!

The key to bridging this CPU-Memory gap is an important
property of computer programs known as locality.

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Locality
⬛ Principle of Locality: Many Programs tend to use data and

instructions with addresses near or equal to those they
have used recently.

⬛ Temporal locality:
▪ Recently referenced items are likely

to be referenced again in the near future

⬛ Spatial locality:
▪ Items with nearby addresses tend

to be referenced close together in time

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Locality Example

⬛ Data references
▪ Reference array elements in succession

(stride-1 reference pattern).
▪ Reference variable sum each iteration.

⬛ Instruction references
▪ Reference instructions in sequence.
▪ Cycle through loop repeatedly.

long sum = 0;
for (int i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial or Temporal
Locality?

temporal

spatial
temporal

spatial

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Qualitative Estimates of Locality
⬛ Claim: Being able to look at code and get a qualitative sense

of its locality is a key skill for a professional programmer.
⬛ Question: Does this function have good locality with respect

to array a?
int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

Answer: yes

Hint: array layout
is row-major order

• • •
a
[0]
[0]

a
[0]
[N-1]

• • •
a
[1]
[0]

a
[1]
[N-1]

• • •
a

[M-1]
[0]

a
[M-1]
[N-1]

• • •

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality Example
⬛ Question: Does this function have good locality with respect

to array a?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Answer: no

Stride N reference
pattern

• • •
a
[0]
[0]

a
[0]
[N-1]

• • •
a
[1]
[0]

a
[1]
[N-1]

• • •
a

[M-1]
[0]

a
[M-1]
[N-1]

• • •

Note: If M is very small
then good locality. Why?

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Locality Example
⬛ Question: Can you permute the loops so that the function

scans the 3-d array a with a stride-1 reference pattern
(and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}

Answer: make j the inner loop

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Today
⬛ The memory Abstraction
⬛ RAM : main memory building block
⬛ Locality of reference
⬛ The memory hierarchy
⬛ Storage technologies and trends

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Memory Hierarchies
⬛ Some fundamental and enduring properties of hardware

and software:
▪ Fast storage technologies cost more per byte, have less capacity,

and require more power (heat!).
▪ The gap between CPU and main memory speed is widening.
▪ Well-written programs tend to exhibit good locality.

⬛ These properties complement each other well for many
types of programs.

⬛ They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory size affects latency & energy

32

Small
Memory

CPU

Big Memory

CPU

 Signals have further to travel
 Fan out to more locations

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Example Memory
Hierarchy

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers.

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved
from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds disk blocks
retrieved from local disks.

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Caches
⬛ Cache: A smaller, faster storage device that acts as a staging area for

a subset of the data in a larger, slower device.
⬛ Fundamental idea of a memory hierarchy:

▪ For each k, the faster, smaller device at level k serves as a cache for the larger,
slower device at level k+1.

⬛ Why do memory hierarchies work?
▪ Because of locality: programs tend to access the data at level k more often than

they access the data at level k+1.
▪ Thus, the storage at level k+1 can be slower, and thus larger and cheaper per bit.

⬛ Big Idea (Ideal): The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage near the bottom,
but that serves data to programs at the rate of the fast storage near
the top.

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hierarchy provides the illusion of large &
fast memory

35

Small
Memory

Big Memory
(rarely accessed)

CPU

Memory
Hierarchy

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache vs Memory
⬛ Caches are invisible (transparent) to software

▪ Managed by hardware in response to loads & stores
▪ Performance & energy improve without software

changes
▪ Caveat: Recent CPUs have some instructions to manage

cache (e.g., prefetch, invalidate, partition…)

⬛ Memory is visible to software
▪ I.e., addressable directly by instructions (memory

address, registers)
▪ Some optimization opportunities, but only w/ software

changes

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

General Caching Concepts:
3 Types of Cache Misses

⬛ Cold (compulsory) miss
▪ Cold misses occur because this is the first reference to the block.

⬛ Capacity miss
▪ Occurs when the set of active cache blocks (working set) is larger than

the cache.

⬛ Conflict miss
▪ Most caches limit blocks at level k+1 to a small subset (sometimes a

singleton) of the block positions at level k.
▪ E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

▪ Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.
▪ E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Caching Concepts:
3 Types of Cache Misses

⬛ Cold (compulsory) miss
▪ Misses with an infinitely large cache with no placement

restrictions.
⬛ Capacity miss

▪ Additional misses from finite-sized cache (and still no
placement restrictions).

⬛ Conflict miss
▪ Additional misses due to actual placement policy.

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Examples of Caching in the Mem. Hierarchy

Hardware
MMU

0On-Chip TLBAddress
translations

TLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 byte words

What is Cached?

Web proxy
server

1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1

Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it
Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Working Set, Locality, and Caches
⬛ Working Set: The set of data a program is currently “working on”

▪ Definition of “currently” depends on context, e.g., in this loop
▪ Includes accesses to data and instructions

⬛ Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently
▪ Nearby addresses: Spatial Locality
▪ Equal addresses: Temporal locality

⬛ Caches take advantage of temporal locality by storing recently
used data, and spatial locality by copying data in block-sized
transfer units
▪ Locality reduces working set sizes
▪ Caches are most effective when the working set fits in the cache

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

How Many Cold Cache Misses?

⬛ References array elements in succession (spatial locality)
⬛ References sum and i each iteration (temporal locality; put in registers)

⬛ Answer depends on:
▪ Are any elements already in the cache?
▪ How many elements fit in one cache block?
▪ Is the start of the array aligned with the start of a cache block?

⬛ Example: If cache starts empty, 8 elements fit evenly in a cache block, and the
array is aligned with the start of a cache block then 2 cold misses.

long sum = 0;
for (int i = 0; i < 16; i++)

sum += a[i];
return sum;

a[0] a[1] a[15]a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] • • •

Layout in Memory

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Quiz Time!

https://canvas.cmu.edu/courses/49105/quizzes/150039

https://canvas.cmu.edu/courses/49105/quizzes/150039
https://canvas.cmu.edu/courses/49105/quizzes/150039
https://canvas.cmu.edu/courses/49105/quizzes/150039
https://canvas.cmu.edu/courses/49105/quizzes/150039
https://canvas.cmu.edu/courses/49105/quizzes/150039

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Today
⬛ The memory abstraction
⬛ RAM : main memory building block
⬛ Locality of reference
⬛ The memory hierarchy
⬛ Storage technologies and trends

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Storage Technologies
⬛Magnetic Disks

⬛Store on magnetic
medium

⬛Electromechanical
access

⬛Nonvolatile (Flash)
Memory

⬛ Store as persistent
charge

⬛ Implemented with 3-D
structure
▪ 100+ levels of cells
▪ 3-4 bits data per cell

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

What’s Inside A Disk Drive?
SpindleArm

Actuator

Platters

Electronics
(including a
processor
and memory!)SCSI

connector

Image courtesy of Seagate Technology

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Disk Geometry

⬛ Disks consist of platters, each with two surfaces.
⬛ Each surface consists of concentric rings called tracks.
⬛ Each track consists of sectors separated by gaps.

Spindle

Surface
Tracks

Track k

Sectors

Gaps

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Disk Access – Service Time Components

After BLUE read Seek for RED Rotational latency After RED read

Data transfer Seek Rotational
latency

Data transfer

Note: Disk access time dominated by seek time and rotational latency.
Orders of magnitude slower than DRAM!

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Nonvolatile Memories
⬛ DRAM and SRAM are volatile memories

▪ Lose information if powered off.
⬛ Nonvolatile memories retain value even if powered off

▪ Read-only memory (ROM): programmed during production
▪ Electrically eraseable PROM (EEPROM): electronic erase capability
▪ Flash memory: EEPROMs, with partial (block-level) erase capability

▪ Wears out after about 100,000 erasings
▪ 3D XPoint (Intel Optane) & emerging NVMs

▪ New materials

⬛ Uses for Nonvolatile Memories
▪ Firmware programs stored in a ROM (BIOS, controllers for disks,

network cards, graphics accelerators, security subsystems,…)
▪ Solid state disks (replacing rotating disks)
▪ Disk caches

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Solid State Disks (SSDs)

⬛ Pages: 512KB to 4KB, Blocks: 32 to 128 pages
⬛ Data read/written in units of pages.
⬛ Page can be written only after its block has been erased.
⬛ A block wears out after about 10,000 repeated writes.

Flash
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block B-1

Flash memory

Solid State Disk (SSD)

Requests to read and
write logical disk blocks

DRAM
Buffer

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Non-Volatile Storage: Flash

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

SSD Performance Characteristics
⬛ Benchmark of Samsung 970 EVO Plus

⬛ Sequential access faster than random access
▪ Common theme in the memory hierarchy
▪ DQ = deep queue, issuing many concurrent reads (latency hurts!)

⬛ Random writes are tricky
▪ Erasing a block takes a long time (~1 ms), but the SSD has a pool of pre-

erased blocks
▪ Modifying a block page requires all other pages to be copied to new block.
▪ But the SSD has a write cache that it accumulates writes into…

Sequential read throughput 2,221 MB/s Sequential write tput 1,912 MB/s
Random ST throughput 61.7 MB/s Random write tput 165 MB/s
Random DQ throughput 947 MB/s Random DQ write 1028 MB/s

https://ssd.userbenchmark.com/SpeedTest/711305/Samsung-SSD-970-EVO-Plus-250GB

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

SSD Tradeoffs vs Rotating Disks
⬛ Advantages

▪ No moving parts  faster, less power, more rugged

⬛ Disadvantages
▪ Have the potential to wear out

▪ Mitigated by “wear leveling logic” in flash
translation layer

▪ E.g. Samsung 940 EVO Plus guarantees
600 writes/byte of writes before they wear out

▪ Controller migrates data to minimize wear level
▪ More expensive per byte (but closing fast)

⬛ Where are rotating disks still used?
▪ Bulk storage – video, huge datasets / databases, etc.
▪ Cheap storage – desktops.

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Summary
⬛ The speed gap between CPU, memory and mass storage

continues to widen.

⬛ Well-written programs exhibit a property called locality.

⬛ Memory hierarchies based on caching close the gap by
exploiting locality.

⬛ Flash memory progress outpacing all other memory and
storage technologies (DRAM, SRAM, magnetic disk)
▪ Able to stack cells in three dimensions

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Supplemental slides

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Enhanced DRAMs (Extra Detail for Modern Systems)

⬛ Operation of DRAM cell has not changed since its invention
▪ Commercialized by Intel in 1970.

⬛ DRAM cores with better interface logic and faster I/O :
▪ Synchronous DRAM (SDRAM)

▪ Uses a conventional clock signal instead of asynchronous control

▪ Double data-rate synchronous DRAM (DDR SDRAM)
▪ Double edge clocking sends two bits per cycle per pin
▪ Different types distinguished by size of small prefetch buffer:

– DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits), DDR4 (16 bits)
▪ By 2010, standard for most server and desktop systems
▪ Intel Core i7 supports DDR3 and DDR4 SDRAM

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 880 100 30 1 0.1 0.06 0.02 44,000
access (ns) 200 100 70 60 50 40 20 10
typical size (MB) 0.256 4 16 64 2,000 8,000 16.000 62,500

Storage Trends

DRAM

SRAM

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/GB 100,000 8,000 300 10 5 0.3 0.03 3,333,333
access (ms) 75 28 10 8 5 3 3 25
typical size (GB) 0.01 0.16 1 20 160 1,500 3,000 300,000

Disk

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 2,900 320 256 100 75 60 320 116
access (ns) 150 35 15 3 2 1.5 200 115

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

CPU Clock Rates

1985 1990 1995 2003 2005 2010 2015 2015:1985

CPU 80286 80386 Pentium P-4 Core 2 Core i7(n) Core i7(h)

Clock
rate (MHz) 6 20 150 3,300 2,000 2,500 3,000 500

Cycle
time (ns) 166 50 6 0.30 0.50 0.4 0.33 500

Cores 1 1 1 1 2 4 4 4

Effective
cycle 166 50 6 0.30 0.25 0.10 0.08 2,075
time (ns)

Inflection point in computer history
when designers hit the “Power Wall”

(n) Nehalem processor
(h) Haswell processor

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Conventional DRAM Organization
⬛ d x w DRAM:

▪ d⋅ w total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

supercell
(2,1)

2 bits
/

8 bits
/

Memory
controller

(to/from cores)

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.
Step 1(b): Row 2 copied from DRAM array to row buffer.

Cols

Rows

RAS = 2 0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.
Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually

back to the CPU.
Step 3: All data written back to row to provide refresh

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

Memory
controller

supercell
(2,1)

supercell
(2,1)

To Cores

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Memory Modules

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory
controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits
0-7

bits
8-15

bits
16-23

bits
24-31

bits
32-39

bits
40-47

bits
48-55

bits
56-63

64-bit word

031 78151623243263 394047485556

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Disk Operation (Multi-Platter View)

Arm

Read/write heads
move in unison
from cylinder to
cylinder

Spindle

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Disk Access – Service Time Components

After BLUE read Seek for RED Rotational latency After RED read

Data transfer Seek Rotational
latency

Data transfer

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Disk Access Time
⬛ Average time to access some target sector approximated by:

▪ Taccess = Tavg seek + Tavg rotation + Tavg transfer

⬛ Seek time (Tavg seek)
▪ Time to position heads over cylinder containing target sector.
▪ Typical Tavg seek is 3—9 ms

⬛ Rotational latency (Tavg rotation)
▪ Time waiting for first bit of target sector to pass under r/w head.
▪ Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
▪ Typical rotational rate = 7,200 RPMs

⬛ Transfer time (Tavg transfer)
▪ Time to read the bits in the target sector.
▪ Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min

time for one rotation (in minutes) fraction of a rotation to be read

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

Disk Access Time Example
⬛ Given:

▪ Rotational rate = 7,200 RPM
▪ Average seek time = 9 ms
▪ Avg # sectors/track = 400

⬛ Derived:
▪ Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms
▪ Tavg transfer = 60/7200 x 1/400 x 1000 ms/sec = 0.02 ms
▪ Taccess = 9 ms + 4 ms + 0.02 ms

⬛ Important points:
▪ Access time dominated by seek time and rotational latency.
▪ First bit in a sector is the most expensive, the rest are free.
▪ SRAM access time is about 4 ns/doubleword, DRAM about 60 ns

▪ Disk is about 40,000 times slower than SRAM,
▪ 2,500 times slower than DRAM.

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

Disk Capacity
⬛ Capacity: maximum number of bits that can be stored.

▪ Vendors express capacity in units of gigabytes (GB) or terabytes (TB),
where 1 GB = 109 Bytes and 1 TB = 1012 Bytes

⬛ Capacity is determined by these technology factors:
▪ Recording density (bits/in): number of bits that can be squeezed into

a 1 inch segment of a track.
▪ Track density (tracks/in): number of tracks that can be squeezed into

a 1 inch radial segment.
▪ Areal density (bits/in2): product of

recording and track density.
Tracks

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

Disk Operation (Single-Platter View)

The disk surface
spins at a fixed
rotational rate

By moving radially, the arm can
position the read/write head
over any track.

The read/write head
is attached to the end
of the arm and flies over
the disk surface on
a thin cushion of air.

spindle

spindle

sp
in

dl
e

spindlespindle

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 71

I/O Bus

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus
Expansion slots for
other devices such
as network adapters.

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

Reading a Disk Sector (1)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor

Disk

I/O bus

Bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73

Reading a Disk Sector (2)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

Disk controller reads the sector and
performs a direct memory access
(DMA) transfer into main memory.

Carnegie Mellon

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 74

Reading a Disk Sector (3)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

When the DMA transfer completes,
the disk controller notifies the CPU
with an interrupt (i.e., asserts a
special “interrupt” pin on the CPU).

	Slide Number 1
	The Memory Hierarchy��15-213/14-513/15-513: Introduction to Computer Systems�9th Lecture, Sept 23, 2025
	Announcements
	Processors need Data
	Writing & Reading Memory
	Slide Number 6
	Slide Number 7
	The CPU-Memory Gap
	“Memory Wall” or Von Neumann bottleneck
	Today
	Modern Connection between CPU and Memory
	Memory Read Transaction (1)
	Memory Read Transaction (2)
	Memory Read Transaction (3)
	Memory Write Transaction (1)
	Memory Write Transaction (2)
	Memory Write Transaction (3)
	Today
	Random-Access Memory (RAM)
	RAM Technologies
	SRAM vs DRAM Summary
	Today
	The CPU-Memory Gap
	Locality to the Rescue!	
	Locality
	Locality Example
	Qualitative Estimates of Locality
	Locality Example
	Locality Example
	Today
	Memory Hierarchies
	Memory size affects latency & energy
	Example Memory � Hierarchy
	Caches
	Hierarchy provides the illusion of large & fast memory
	Cache vs Memory
	General Cache Concepts
	General Cache Concepts: Hit
	General Cache Concepts: Miss
	 General Caching Concepts: �3 Types of Cache Misses
	General Caching Concepts: �3 Types of Cache Misses
	Examples of Caching in the Mem. Hierarchy
	Working Set, Locality, and Caches
	How Many Cold Cache Misses?
	Quiz Time!
	Today
	Storage Technologies
	What’s Inside A Disk Drive?
	Disk Geometry
	Disk Access – Service Time Components
	Nonvolatile Memories
	Solid State Disks (SSDs)
	Non-Volatile Storage: Flash
	SSD Performance Characteristics	
	SSD Tradeoffs	vs Rotating Disks
	Summary
	Supplemental slides
	Enhanced DRAMs (Extra Detail for Modern Systems)
	Storage Trends
	CPU Clock Rates
	Conventional DRAM Organization
	Reading DRAM Supercell (2,1)
	Reading DRAM Supercell (2,1)
	Memory Modules
	Disk Operation (Multi-Platter View)
	Disk Access – Service Time Components
	Disk Access Time
	Disk Access Time Example
	Disk Capacity
	Disk Operation (Single-Platter View)
	I/O Bus
	Reading a Disk Sector (1)
	Reading a Disk Sector (2)
	Reading a Disk Sector (3)

