
1

Activities are posted on the website (we might not have time today
but you can review them after class)

wget http://www.cs.cmu.edu/~213/activities/machine-procedures.pdf

wget http://www.cs.cmu.edu/~213/activities/machine-procedures.tar

tar xf machine-procedures.tar

cd machine-procedures

2

Some things we need to review from last
time…
• An x86 program’s view

3

An x86-64
program’s view…

Operating system

Code: function instructions stored here

Data: global variables stored here

Heap: dynamically allocated memory
grows as program allocates memory

Stack: local variables and parameters
stored here
grows as program calls functions
shrinks on return from functions

Memory (Virtual)

max:

0:
1:
2:
...

…
. M

em
or

y
ad

dr
es

se
s

…
..

CPU
Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff88

%rsi 1

%rdi 10

%rax 11

...

%rpi 0x00ff

ZF 0

SF 1

OF 1

CF 0

4

%rpi

An x86-64
program’s view…

Operating system

Code: function instructions stored here

Data: global variables stored here

Heap: dynamically allocated memory
grows as program allocates memory

Stack: local variables and parameters
stored here
grows as program calls functions
shrinks on return from functions

Memory (Virtual)

max:

0:
1:
2:
...

…
. M

em
or

y
ad

dr
es

se
s

…
..

CPU
Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff88

%rsi 1

%rdi 10

%rax 11

...

%rpi 0x00ff

ZF 0

SF 1

OF 1

CF 0

5

%rpi

Traditional view of a stack

%rsp is the stack pointer

It points to the current “top of the stack”

6

Stack

0xfc43

0xcb0d

0xae7c

0x9e99

0xff50

0xff58

0xff60

0xff68

0xff70

0xff78

0xff80

0xff88

Lower
addresses

%rsp

stack bottom

Traditional view of a stack

A traditional view of the stack
shows growing the stack from the
“bottom up”.

Pushing onto the stack puts an
element on the top of the stack

7

Stack

0xfc43

0xcb0d

0xae7c

0x9e99

0xff50

0xff58

0xff60

0xff68

0xff70

0xff78

0xff80

0xff88

Lower
addresses

%rsp

stack bottom

Traditional view of a stack

A traditional view of the stack
shows growing the stack from the
“bottom up”.

Pushing onto the stack puts an
element on the top of the stack

8

Stack

0xabcd

0xfc43

0xcb0d

0xae7c

0x9e99

0xff50

0xff58

0xff60

0xff68

0xff70

0xff78

0xff80

0xff88

Lower
addresses

%rsp

stack bottom

Traditional view of a stack

A traditional view of the stack
shows growing the stack from the
“bottom up”.

Popping elements off the stack
removes the most recent thing
added to the stack.

9

Stack

0xabcd

0xfc43

0xcb0d

0xae7c

0x9e99

0xff50

0xff58

0xff60

0xff68

0xff70

0xff78

0xff80

0xff88

Lower
addresses

%rsp

stack bottom

Traditional view of a stack

A traditional view of the stack
shows growing the stack from the
“bottom up”.

Popping elements off the stack
removes the most recent thing
added to the stack.

10

Stack

0xfc43

0xcb0d

0xae7c

0x9e99

0xff50

0xff58

0xff60

0xff68

0xff70

0xff78

0xff80

0xff88

Lower
addresses

stack bottom

%rsp

By convention in this class, we draw the
x86-64 stack “upside down”!
The stack grows down towards
lower addresses.

This is still “last-in-first-out”
but we show the it growing down
rather than up.

11

0x9e99

0xae7c

0xcb0d

0xfc43

0xff88

0xff80

0xff78

0xff70

Higher
addresses

stack bottom

%rsp

By convention in this class, we draw the
x86-64 stack “upside down”!
The stack grows down towards
lower addresses.

Pushing elements puts them
on top of the stack (but we show this
upside down).

12

0x9e99

0xae7c

0xcb0d

0xfc43

0xabcd

0xff88

0xff80

0xff78

0xff70

0xff68

Higher
addresses

stack bottom

%rsp

By convention in this class, we draw the
x86-64 stack “upside down”!
The stack grows down towards
lower addresses.

Pushing elements puts them
on top of the stack (but we show this
upside down).

Popping is different than removing
the element! Let’s look at the instructions
and examples.

13

0x9e99

0xae7c

0xcb0d

0xfc43

0xabcd

0xff88

0xff80

0xff78

0xff70

0xff68

Higher
addresses

stack bottom

%rsp

Pushing stack data with pushq

pushq Src

1. Decrement %rsp by 8 bytes
2. Write operand into the address

given by %rsp

14

0x9e99

0xae7c

0xcb0d

0xfc43

0xff88

0xff80

0xff78

0xff70

Higher
addresses

stack bottom

%rsp

Pushing stack data with pushq

pushq Src

1. Decrement %rsp by 8 bytes
2. Write operand into the address

given by %rsp

Example:
pushq %rbp

15

0x9e99

0xae7c

0xcb0d

0xfc43

0xff88

0xff80

0xff78

0xff70

Higher
addresses

stack bottom

%rsp

Registers
%rsp 0xff70

%rbp 0xabcd

Pushing stack data with pushq

pushq Src

1. Decrement %rsp by 8 bytes
2. Write operand into the address

given by %rsp

Example:
pushq %rbp

16

0x9e99

0xae7c

0xcb0d

0xfc43

0xff88

0xff80

0xff78

0xff70

0xff68

Higher
addresses

stack bottom

Registers
%rsp 0xff68

%rbp 0xabcd

%rsp

Pushing stack data with pushq

pushq Src

1. Decrement %rsp by 8 bytes
2. Write operand into the address

given by %rsp

Example:
pushq %rbp

17

0x9e99

0xae7c

0xcb0d

0xfc43

0xabcd

0xff88

0xff80

0xff78

0xff70

0xff68

Higher
addresses

stack bottom

Registers
%rsp 0xff68

%rbp 0xabcd

%rsp

Popping stack data with popq

popq Dest

1. Read operand given by address
given by %rsp and store in operand

2. Increment %rsp by 8 bytes

18

0x9e99

0xae7c

0xcb0d

0xfc43

0xabcd

0xff88

0xff80

0xff78

0xff70

0xff68

Higher
addresses

stack bottom

%rsp

Popping stack data with popq

popq Dest

1. Read from address given by %rsp
and store in operand

2. Increment %rsp by 8 bytes

Example:
popq %rdx

19

0x9e99

0xae7c

0xcb0d

0xfc43

0xabcd

0xff88

0xff80

0xff78

0xff70

0xff68

Higher
addresses

stack bottom

%rsp

Registers
%rsp 0xff68

%rdx 0

Popping stack data with popq

popq Dest

1. Read from address given by %rsp
and store in operand

2. Increment %rsp by 8 bytes

Example:
popq %rdx

20

0x9e99

0xae7c

0xcb0d

0xfc43

0xabcd

0xff88

0xff80

0xff78

0xff70

0xff68

Higher
addresses

stack bottom

%rsp

Registers
%rsp 0xff68

%rdx 0xabcd

Popping stack data with popq

popq Dest

1. Read from address given by %rsp
and store in operand

2. Increment %rsp by 8 bytes

Example:
popq %rdx

21

0x9e99

0xae7c

0xcb0d

0xfc43

0xabcd

0xff88

0xff80

0xff78

0xff70

0xff68

Higher
addresses

stack bottom

Registers
%rsp 0xff68

%rdx 0xabcd

%rsp

Important Note:
Value is copied into Dest, it is
still in memory at old %rsp

Summary: Pushing and popping stack data

pushq %rbp

is equivalent to

subq $8, %rsp

movq %rbp, (%rsp)

popq %rdx

is equivalent to

movq (%rsp), %rdx

addq $8, %rsp

22

Today: How does x86-64 implement C
procedure calls?
•Mechanisms in procedures
•Calling Conventions

•Passing Control
•Passing Data
•Managing Local Data

23

Today: How does x86-64 implement C
procedure calls?
•Mechanisms in procedures
•Calling Conventions

•Passing Control
•Passing Data
•Managing Local Data

25

Today: How does x86-64 implement C
procedure calls?
•Mechanisms in procedures
•Calling Conventions

•Passing Control
•Passing Data
•Managing Local Data

26

What mechanisms do we need to implement
procedures?

• Passing control
• Passing data
• Managing local data

27

1
2
3
4
5
6

void multstore
 (long x, long y, long *dest)
{
 long t = mult2(x, y);
 *dest = t;
}

1
2
3
4
5

long mult2(long a, long b)
{
 long s = a * b;
 return s;
}

What mechanisms do we need to implement
procedures: Passing Control

Program needs to stop
execution of caller (multstore)
to execute callee (mult2) and
then return to caller and
continue execution.

28

1
2
3
4
5
6

void multstore
 (long x, long y, long *dest)
{
 long t = mult2(x, y);
 *dest = t;
}

1
2
3
4
5

long mult2(long a, long b)
{
 long s = a * b;
 return s;
}

What mechanisms do we need to implement
procedures: Passing Control

Program needs to stop
execution of caller (multstore)
to execute callee (mult2) and
then return to caller and
continue execution.

29

1
2
3
4
5
6

void multstore
 (long x, long y, long *dest)
{
 long t = mult2(x, y);
 *dest = t;
}

1
2
3
4
5

long mult2(long a, long b)
{
 long s = a * b;
 return s;
}

What mechanisms do we need to implement
procedures: Passing Control

Program needs to stop
execution of caller (multstore)
to execute callee (mult2) and
then return to caller and
continue execution.

30

1
2
3
4
5
6

void multstore
 (long x, long y, long *dest)
{
 long t = mult2(x, y);
 *dest = t;
}

1
2
3
4
5

long mult2(long a, long b)
{
 long s = a * b;
 return s;
}

What mechanisms do we need to implement
procedures: Passing Data

Program needs to pass
arguments to callee (mult2) and
return values to caller
(multstore).

31

1
2
3
4
5
6

void multstore
 (long x, long y, long *dest)
{
 long t = mult2(x, y);
 *dest = t;
}

1
2
3
4
5

long mult2(long a, long b)
{
 long s = a * b;
 return s;
}

What mechanisms do we need to implement
procedures: Passing Data

Program needs to pass
arguments to callee (mult2) and
return values to caller
(multstore).

32

1
2
3
4
5
6

void multstore
 (long x, long y, long *dest)
{
 long t = mult2(x, y);
 *dest = t;
}

1
2
3
4
5

long mult2(long a, long b)
{
 long s = a * b;
 return s;
}

What mechanisms do we need to implement
procedures: Passing Data

Program needs to pass
arguments to callee (mult2) and
return values to caller
(multstore).

33

1
2
3
4
5
6

void multstore
 (long x, long y, long *dest)
{
 long t = mult2(x, y);
 *dest = t;
}

1
2
3
4
5

long mult2(long a, long b)
{
 long s = a * b;
 return s;
}

What mechanisms do we need to implement
procedures: Managing Local Memory

Program may need to allocate
memory for local variables in
callee (mult2) and then
deallocate after returning to
caller (multstore).

34

1
2
3
4
5
6

void multstore
 (long x, long y, long *dest)
{
 long t = mult2(x, y);
 *dest = t;
}

1
2
3
4
5

long mult2(long a, long b)
{
 long s = a * b;
 return s;
}

Today: How does x86-64 implement C
procedure calls?
•Mechanisms in procedures
•Calling Conventions

•Passing Control
•Passing Data
•Managing Local Data

35

Let’s examine this translation of C to x86-64:

36

1
2
3
4
5
6

void multstore
 (long x, long y, long *dest)
{
 long t = mult2(x, y);
 *dest = t;
}

1
2
3
4
5
6
7

0000000000400540 <multstore>:
 400540: push %rbx # Save %rbx
 400541: mov %rdx,%rbx # Save dest
 400544: call 400550 <mult2> # mult2(x,y)
 400549: mov %rax,(%rbx) # Save at dest
 40054c: pop %rbx # Restore %rbx
 40054d: ret # Return

1
2
3
4

0000000000400550 <mult2>:
 400550: mov %rdi,%rax # a
 400553: imul %rsi,%rax # a * b
 400557: ret # Return

1
2
3
4
5

long mult2(long a, long b)
{
 long s = a * b;
 return s;
}

To implement passing control, programs use call
and ret instructions which use the stack to store
return address.

37

1
2
3
4
5
6

void multstore
 (long x, long y, long *dest)
{
 long t = mult2(x, y);
 *dest = t;
}

1
2
3
4
5
6
7

0000000000400540 <multstore>:
 400540: push %rbx # Save %rbx
 400541: mov %rdx,%rbx # Save dest
 400544: call 400550 <mult2> # mult2(x,y)
 400549: mov %rax,(%rbx) # Save at dest
 40054c: pop %rbx # Restore %rbx
 40054d: ret # Return

1
2
3
4

0000000000400550 <mult2>:
 400550: mov %rdi,%rax # a
 400553: imul %rsi,%rax # a * b
 400557: ret # Return

1
2
3
4
5

long mult2(long a, long b)
{
 long s = a * b;
 return s;
}

call instruction pushes the return address
on stack and ret instruction pops it

call addr <label>

1. Push return address
on stack

2. Jump to addr

ret

1. Pop return address
on stack

2. Jump to return
address

38

1
2
3
4
5
6
7

0000000000400540 <multstore>:
 400540: push %rbx # Save %rbx
 400541: mov %rdx,%rbx # Save dest
 400544: call 400550 <mult2> # mult2(x,y)
 400549: mov %rax,(%rbx) # Save at dest
 40054c: pop %rbx # Restore %rbx
 40054d: ret # Return

1
2
3
4

0000000000400550 <mult2>:
 400550: mov %rdi,%rax # a
 400553: imul %rsi,%rax # a * b
 400557: ret # Return

Before call

39

1
2
3
4
5
6
7

0000000000400540 <multstore>:
 400540: push %rbx # Save %rbx
 400541: mov %rdx,%rbx # Save dest
 400544: call 400550 <mult2> # mult2(x,y)
 400549: mov %rax,(%rbx) # Save at dest
 40054c: pop %rbx # Restore %rbx
 40054d: ret # Return

1
2
3
4

0000000000400550 <mult2>:
 400550: mov %rdi,%rax # a
 400553: imul %rsi,%rax # a * b
 400557: ret # Return

0x130

0x128

0x120

Registers
%rsp 0x120

%rip 0x400544

%rsp

Stack

%rip

.

.

.

.

.

Executing call: push return address

40

1
2
3
4
5
6
7

0000000000400540 <multstore>:
 400540: push %rbx # Save %rbx
 400541: mov %rdx,%rbx # Save dest
 400544: call 400550 <mult2> # mult2(x,y)
 400549: mov %rax,(%rbx) # Save at dest
 40054c: pop %rbx # Restore %rbx
 40054d: ret # Return

1
2
3
4

0000000000400550 <mult2>:
 400550: mov %rdi,%rax # a
 400553: imul %rsi,%rax # a * b
 400557: ret # Return

.

.

.

.

.

0x400549

0x130

0x128

0x120

0x118

Registers
%rsp 0x118

%rip 0x400544

%rsp

%rip

Stack

Executing call: jmp to address of
function to execute

41

1
2
3
4
5
6
7

0000000000400540 <multstore>:
 400540: push %rbx # Save %rbx
 400541: mov %rdx,%rbx # Save dest
 400544: call 400550 <mult2> # mult2(x,y)
 400549: mov %rax,(%rbx) # Save at dest
 40054c: pop %rbx # Restore %rbx
 40054d: ret # Return

1
2
3
4

0000000000400550 <mult2>:
 400550: mov %rdi,%rax # a
 400553: imul %rsi,%rax # a * b
 400557: ret # Return

.

.

.

.

.

0x400549

0x130

0x128

0x120

0x118

Registers
%rsp 0x118

%rip 0x400550

%rsp

Stack

%rip

After call

42

1
2
3
4
5
6
7

0000000000400540 <multstore>:
 400540: push %rbx # Save %rbx
 400541: mov %rdx,%rbx # Save dest
 400544: call 400550 <mult2> # mult2(x,y)
 400549: mov %rax,(%rbx) # Save at dest
 40054c: pop %rbx # Restore %rbx
 40054d: ret # Return

1
2
3
4

0000000000400550 <mult2>:
 400550: mov %rdi,%rax # a
 400553: imul %rsi,%rax # a * b
 400557: ret # Return

.

.

.

.

.

0x400549

0x130

0x128

0x120

0x118

Registers
%rsp 0x118

%rip 0x400550

%rsp

Stack

%rip

Before ret

43

1
2
3
4
5
6
7

0000000000400540 <multstore>:
 400540: push %rbx # Save %rbx
 400541: mov %rdx,%rbx # Save dest
 400544: call 400550 <mult2> # mult2(x,y)
 400549: mov %rax,(%rbx) # Save at dest
 40054c: pop %rbx # Restore %rbx
 40054d: ret # Return

1
2
3
4

0000000000400550 <mult2>:
 400550: mov %rdi,%rax # a
 400553: imul %rsi,%rax # a * b
 400557: ret # Return

.

.

.

.

.

0x400549

0x130

0x128

0x120

0x118

Registers
%rsp 0x118

%rip 0x400557

%rsp

Stack

%rip

Executing ret: pop return address

44

1
2
3
4
5
6
7

0000000000400540 <multstore>:
 400540: push %rbx # Save %rbx
 400541: mov %rdx,%rbx # Save dest
 400544: call 400550 <mult2> # mult2(x,y)
 400549: mov %rax,(%rbx) # Save at dest
 40054c: pop %rbx # Restore %rbx
 40054d: ret # Return

1
2
3
4

0000000000400550 <mult2>:
 400550: mov %rdi,%rax # a
 400553: imul %rsi,%rax # a * b
 400557: ret # Return

.

.

.

.

.

0x400549

0x130

0x128

0x120

0x118

Registers
%rsp 0x120

%rip 0x400549

%rsp

Stack

%rip

Executing ret: jmp to return address

45

1
2
3
4
5
6
7

0000000000400540 <multstore>:
 400540: push %rbx # Save %rbx
 400541: mov %rdx,%rbx # Save dest
 400544: call 400550 <mult2> # mult2(x,y)
 400549: mov %rax,(%rbx) # Save at dest
 40054c: pop %rbx # Restore %rbx
 40054d: ret # Return

1
2
3
4

0000000000400550 <mult2>:
 400550: mov %rdi,%rax # a
 400553: imul %rsi,%rax # a * b
 400557: ret # Return

.

.

.

.

.

0x400549

0x130

0x128

0x120

0x118

Registers
%rsp 0x120

%rip 0x400549

%rsp

Stack

%rip

After ret

46

1
2
3
4
5
6
7

0000000000400540 <multstore>:
 400540: push %rbx # Save %rbx
 400541: mov %rdx,%rbx # Save dest
 400544: call 400550 <mult2> # mult2(x,y)
 400549: mov %rax,(%rbx) # Save at dest
 40054c: pop %rbx # Restore %rbx
 40054d: ret # Return

1
2
3
4

0000000000400550 <mult2>:
 400550: mov %rdi,%rax # a
 400553: imul %rsi,%rax # a * b
 400557: ret # Return

Registers
%rsp 0x120

%rip 0x400549

Stack

%rip

0x130

0x128

0x120

.

.

.

.

.

%rsp

Today: How does x86-64 implement C
procedure calls?
•Mechanisms in procedures
•Calling Conventions

•Passing Control
•Passing Data
•Managing Local Data

47

Activity Time!

48

If you didn’t do at the start of class:
Login to a shark machine, then type:
wget http://www.cs.cmu.edu/~213/activities/machine-procedures.pdf

wget http://www.cs.cmu.edu/~213/activities/machine-procedures.tar

tar xf machine-procedures.tar

cd machine-procedures

Do Activity: Problems 6-9

The first 6 arguments to a procedure are stored in
registers, the remaining are stored on stack.
As illustrated in the activity:

49

Important note: Programs only allocate stack space when it is
needed.

Registers
%rdi Arg 1

%rsi Arg 2

%rdx Arg 3

%rcx Arg 4

%r8 Arg 5

%r9 Arg 6

Stack
. . .
Arg n

. . .
Arg 8

Arg 7

Example of where arguments and return values
are stored:

50

1
2
3
4
5
6

void multstore
 (long x, long y, long *dest)
{
 long t = mult2(x, y);
 *dest = t;
}

1
2
3
4
5
6
7
8
9

0000000000400540 <multstore>:
x in %rdi , y in %rsi, dest in %rdx
 400540: push %rbx # Save %rbx
 400541: mov %rdx,%rbx # Save dest
 400544: call 400550 <mult2> # mult2(x,y)
t in %rax
 400549: mov %rax,(%rbx) # Save at dest
 40054c: pop %rbx # Restore %rbx
 40054d: ret # Return

1
2
3
4
5
6

0000000000400550 <mult2>:
a in %rdi, b in %rsi
 400550: mov %rdi,%rax # a
 400553: imul %rsi,%rax # a * b
s in %rax
 400557: ret # Return

1
2
3
4
5

long mult2(long a, long b)
{
 long s = a * b;
 return s;
}

Arguments are “passed” in the argument
registers.

51

1
2
3
4
5
6

void multstore
 (long x, long y, long *dest)
{
 long t = mult2(x, y);
 *dest = t;
}

1
2
3
4
5
6
7
8
9

0000000000400540 <multstore>:
x in %rdi , y in %rsi, dest in %rdx
 400540: push %rbx # Save %rbx
 400541: mov %rdx,%rbx # Save dest
 400544: call 400550 <mult2> # mult2(x,y)
t in %rax
 400549: mov %rax,(%rbx) # Save at dest
 40054c: pop %rbx # Restore %rbx
 40054d: ret # Return

1
2
3
4
5
6

0000000000400550 <mult2>:
a in %rdi, b in %rsi
 400550: mov %rdi,%rax # a
 400553: imul %rsi,%rax # a * b
s in %rax
 400557: ret # Return

1
2
3
4
5

long mult2(long a, long b)
{
 long s = a * b;
 return s;
}

Return values are “returned” in return register.

52

1
2
3
4
5
6

void multstore
 (long x, long y, long *dest)
{
 long t = mult2(x, y);
 *dest = t;
}

1
2
3
4
5
6
7
8
9

0000000000400540 <multstore>:
x in %rdi , y in %rsi, dest in %rdx
 400540: push %rbx # Save %rbx
 400541: mov %rdx,%rbx # Save dest
 400544: call 400550 <mult2> # mult2(x,y)
t in %rax
 400549: mov %rax,(%rbx) # Save at dest
 40054c: pop %rbx # Restore %rbx
 40054d: ret # Return

1
2
3
4
5
6

0000000000400550 <mult2>:
a in %rdi, b in %rsi
 400550: mov %rdi,%rax # a
 400553: imul %rsi,%rax # a * b
s in %rax
 400557: ret # Return

1
2
3
4
5

long mult2(long a, long b)
{
 long s = a * b;
 return s;
}

Today: How does x86-64 implement C
procedure calls?
•Mechanisms in procedures
•Calling Conventions

•Passing Control
•Passing Data
•Managing Local Data

53

Languages that support recursion like C require
some place to store state for each instantiation of
the same procedure.
• Code must be “reentrant”: Support multiple instances of a single

procedure
• Requires needing some place to store state of each instantiation

including arguments, local variables, and return value
• The stack allocated in frames where each frame contains state for

a given procedure

54

Let’s look at an example of calling a chain of
functions.

55

yoo(…)

{

 •

 •

 who();

 •

 •

}

who(…)

{

 • • •

 amI();

 • • •

 amI();

 • • •

}

amI(…)

{

 •

 •

 amI();

 •

 •

}

Procedure amI() is recursive

Let’s look at an example of calling a chain of
functions.

56

yoo(…)

{

 •

 •

 who();

 •

 •

}

who(…)

{

 • • •

 amI();

 • • •

 amI();

 • • •

}

amI(…)

{

 •

 •

 amI();

 •

 •

}

Procedure amI() is recursive

yoo

who

amI

amI

amI

Example
Call Chain

amI

When calling a procedure, that procedure’s
stack frame is pushed onto the stack.
The “setup” code:
The program allocates space
on the stack (if needed) and
does call instruction.

The “finish” code:
The program deallocates
space on the stack (if needed)
and does ret instruction

57

Frame Pointer: %rbp

Stack Pointer: %rsp

Stack “Top”

Previous
Frame

Frame for
proc

(Optional) x

Example

yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

yoo(…)

{

 •

 •

 who();

 •

 •

}

yoo(…)

{

 •

 •

 who();

 •

 •

}

Example

yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

who(…)

{

 • • •

 amI();

 • • •

 amI();

 • • •

}

yoo(…)

{

 •

 •

 who();

 •

 •

}

who(…)

{

 • • •

 amI();

 • • •

 amI();

 • • •

}

Example

yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

amI

amI(…)

{

 •

 •

 amI();

 •

 •

}

Example

yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

amI

amI

yoo(…)

{

 •

 •

 who();

 •

 •

}

who(…)

{

 • • •

 amI();

 • • •

 amI();

 • • •

}

amI(…)

{

 •

 •

 amI();

 •

 •

}

amI(…)

{

 •

 •

 amI();

 •

 •

}

Example

yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

amI

amI

amI

yoo(…)

{

 •

 •

 who();

 •

 •

}

who(…)

{

 • • •

 amI();

 • • •

 amI();

 • • •

}

amI(…)

{

 •

 •

 amI();

 •

 •

}

amI(…)

{

 •

 •

 amI();

 •

 •

}

amI(…)

{

 •

 •

 amI();

 •

 •

}

Example

yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

amI

amI

yoo(…)

{

 •

 •

 who();

 •

 •

}

who(…)

{

 • • •

 amI();

 • • •

 amI();

 • • •

}

amI(…)

{

 •

 •

 amI();

 •

 •

}

amI(…)

{

 •

 •

 amI();

 •

 •

}

Example

yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

amI

yoo(…)

{

 •

 •

 who();

 •

 •

}

who(…)

{

 • • •

 amI();

 • • •

 amI();

 • • •

}

amI(…)

{

 •

 •

 amI();

 •

 •

}

Example

yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

yoo(…)

{

 •

 •

 who();

 •

 •

}

who(…)

{

 • • •

 amI();

 • • •

 amI();

 • • •

}

Example

yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

amI

yoo(…)

{

 •

 •

 who();

 •

 •

}

who(…)

{

 • • •

 amI();

 • • •

 amI();

 • • •

}

amI(…)

{

 •

 •

 amI();

 •

 •

}

Example

yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo

who

yoo(…)

{

 •

 •

 who();

 •

 •

}

who(…)

{

 • • •

 amI();

 • • •

 amI();

 • • •

}

Example

yoo

who

amI

amI

amI

amI

yoo

%rbp

%rsp

Stack

yoo
yoo(…)

{

 •

 •

 who();

 •

 •

}

Quiz Time!
Canvas Quiz: Day 5 - Machine Procedures

https://tinyurl.com/213-lec5

https://tinyurl.com/213-lec5

https://tinyurl.com/213-lec4
https://tinyurl.com/213-lec5
https://tinyurl.com/213-lec5
https://tinyurl.com/213-lec5
https://tinyurl.com/213-lec5
https://tinyurl.com/213-lec5

x86-64/Linux Stack Frame

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

(Optional)

Old %rbp

Arguments
7+

Caller
Frame

Frame pointer
%rbp

Stack pointer
%rsp

(Optional)

• Current stack frame is on the
top of the stack and is the
current executing procedure

• Caller stack frame has return
address pushed by call
instruction
and the arguments for this call

Important Note:
Stack space only allocated if
needed by procedure!

Example: incr

72

1
2
3
4
5
6

long incr(long *p, long val) {
 long x = *p;
 long y = x + val;
 *p = y;
 return x;
}

1
2
3
4
5

incr:
 movq (%rdi), %rax
 addq %rax, %rsi
 movq %rsi, (%rdi)
 ret

Registers Use

%rdi Argument p

%rsi Argument val, y

%rax x, Return value

Example: Calling incr with a local variable
address

73

1
2
3
4
5

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

1
2
3
4
5
6
7
8
9

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

1
2
3
4
5
6

long incr(long *p, long val) {
 long x = *p;
 long y = x + val;
 *p = y;
 return x;
}

1
2
3
4
5

incr:
 movq (%rdi), %rax
 addq %rax, %rsi
 movq %rsi, (%rdi)
 ret

Before calling incr: Storing arguments

74

1
2
3
4
5

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

1
2
3
4
5
6
7
8
9

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

%rsp

Initial Stack Structure

. . .

Return address

Before calling incr: Storing arguments

75

1
2
3
4
5

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

1
2
3
4
5
6
7
8
9

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

15213

Unused %rsp

Resulting Stack Structure

%rsp+8

. . .

Return address

Before calling incr: Storing arguments

76

1
2
3
4
5

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

1
2
3
4
5
6
7
8
9

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

Registers Use

%rdi &v1

%rsi 3000

15213

Unused %rsp

Stack Structure

%rsp+8

. . .

Return address

Before calling incr: Storing arguments

77

1
2
3
4
5

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

1
2
3
4
5
6
7
8
9

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

Registers Use

%rdi &v1

%rsi 3000

15213

Unused %rsp

Stack Structure

%rsp+8

. . .

Return addressAside 1: movl $3000, %esi
• Remember, movl -> %exx zeros out high order 32 bits.
• Why use movl instead of movq? 1 byte shorter.

Before calling incr: Storing arguments

78

1
2
3
4
5

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

1
2
3
4
5
6
7
8
9

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

Registers Use

%rdi &v1

%rsi 3000

15213

Unused %rsp

Stack Structure

%rsp+8

. . .

Return address

Aside 2: leaq 8(%rsp), %rdi
• Computes %rsp+8
• Actually, used for what it is meant!

Before calling incr: Storing arguments

79

1
2
3
4
5

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

1
2
3
4
5
6
7
8
9

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

Registers Use

%rdi &v1

%rsi 3000

15213

Unused %rsp

Stack Structure

%rsp+8

. . .

Return address

Before calling incr: Storing arguments

80

1
2
3
4
5

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

1
2
3
4
5
6
7
8
9

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

Registers Use

%rdi &v1

%rsi 3000

15213

Unused %rsp

Stack Structure

%rsp+8

. . .

Return address

Calling incr:

81

1
2
3
4
5
6

long incr(long *p, long val) {
 long x = *p;
 long y = x + val;
 *p = y;
 return x;
}

1
2
3
4
5

incr:
 movq (%rdi), %rax
 addq %rax, %rsi
 movq %rsi, (%rdi)
 ret

Registers Use

%rdi &v1

%rsi 3000

%rax Return value

15213

Unused %rsp

Stack Structure

%rsp+8

. . .

Return address

Calling incr:

82

1
2
3
4
5
6

long incr(long *p, long val) {
 long x = *p;
 long y = x + val;
 *p = y;
 return x;
}

1
2
3
4
5

incr:
 movq (%rdi), %rax
 addq %rax, %rsi
 movq %rsi, (%rdi)
 ret

Registers Use

%rdi &v1

%rsi 3000

%rax Return value

15213

Unused %rsp

Stack Structure

%rsp+8

. . .

Return address

After calling incr: Getting return value

83

1
2
3
4
5

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

1
2
3
4
5
6
7
8
9

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

Registers Use

%rax Return value

15213

Unused %rsp

Stack Structure

%rsp+8

. . .

Return address

After calling incr: Calculating return value

84

1
2
3
4
5

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

1
2
3
4
5
6
7
8
9

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

18213

Unused %rsp

Stack Structure

. . .

Rtn address

%rsp+8

Registers Use

%rax Return value

After calling incr: Calculating return value

85

1
2
3
4
5

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

1
2
3
4
5
6
7
8
9

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

18213

Unused %rsp

Stack Structure
. . .

Rtn address

%rsp+8

Registers Use

%rax Return value

After calling incr: Deallocate space

86

1
2
3
4
5

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

1
2
3
4
5
6
7
8
9

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

18213

Unused %rsp

. . .

Rtn address

%rsp+8

%rsp

Updated Stack Structure

. . .

Rtn address

Registers Use

%rax Return value

Stack Structure

After calling incr: Returning

87

1
2
3
4
5

long call_incr() {
 long v1 = 15213;
 long v2 = incr(&v1, 3000);
 return v1+v2;
}

1
2
3
4
5
6
7
8
9

call_incr:
 subq $16, %rsp
 movq $15213, 8(%rsp)
 movl $3000, %esi
 leaq 8(%rsp), %rdi
 call incr
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

%rsp

Updated Stack Structure
. . .

Rtn address

%rsp

Final Stack Structure

. . .

Registers Use

%rax Return value

Register Saving Conventions

⬛When procedure yoo calls who:
▪ yoo is the caller

▪ who is the callee

⬛Can register be used for temporary storage?

▪ Contents of register %rdx overwritten by who

▪ This could be trouble ➙ something should be done!

▪ Need some coordination

yoo:

 • • •

 movq $15213, %rdx

 call who

 addq %rdx, %rax

 • • •

 ret

who:

 • • •

 subq $18213, %rdx

 • • •

 ret

Register Saving Conventions

⬛When procedure yoo calls who:
▪ yoo is the caller

▪ who is the callee

⬛Can register be used for temporary storage?

⬛Conventions
▪ “Caller Saved” (aka “Call-Clobbered”)

▪ Caller saves temporary values in its frame before the call

▪ “Callee Saved” (aka “Call-Preserved”)

▪ Callee saves temporary values in its frame before using

▪ Callee restores them before returning to caller

x86-64 Linux Register Usage #1

⬛%rax

▪ Return value

▪ Call-clobbered
(i.e., caller must save&restore if
value needed after the call)

⬛%rdi, ..., %r9
▪ Arguments

▪ Call-clobbered

⬛%r10, %r11
▪ Call-clobbered

%rax

%rdx

%rcx

Return
value

%r8

%r9

%r10

%r11

%rdi

%rsi

Arguments

Call-clobbered
temporaries

x86-64 Linux Register Usage #2

⬛%rbx, %r12, %r13, %r14,
%r15

▪ Call-preserved

(i.e., Callee must save &
restore)

⬛%rbp

▪ Call-preserved

▪ May be used as frame pointer

▪ Can mix & match

⬛%rsp

▪ Special form of call-preserved

▪ Restored to original value upon
exit from procedure

%rbx

%rsp

Call-preserved
Temporaries

Special
%rbp

%r12

%r13

%r14

%r15

x86-64 Procedure Summary

⬛Important Points
▪ Stack is the right data structure for procedure call/return

▪ If P calls Q, then Q returns before P

⬛Recursion (& mutual recursion) handled by
normal calling conventions
▪ Can safely store values in local stack frame and in

call-preserved registers

▪ Put function arguments at top of stack

▪ Result return in %rax

⬛Pointers are addresses of values
▪ On stack or global

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

Old %rbp

Arguments
7+

Caller
Frame

%rbp

(Optional)

%rsp

Additional Slides

/* Recursive popcount */

long pcount_r(unsigned long x) {

 if (x == 0)

 return 0;

 else

 return (x & 1)

 + pcount_r(x >> 1);

}

Recursive Function pcount_r:

 movl $0, %eax

 testq %rdi, %rdi

 je .L6

 pushq %rbx

 movq %rdi, %rbx

 andl $1, %ebx

 shrq %rdi

 call pcount_r

 addq %rbx, %rax

 popq %rbx

.L6:

 rep; ret

/* Recursive popcount */

long pcount_r(unsigned long x) {

 if (x == 0)

 return 0;

 else

 return (x & 1)

 + pcount_r(x >> 1);

}

Recursive Function Terminal Case

pcount_r:

 movl $0, %eax

 testq %rdi, %rdi

 je .L6

 pushq %rbx

 movq %rdi, %rbx

 andl $1, %ebx

 shrq %rdi

 call pcount_r

 addq %rbx, %rax

 popq %rbx

.L6:

 rep; ret
Register Use(s) Type

%rdi x Argument

%rax Return value Return value

/* Recursive popcount */

long pcount_r(unsigned long x) {

 if (x == 0)

 return 0;

 else

 return (x & 1)

 + pcount_r(x >> 1);

}

Recursive Function Register Save
pcount_r:

 movl $0, %eax

 testq %rdi, %rdi

 je .L6

 pushq %rbx

 movq %rdi, %rbx

 andl $1, %ebx

 shrq %rdi

 call pcount_r

 addq %rbx, %rax

 popq %rbx

.L6:

 rep; ret

Register Use(s) Type

%rdi x Argument

%rsp

. . .

Rtn address

Saved %rbx

/* Recursive popcount */

long pcount_r(unsigned long x) {

 if (x == 0)

 return 0;

 else

 return (x & 1)

 + pcount_r(x >> 1);

}

Recursive Function Call Setup

pcount_r:

 movl $0, %eax

 testq %rdi, %rdi

 je .L6

 pushq %rbx

 movq %rdi, %rbx

 andl $1, %ebx

 shrq %rdi

 call pcount_r

 addq %rbx, %rax

 popq %rbx

.L6:

 rep; ret
Register Use(s) Type

%rdi x >> 1 Rec. argument

%rbx x & 1 Callee-saved

/* Recursive popcount */

long pcount_r(unsigned long x) {

 if (x == 0)

 return 0;

 else

 return (x & 1)

 + pcount_r(x >> 1);

}

Recursive Function Call

pcount_r:

 movl $0, %eax

 testq %rdi, %rdi

 je .L6

 pushq %rbx

 movq %rdi, %rbx

 andl $1, %ebx

 shrq %rdi

 call pcount_r

 addq %rbx, %rax

 popq %rbx

.L6:

 rep; ret
Register Use(s) Type

%rbx x & 1 Callee-saved

%rax Recursive call
return value

/* Recursive popcount */

long pcount_r(unsigned long x) {

 if (x == 0)

 return 0;

 else

 return (x & 1)

 + pcount_r(x >> 1);

}

Recursive Function Result

pcount_r:

 movl $0, %eax

 testq %rdi, %rdi

 je .L6

 pushq %rbx

 movq %rdi, %rbx

 andl $1, %ebx

 shrq %rdi

 call pcount_r

 addq %rbx, %rax

 popq %rbx

.L6:

 rep; ret
Register Use(s) Type

%rbx x & 1 Callee-saved

%rax Return value

/* Recursive popcount */

long pcount_r(unsigned long x) {

 if (x == 0)

 return 0;

 else

 return (x & 1)

 + pcount_r(x >> 1);

}

Recursive Function Completion
pcount_r:

 movl $0, %eax

 testq %rdi, %rdi

 je .L6

 pushq %rbx

 movq %rdi, %rbx

 andl $1, %ebx

 shrq %rdi

 call pcount_r

 addq %rbx, %rax

 popq %rbx

.L6:

 rep; ret

Register Use(s) Type

%rax Return value Return value

%rsp

. . .

Observations About Recursion
⬛Handled Without Special Consideration

▪ Stack frames mean that each function call has private storage

▪ Saved registers & local variables

▪ Saved return pointer

▪ Register saving conventions prevent one function call from corrupting
another’s data

▪ Unless the C code explicitly does so (e.g., buffer overflow in Lecture 9)

▪ Stack discipline follows call / return pattern

▪ If P calls Q, then Q returns before P

▪ Last-In, First-Out

⬛Also works for mutual recursion
▪ P calls Q; Q calls P

Small Exercise
long add5(long b0, long b1, long b2, long b3, long b4) {

 return b0+b1+b2+b3+b4;

}

long add10(long a0, long a1, long a2, long a3, long a4, long a5,

 long a6, long a7, long a8, long a9) {

 return add5(a0, a1, a2, a3, a4)+

 add5(a5, a6, a7, a8, a9);

}

⬛Where are a0,…, a9 passed?

⬛Where are b0,…, b4 passed?

rdi, rsi, rdx, rcx, r8, r9, stack

rdi, rsi, rdx, rcx, r8

⬛Which registers do we need to save?

Ill-posed question. Need assembly.

rbx, rbp, r9 (during first call to add5)

Small Exercise
long add5(long b0, long b1, long b2, long b3, long b4) {

 return b0+b1+b2+b3+b4;

}

long add10(long a0, long a1, long a2, long a3, long a4, long a5,

 long a6, long a7, long a8, long a9) {

 return add5(a0, a1, a2, a3, a4)+

 add5(a5, a6, a7, a8, a9);

}

add5:

 addq %rsi, %rdi

 addq %rdi, %rdx

 addq %rdx, %rcx

 leaq (%rcx,%r8), %rax

 ret

add10:

 pushq %rbp

 pushq %rbx

 movq %r9, %rbp

 call add5

 movq %rax, %rbx

 movq 48(%rsp), %r8

 movq 40(%rsp), %rcx

 movq 32(%rsp), %rdx

 movq 24(%rsp), %rsi

 movq %rbp, %rdi

 call add5

 addq %rbx, %rax

 popq %rbx

 popq %rbp

 ret

Callee-Saved Example #1

long call_incr2(long x) {

 long v1 = 15213;

 long v2 = incr(&v1, 3000);

 return x+v2;

}
%rsp

Initial Stack Structure

. . .

Rtn address

• X comes in register %rdi.
• We need %rdi for the call to incr.

• Where should be put x, so we can use
it after the call to incr?

Callee-Saved Example #2

call_incr2:

 pushq %rbx

 subq $16, %rsp

 movq %rdi, %rbx

 movq $15213, 8(%rsp)

 movl $3000, %esi

 leaq 8(%rsp), %rdi

 call incr

 addq %rbx, %rax

 addq $16, %rsp

 popq %rbx

 ret

long call_incr2(long x) {

 long v1 = 15213;

 long v2 = incr(&v1, 3000);

 return x+v2;

}
%rsp

Initial Stack Structure

. . .

Rtn address

%rsp

Resulting Stack Structure

. . .

Rtn address

Saved %rbx

Callee-Saved Example #3

call_incr2:

 pushq %rbx

 subq $16, %rsp

 movq %rdi, %rbx

 movq $15213, 8(%rsp)

 movl $3000, %esi

 leaq 8(%rsp), %rdi

 call incr

 addq %rbx, %rax

 addq $16, %rsp

 popq %rbx

 ret

long call_incr2(long x) {

 long v1 = 15213;

 long v2 = incr(&v1, 3000);

 return x+v2;

}

Initial Stack Structure

%rsp

Resulting Stack Structure

. . .

Rtn address

%rsp+8

Saved %rbx

%rsp

. . .

Rtn address

Saved %rbx

Callee-Saved Example #4

call_incr2:

 pushq %rbx

 subq $16, %rsp

 movq %rdi, %rbx

 movq $15213, 8(%rsp)

 movl $3000, %esi

 leaq 8(%rsp), %rdi

 call incr

 addq %rbx, %rax

 addq $16, %rsp

 popq %rbx

 ret

long call_incr2(long x) {

 long v1 = 15213;

 long v2 = incr(&v1, 3000);

 return x+v2;

}

%rsp

Stack Structure

. . .

Rtn address

%rsp+8

Saved %rbx

• X saved in %rbx.
• A callee saved register.

Callee-Saved Example #5

call_incr2:

 pushq %rbx

 subq $16, %rsp

 movq %rdi, %rbx

 movq $15213, 8(%rsp)

 movl $3000, %esi

 leaq 8(%rsp), %rdi

 call incr

 addq %rbx, %rax

 addq $16, %rsp

 popq %rbx

 ret

long call_incr2(long x) {

 long v1 = 15213;

 long v2 = incr(&v1, 3000);

 return x+v2;

}

15213

Unused %rsp

Stack Structure

. . .

Rtn address

%rsp+8

Saved %rbx

• X saved in %rbx.
• A callee saved register.

Callee-Saved Example #6

call_incr2:

 pushq %rbx

 subq $16, %rsp

 movq %rdi, %rbx

 movq $15213, 8(%rsp)

 movl $3000, %esi

 leaq 8(%rsp), %rdi

 call incr

 addq %rbx, %rax

 addq $16, %rsp

 popq %rbx

 ret

long call_incr2(long x) {

 long v1 = 15213;

 long v2 = incr(&v1, 3000);

 return x+v2;

}

18213

Unused %rsp

Stack Structure

. . .

Rtn address

%rsp+8

Saved %rbx

• X Is safe in %rbx
• Return result in %rax

Callee-Saved Example #7

call_incr2:

 pushq %rbx

 subq $16, %rsp

 movq %rdi, %rbx

 movq $15213, 8(%rsp)

 movl $3000, %esi

 leaq 8(%rsp), %rdi

 call incr

 addq %rbx, %rax

 addq $16, %rsp

 popq %rbx

 ret

long call_incr2(long x) {

 long v1 = 15213;

 long v2 = incr(&v1, 3000);

 return x+v2;

}

18213

Unused

%rsp

Stack Structure

. . .

Rtn address

Saved %rbx

• Return result in %rax

Callee-Saved Example #8

call_incr2:

 pushq %rbx

 subq $16, %rsp

 movq %rdi, %rbx

 movq $15213, 8(%rsp)

 movl $3000, %esi

 leaq 8(%rsp), %rdi

 call incr

 addq %rbx, %rax

 addq $16, %rsp

 popq %rbx

 ret

long call_incr2(long x) {

 long v1 = 15213;

 long v2 = incr(&v1, 3000);

 return x+v2;

}

18213

Unused

%rsp

Initial Stack Structure

. . .

Rtn address

Saved %rbx

18213

Unused

%rsp

. . .

Rtn address

Saved %rbx

final Stack Structure

Callee-Saved Example #2

call_incr2:

 pushq %rbx

 subq $16, %rsp

 movq %rdi, %rbx

 movq $15213, 8(%rsp)

 movl $3000, %esi

 leaq 8(%rsp), %rdi

 call incr

 addq %rbx, %rax

 addq $16, %rsp

 popq %rbx

 ret

long call_incr2(long x) {

 long v1 = 15213;

 long v2 = incr(&v1, 3000);

 return x+v2;

}

%rsp

Pre-return Stack Structure

. . .

Rtn address

15213

Unused %rsp

Resulting Stack Structure

. . .

Rtn address

%rsp+8

Saved %rbx

	Slide 1
	Slide 2
	Slide 3: Some things we need to review from last time…
	Slide 4: An x86-64 program’s view…
	Slide 5: An x86-64 program’s view…
	Slide 6: Traditional view of a stack
	Slide 7: Traditional view of a stack
	Slide 8: Traditional view of a stack
	Slide 9: Traditional view of a stack
	Slide 10: Traditional view of a stack
	Slide 11: By convention in this class, we draw the x86-64 stack “upside down”!
	Slide 12: By convention in this class, we draw the x86-64 stack “upside down”!
	Slide 13: By convention in this class, we draw the x86-64 stack “upside down”!
	Slide 14: Pushing stack data with pushq
	Slide 15: Pushing stack data with pushq
	Slide 16: Pushing stack data with pushq
	Slide 17: Pushing stack data with pushq
	Slide 18: Popping stack data with popq
	Slide 19: Popping stack data with popq
	Slide 20: Popping stack data with popq
	Slide 21: Popping stack data with popq
	Slide 22: Summary: Pushing and popping stack data
	Slide 23: Today: How does x86-64 implement C procedure calls?
	Slide 25: Today: How does x86-64 implement C procedure calls?
	Slide 26: Today: How does x86-64 implement C procedure calls?
	Slide 27: What mechanisms do we need to implement procedures?
	Slide 28: What mechanisms do we need to implement procedures: Passing Control
	Slide 29: What mechanisms do we need to implement procedures: Passing Control
	Slide 30: What mechanisms do we need to implement procedures: Passing Control
	Slide 31: What mechanisms do we need to implement procedures: Passing Data
	Slide 32: What mechanisms do we need to implement procedures: Passing Data
	Slide 33: What mechanisms do we need to implement procedures: Passing Data
	Slide 34: What mechanisms do we need to implement procedures: Managing Local Memory
	Slide 35: Today: How does x86-64 implement C procedure calls?
	Slide 36: Let’s examine this translation of C to x86-64:
	Slide 37: To implement passing control, programs use call and ret instructions which use the stack to store return address.
	Slide 38: call instruction pushes the return address on stack and ret instruction pops it
	Slide 39: Before call
	Slide 40: Executing call: push return address
	Slide 41: Executing call: jmp to address of function to execute
	Slide 42: After call
	Slide 43: Before ret
	Slide 44: Executing ret: pop return address
	Slide 45: Executing ret: jmp to return address
	Slide 46: After ret
	Slide 47: Today: How does x86-64 implement C procedure calls?
	Slide 48: Activity Time!
	Slide 49: The first 6 arguments to a procedure are stored in registers, the remaining are stored on stack.
	Slide 50: Example of where arguments and return values are stored:
	Slide 51: Arguments are “passed” in the argument registers.
	Slide 52: Return values are “returned” in return register.
	Slide 53: Today: How does x86-64 implement C procedure calls?
	Slide 54: Languages that support recursion like C require some place to store state for each instantiation of the same procedure.
	Slide 55: Let’s look at an example of calling a chain of functions.
	Slide 56: Let’s look at an example of calling a chain of functions.
	Slide 57: When calling a procedure, that procedure’s stack frame is pushed onto the stack.
	Slide 59: Example
	Slide 60: Example
	Slide 61: Example
	Slide 62: Example
	Slide 63: Example
	Slide 64: Example
	Slide 65: Example
	Slide 66: Example
	Slide 67: Example
	Slide 68: Example
	Slide 69: Example
	Slide 70: Quiz Time!
	Slide 71: x86-64/Linux Stack Frame
	Slide 72: Example: incr
	Slide 73: Example: Calling incr with a local variable address
	Slide 74: Before calling incr: Storing arguments
	Slide 75: Before calling incr: Storing arguments
	Slide 76: Before calling incr: Storing arguments
	Slide 77: Before calling incr: Storing arguments
	Slide 78: Before calling incr: Storing arguments
	Slide 79: Before calling incr: Storing arguments
	Slide 80: Before calling incr: Storing arguments
	Slide 81: Calling incr:
	Slide 82: Calling incr:
	Slide 83: After calling incr: Getting return value
	Slide 84: After calling incr: Calculating return value
	Slide 85: After calling incr: Calculating return value
	Slide 86: After calling incr: Deallocate space
	Slide 87: After calling incr: Returning
	Slide 88: Register Saving Conventions
	Slide 89: Register Saving Conventions
	Slide 90: x86-64 Linux Register Usage #1
	Slide 91: x86-64 Linux Register Usage #2
	Slide 92: x86-64 Procedure Summary
	Slide 93: Additional Slides
	Slide 94: Recursive Function
	Slide 95: Recursive Function Terminal Case
	Slide 96: Recursive Function Register Save
	Slide 97: Recursive Function Call Setup
	Slide 98: Recursive Function Call
	Slide 99: Recursive Function Result
	Slide 100: Recursive Function Completion
	Slide 101: Observations About Recursion
	Slide 102: Small Exercise
	Slide 103: Small Exercise
	Slide 104: Callee-Saved Example #1
	Slide 105: Callee-Saved Example #2
	Slide 106: Callee-Saved Example #3
	Slide 107: Callee-Saved Example #4
	Slide 108: Callee-Saved Example #5
	Slide 109: Callee-Saved Example #6
	Slide 110: Callee-Saved Example #7
	Slide 111: Callee-Saved Example #8
	Slide 112: Callee-Saved Example #2

