b VECCOVE " | - g

W

Activities are posted on the website (we might not have time today
but you can review them after class)

wget http://www.cs.cmu.edu/~213/activities/machine-procedures.pdf

wget http://www.cs.cmu.edu/~213/activities/machine-procedures.tar
tar xf machine-procedures.tar
cd machine-procedures

Some things we need to review from last
time...

* An x86 program’s view

An x86-64

program’s view...

CPU

=

%rpi —

Program Counter (PC)

16 “General purpose”

.. Memory addresses

%rpi |Ox00ff Registers
%rsp |Oxff88
Condition Codes %rsi |1
7E 0 %rdi |10
SF 1 drax |11
OF 1
CF 0

Memory (Virtual)

Operating system

Code: functioninstructions stored here

Data: global variables stored here

Heap: dynamically allocated memory
grows as program allocates memory

N
N

max:

Stack: local variables and parameters
stored here

grows as program calls functions
shrinks on return from functions

An x86-64

program’s view...

CPU

Program Counter (PC)

16 “General purpose”

%rpi |Ox00ff Registers
%rsp |Oxff88
Condition Codes %rsi |1
7E 0 %rdi |10
SF 1 drax |11
OF 1
CF 0

=

... Memory addresses

max:

Memory (Virtual)

2\

Stack: local variables and parameters
stored here

grows as program calls functions
shrinks on return from functions

Traditional view of a stack

%rsp isthe stack pointer

It points to the current “top of the stack”

%rsp

Lower
addresses

 —_—

Oxff50
Oxff58
Oxff60
Oxff68
oxff70
Oxff78
Oxff80
Oxff88

Stack

Oxfc43

Oxcbed

Oxae’/c

Ox9e99

stack bottom
6

Traditional view of a stack

A traditional view of the stack adereO;/;?s
shows growing the stack from the
“bottom up”.
Oxff50
Oxff58
Pushing onto the stack puts an OxFF60
element on the top of the stack OxFFES
%rsp — Oxff70
Oxff78
Oxff80
Oxff88

Stack

Oxfc43

Oxcbed

Oxae’/c

Ox9e99

stack bottom

7

Traditional view of a stack Stack

A traditional view of the stack addﬁg;’;i;

shows growing the stack from the

“bottom up”.
Oxff50
Oxff58

Pushing onto the stack puts an Oxff60

element on the top of the stack %rsp —— OXFF68 Oxabed
Oxff70 oxfc43
Oxff78 Oxcbod
oxff80 Oxae7c
Oxff88 0x9e99

stack bottom
8

Traditional view of a stack Stack

A traditional view of the stack addkg;’;i;

shows growing the stack from the

“bottom up”.
Oxff50
Oxff58

Popping elements off the stack Ox£F60

removes the most recent thing %Yrsp —— OXFF68 Oxabcd

added to the stack. oxff70 Oxfca3
Oxff78 Oxcbed
Oxf{80 Oxae7c
Oxff88 ©x9e99

stack bottom
9

Traditional view of a stack

A traditional view of the stack adereO;/;?s
shows growing the stack from the
“bottom up”.
Oxff50
Oxff58
Popping elements off the stack Oxf£60
removes the most recent thing Oxf68
added to the stack. %rsp —— Oxff70
Oxff78
oxff8o
Oxf{88

Stack

Oxfc43

Oxcbed

Oxae’/c

Ox9e99

stack bottom

10

By convention in this class, we draw the

x86-64 stack “upside down”!

Hisher 1
The stack grows down towards addre'fseeg
lower addresses.

Oxff88
This is still “last-in-first-out” OxF£80
but we show the it growing down OxF£78

rather than up. %rsp OxF£70

stack bottom

0x9e99

Oxae’/c

Oxcbod

Oxfc4a3

11

By convention in this class, we draw the

x86-64 stack “upside down”!

The stack grows down towards addg'f:eeg
lower addresses.

Oxf88
Pushing elements puts them OxFF80
on top of the stack (but we show this OxF£78
upside down). OxEf70

%rsp — Oxff68

stack bottom

0x9e99

Oxae’/c

Oxcbod

Oxfc4a3

®xabcd

12

By convention in this class, we draw the
x86-64 stack “upside down”!

stack bottom

Higher |
The stack grows down towards addresses
lower addresses.
Oxff88 0x9e99
Pushing elements puts them Oxff80 Oxae7c
on top of the stack (but we show this OxFf78 oxcbod
upside down). Oxff70 oxfc43
%rsp —> Oxff68 Oxabcd

Popping is different than removing
the element! Let’s look at the instructions
and examples.

13

Pushing stack data with pushq

Higher |
pUShq Src addresses
1. Decrement%rsp by 8 bytes OxF 88
2. Write operand into the address oxffge
given by %rsp OxFf78

%rsp —— Oxff70

stack bottom

0x9e99

Oxae’/c

Oxcbod

Oxfc4a3

14

Pushing stack data with pushq

pushg Src

1. Decrement%rsp by 8 bytes

2. Write operand into the address
given by %rsp
%rsp

Example: Registers

pushq %r\bp %rsp Oxff70
%rbp ®xabcd

Higher |
addresses

Oxf+88
Oxff80
Oxff78
—— Oxff70

stack bottom

0x9e99

Oxae’/c

Oxcbod

Oxfc4a3

15

Pushing stack data with pushq

Higher

pUShq Src addresses
1. Decrement%rsp by 8 bytes OxFf8s
2. Write operand into the address oxffge
given by %rsp OxFf78
oxff70
%rsp —> Oxff68

Example: Registers

pUShq %pbp %rsp Oxff68
%rbp ®xabcd

stack bottom

0x9e99

Oxae’/c

Oxcbod

Oxfc4a3

16

Pushing stack data with pushq

Higher

pUShq Src addresses
1. Decrement%rsp by 8 bytes OxF 88
2. Write operand into the address oxffge
given by %rsp OxFf78
oxff70
%rsp — ©Oxff68

Example: Registers

pUShq %pbp %rsp Oxff68
%rbp ®xabcd

stack bottom

0x9e99

Oxae’/c

Oxcbod

Oxfc4a3

®xabcd

17

Popping stack data with popq

popq Dest

1.

2.

Read operand given by address
given by %rsp and store in operand

Increment %rsp by 8 bytes

%rsp

Higher |
addresses

Oxf188
Oxff80
Oxff78
Oxff70
—> 0Oxff68

stack bottom

0x9e99

Oxae’/c

Oxcbod

Oxfc4a3

®xabcd

18

Popping stack data with popq

stack bottom

Higher
olejole Dest addresses
1. Read from address given by %rsp OxFf88 ©x9e99
and store in operand oxff8o Oxae7c
2. Increment%rsp by 8 bytes oxff78 @xcbed
Oxff70 Oxfc43
%rsp — 0Oxff68 Oxabcd
Example: Registers
popqg %rdx %rsp Oxff68
%rdx (%]

Popping stack data with popq

Higher

Popqg Dest addresses
1. Read from address given by %rsp Oxff88
and store in operand OxF£80
2. Increment%rsp by 8 bytes oxff78
Oxfft70

%rsp
Example: Registers
popd %rdx %rsp Oxff68
%rdx Oxabcd

—> Oxff68

stack bottom

0x9e99

Oxae’/c

Oxcbod

Oxfc4a3

®xabcd

20

Popping stack data with popq

stack bottom

Higher
Popq Dest addresses
1. Read from address given by %rsp OxF 88 x990
and store in operand OxFF30 OxacTc
2. Increment %rsp by 8 bytes oxff78 oxcbed
%rsp —— Oxff70 Oxfc43
Oxff68 Oxabcd
Example: Registers
- Important Note:
popq %rdx %rsp | oxffes Value i ied into Dest. it i
o oxabcd alue is copied into Dest, it is

still in memory at old %rsp

21

Summary: Pushing and popping stack data

pushqg %rbp popq %rdx
IS equivalent to IS equivalent to
subg $8, %rsp movqg (%rsp), %rdx

movq %rbp, (%rsp) addg $8, %rsp

22

Today: How does x86-64 implement C
procedure calls?

*Mechanisms in procedures

* Calling Conventions
* Passing Control
* Passing Data
* Managing Local Data

Today: How does x86-64 implement C
procedure calls?

*Mechanisms in procedures

* Calling Conventions
* Passing Control
* Passing Data
* Managing Local Data

Today: How does x86-64 implement C
procedure calls?

*Mechanisms in procedures

* Calling Conventions
* Passing Control
* Passing Data
* Managing Local Data

What mechanisms do we need to implement

procedures?

void multstore

(long x, long y, long *dest)
{

long t = mult2(x, y);

*dest = t;

oOuvih WN PR

}

long mult2(long a, long b)
{

long s = a * b;

return s;

}

ui b Wi B

* Passing control
* Passing data
* Managing local data

27

What mechanisms do we need to implement
procedures: Passing Control

void multstore

(long x, long y, long *dest)
{

long t = mult2(x, y);

*dest = t;

oOuvih WN PR

}

long mult2(long a, long b)
{

long s = a * b;

return s;

}

ui b Wi B

Program needs to stop
execution of caller (nultstore)
to execute callee (mult2) and
then return to caller and
continue execution.

28

What mechanisms do we need to implement
procedures: Passing Control

1| void multstore
2 (long x, long y, long *dest)
31 A
4 long t = mult2(x, y);
5 *dest = t;
6)
—
1\ long mult2(long a, long b)
2 1%
3 long s = a * b;
4 return s;
5| }

Program needs to stop
execution of caller (nultstore)
to execute callee (mult2) and
then return to caller and
continue execution.

29

What mechanisms do we need to implement
procedures: Passing Control

1| void multstore
2 (long x, long y, long *dest)
31 A
4 long t = mult2(x, y);
5 *dest = t;
6)
—
1\ long mult2(long a, long b)
2 1%
2 long s = a * b;
4 return s;
5| }

Program needs to stop
execution of caller (nultstore)
to execute callee (mult2) and
then return to caller and
continue execution.

30

What mechanisms do we need to implement

procedures: Passing Data

oOuvih WN PR

void multstore

(long x, long y, long *dest)
{

long t = mult2(x, y);

*dest = t;
}

ui b Wi B

long mult2(long a, long b)
{

long s = a * b;

return s;

}

Program needs to pass

arguments to callee (nult2) and

return values to caller
(multstore).

31

What mechanisms do we need to implement

procedures: Passing Data

oOuvih WN PR

void multstore

(long x, long y, long *dest)
{

long t = mult2(x, y);

*dest = t;

} ~

)

ui b Wi B

long mult2(long a, long b) 4

{

long s = a * b;

}

Program needs to pass

arguments to callee (nult2) and

return values to caller
(multstore).

32

What mechanisms do we need to implement

procedures: Passing Data

aOw b wWNER

void multstore
(long x, long y, long *dest)
= mult2(x, y);

{
*dest = t;

} ~

)

Ui D W N R

long mult2(long a, long b) 4

{

long s = a * b;

}

Program needs to pass

arguments to callee (nult2) and

return values to caller
(multstore).

33

What mechanisms do we need to implement
procedures: Managing Local Memory

void multstore

(long x, long y, long *dest)
{

long t = mult2(x, y);

*dest = t;

oOuvih WN PR

}

long mult2(long a, long b)
{

return s;

}

ui b Wi B

Program may need to allocate
memory for local variables in
callee (mult2) and then
deallocate after returning to
caller (multstore).

34

Today: How does x86-64 implement C
procedure calls?

*Mechanisms in procedures

* Calling Conventions
* Passing Control
* Passing Data
* Managing Local Data

Let’s examine this translation of C to x86-64:

1| void multstore 1| 0000000000400540 <multstore>:

2 (long x, long y, long *dest) 2 400540: push %rbx # Save %rbx

3| { 3 400541: mov %rdx, %rbx # Save dest

4 long t = mult2(x, y); 4 400544: call 400550 <mult2> # mult2(x,y)

5 *dest = t; 5 400549: mov %rax, (%rbx) # Save at dest

6| } 6 40054c: pop %rbx # Restore %rbx
7 40054d: ret # Return

1| long mult2(long a, long b) 1| 0000000000400550 <mult2>:

2| A 2 400550: mov %rdi, %rax # a

3 long s = a * b; 3 400553: imul %rsi,%rax #a*b

4 return s; 4 400557: ret # Return

5[}

36

To implement passing control, programs use call
and ret Instructions which use the stack to store

return address.

1| void multstore

2 (long x, long y, long *dest)
3] A

4 long t = mult2(x, y);
5 *dest = t;

6| }

1| long mult2(long a, long b)
2| A

3 long s = a * b;

4 return s;

5[}

1| 0000000000400540 <multstore>:

2

3

4 400544: call 400550 <mult2> # mult2(x,y)
5

6

7 40054d: ret # Return
1| ©0000000000400550 <mult2>:

2

3

4 400557: ret # Return

37

call instruction pushes the return address
on stack and ret instruction pops it

call addr<label>

1| 0000000000400540 <multstore>:
2 400540: push %rbx # Save %rbx
3| 400541: mov %rdx,%rbx # Save dest 1. Push return address
4 400544: call 400550 <mult2> # mult2(x,y) on stack
5 400549: mov %rax, (%rbx) # Save at dest 2. Jumpto addr
6 40054c: pop %6rbx # Restore %rbx
7 40054d: ret # Return
ret
1| 0000000000400550 <mult2>: 1. POp return address
2 400550: mov %rdi, %rax # a on stack
3 400553: dimul %rsi,%rax #a *b
4| 400557: ret # Return 2. Jumptoreturn

address

38

Beforecall

%rip

NOoOuph wNnR

0000000000400540 <multstore>:

400544 : call 400550 <mult2>
400549: mov %rax, (%rbx)

mult2(x,y)
Save at dest

0x130
0x128

%rsp

— 0x120

A wWN PR

0000000000400550 <mult2>:
400550: mov %rdi, %rax

400557: ret

a

Return

Stack

Registers

%rsp

0x120

%rip

0x400544

39

Executing call: push return address

%rip

NOoOuph wNnR

0000000000400540 <multstore>:

400544 :
400549

call
mov

400550 <mult2> # mult2(x,y)
%rax, (%rbx)

Save at dest

0x130
0x128
0x120

%rsp

— 0x118

AwnNn PR

000000000P400550 <mult2>:

400550:

400557

mov

ret

%rdi, %rax

a

Return

Stack

0x400549

Registers

%rsp

0x118

%rip

0x400544

40

Executing call: jmp to address of

function to execute

NOoOuph wNnR

0000000000400540 <multstore>:

400544
400549

call
mov

400550 <mult2> # mult2(x,y)
%rax, (%rbx)

Save at dest

0x130
0x128
0x120

%rsp

— 0x118

%rip

v
AwnNn PR

000000000P400550 <mult2>:

400550:

400557

mov

ret

%rdi, %rax

a

Return

Stack

0x400549

Registers

%rsp

0x118

%rip

0x400550

41

Aftercall

%rip

0x130
0x128
0x120

%rsp

— 0x118

v

1| 0000000000400540 <multstore>:

2

3

4 400544: call 400550 <mult2> # mult2(x,y)
5 400549: mov %rax, (%rbx) # Save at dest
6

7

1| 0000000000400550 <mult2>:

2 400550: mov %rdi, %rax # a

3

4 400557: ret # Return

Stack

0x400549

Registers

%rsp

0x118

%rip

0x400550

42

Before ret

NOoOuph wNnR

0000000000400540 <multstore>:

400544 : call 400550 <mult2>
400549: mov %rax, (%rbx)

mult2(x,y)
Save at dest

Stack

0x130
0x128

0x120

%rsp

—> Ox118 | 9x400549

%rip

A wWN PR

0000000000400550 <mult2>:
400550: mov %rdi, %rax

400557: ret

a

Return

Registers
%rsp Ox118
%rip 0x400557

43

Executing ret: pop return address
Stack

1| 0000000000400540 <multstore>:

2

3

4 400544: call 400550 <mult2> # mult2(x,y) 0x130

5 400549: mov %rax, (%rbx) # Save at dest Ox128

6

v, »rsp ™ 0x120

0x118 [6x400549

1| 0000000000400550 <mult2>: Registers

g 400550: mov %rdi, %rax # a %rsp Ox120
%rip —| 4 400557: ret # Return %rip | ©x400549

44

Executing ret: jmp to return address

%rip

NOoOuph wNnR

0000000000400540 <multstore>:

400544
400549

call
mov

400550 <mult2> # mult2(x,y)
%rax, (%rbx)

Save at dest

0x130
0x128

%rsp

— 0x120

AwnNn PR

000000000P400550 <mult2>:

400550:

400557

mov

ret

%rdi, %rax

a

Return

0x118

Stack

0x400549

Registers

%rsp

0x120

%rip

0x400549

45

After ret

%rip

NOoOuph wNnR

0000000000400540 <multstore>:

400544 : call 400550 <mult2>
400549: mov %rax, (%rbx)

mult2(x,y)
Save at dest

0x130
0x128

%rsp

— 0x120

A wWN PR

0000000000400550 <mult2>:
400550: mov %rdi, %rax

400557: ret

a

Return

Stack

Registers

%rsp

0x120

%rip

0x400549

46

Today: How does x86-64 implement C
procedure calls?

*Mechanisms in procedures

* Calling Conventions
* Passing Control
* Passing Data
* Managing Local Data

Activity Time!

If you didn’t do at the start of class:

Login to a shark machine, then type:
wget http://www.cs.cmu.edu/~213/activities/machine-procedures.pdf

wget http://www.cs.cmu.edu/~213/activities/machine-procedures.tar

tar xf machine-procedures.tar
cd machine-procedures

Do Activity: Problems 6-9

48

The first 6 arguments to a procedure are stored in
registers, the remaining are stored on stack.

As illustrated in the activity: Stack
Registers
%rdi Arg 1 © o o
%rsi Arg 2 Arg n
%rdx Arg 3
% CX Arg 4
%r8 Arg 5 Arg 8
%9 Arg 6 Arg 7

Important note: Programs only allocate stack space whenitis
needed.

Example of where arguments and return values

are stored:

auvih WN B

void multstore

(long x, long y, long *dest)
{

long t = mult2(x, y);

*dest = t;

vi A WN R

long mult2(long a, long b)
{

long s = a * b;

return s;

}

1| ©0000000000400540 <multstore>:

2| # x in %rdi , y in %rsi, dest in %rdx

3 400540: push %rbx # Save %rbx

4 400541: mov %rdx, %rbx # Save dest

5 400544: call 400550 <mult2> # mult2(x,y)

6| # t in %rax

7 400549: mov %rax, (%rbx) # Save at dest
8 40054c: pop %rbx # Restore %rbx
9 40054d: ret # Return

1| 0000000000400550 <mult2>:

2| # a in %rdi, b in %rsi

3 400550: mov %rdi, %rax # a

4 400553: imul %rsi,%rax #a*b

5| # s in %rax

6 400557: ret # Return

50

Arguments are “passed” in the argument

OWooONOUVLIEWDNPR

0000000000400540 <multstore>:
x in %rdi , y in %rsi, dest in %rdx

400540: push %rbx # Save %rbx
400541: mov %rdx, %rbx # Save dest
400544: call 400550 <mult2> # mult2(x,y)

registers.
1| void multstore
2 (long x, long y, long *dest)
31 1
4 long t = mult2(x, y);
5 *dest = t;
6| }
1| long mult2(long a, long b)
2] 1
3 long s = a * b;
4 return s;
5[}

OO ph WN R

0000000000400550 <mult2>:

a in %rdi, b in %rsi
400550: mov %rdi, %rax # a
400553: imul %rsi,%rax #a*b

51

Return values are “returned” in return register.

auvih WN B

void multstore

(long x, long y, long *dest)
{

long t = mult2(x, y);

*dest = t;

OWooONOUVLIEWDNPR

0000000000400540 <multstore>:

t in %rax
400549: mov %rax, (%rbx)
40054c: pop %rbx
40054d: ret

Save at dest
Restore %rbx
Return

vi A WN R

long mult2(long a, long b)
{

long s = a * b;

return s;

}

OO ph WN R

0000000000400550 <mult2>:

s in %rax
400557: ret

Return

52

Today: How does x86-64 implement C
procedure calls?

*Mechanisms in procedures

* Calling Conventions
* Passing Control
* Passing Data
* Managing Local Data

Languages that support recursion like C require
some place to store state for each instantiation of

the same procedure.

* Code must be “reentrant”: Support multiple instances of a single
procedure

* Requires needing some place to store state of each instantiation
iIncluding arguments, local variables, and return value

e The stack allocated in frames where each frame contains state for
a given procedure

54

Let’s look at an example of calling a chain of
functions.

Yoo (...)
{
who (...)
who () ; {
)) aml () ; amI (...)
amI () ; {
} amI () ;

}

Procedure amI () is recursive

Let’s look at an example of calling a chain of
functions.

(Example
Yoo (...) .
{ Call Chain
who (...) Yoo
who () ; {
. [] [] [] Wi;.o
) aml () ; amI (...) \\\\
;mi(;; { . a&I aml
} amI () ; aml

Procedure amI () is recursive

When calling a procedure, that procedure’s
stack frame is pushed onto the stack.

The “setup” code:
Previous
The program allocates space Frame
on the stack (if needed) and
does call instruction. ,
Frame Pointer: $Srbp ——
(Optional)
o Frame for
The “finish” code: proc
The program deallocates Stack Pointer: $rsp —
space on the stack (if needed) &5

and does ret instruction Stack “Top”

57

Example

Yoo (...)

who () ;

yoo

Stack

yoo

Stack

Example
yoal) Yoo
{ |who (. l
{ yoo
e . . who
T () Srbp——
Y who
amI () ; TSP
1 [] [] []
}

Stack

yoo
' yoo
who

aIZI:lI Who

Srbp—m
} ¢ amI

¢ srsp—

}

Srbp—m

Srsp——

Stack

yoo

who

aml

amI

Stack

yoo
' yoo
who
amI who
amI amI
amI
aml
sSrbp—m
amI
Irsp—mm—

Stack

yoo
who
amIl

Srbp—m
aml

Srsp——

Stack

Example
yoal) yoo
{ who (...)
{ } yoo
amI (...) who
{
y aIZI:lI who
Srbp—m
amIl

* srsp—m——

Example

yoal)

{ |who (..)

amI (

° ~ ° ~— °

amI (

yoo

who

Stack

yoo
Srbp———

who
Frsp———

yoo

who

amI

Srbp—m

Srsp——

Stack

yoo

who

aml

yoo

who

Stack

yoo
Srbp———

who
Frsp———

Example

Yoo (...)

» v.th();

yoo

Stack

yoo

Quiz Time!
Canvas Quiz: Day 5 - Machine Procedures

https://tinyurl.com/213-lec5

[=] oy, (=]
[=]

https://tinyurl.com/213-lec4
https://tinyurl.com/213-lec5
https://tinyurl.com/213-lec5
https://tinyurl.com/213-lec5
https://tinyurl.com/213-lec5
https://tinyurl.com/213-lec5

x86-64/Linux Stack Frame

* Current stack frameis onthe
top of the stack and is the
current executing procedure

* Caller stack frame has return
address pushed by call
Instruction
and the arguments for this call

Important Note:
Stack space only allocated if
needed by procedure!

Caller <
Frame

Frame pointer \
$rbp——

(Optional)

Stack pointer

srsp—m——

Arguments
7+

Return Addr

Old $rbp

Saved
Registers
+
Local
Variables

Argument
Build
(Optional)

Example: 1ncr

OV A WN B

long incr(long *p, long val) {
long x = *p;
long y = x + val;
P = Yy;
return Xx;

ui b w N R

incr:
movq (%rdi), %rax
addq %rax, »rsi
movq %rsi, (%rdi)
ret

Registers Use
%rdi Argument p
%rsi Argumentval,y

%rax

X, Return value

72

Example: Calling incr with a local variable

address
1 *
; longli:cr(lfng .p, long val) { 1] Tong call incr() {
g X = 7p;
3 long y = x + val; 2 long vl = ?5213;
4 *p = y; 3 long v2 = incr(&vl, 3000);
5 return x; 4 return v1l+v2;
6| } 5|}
1| incr: 1| call incr:
2 movqg (%rdi), %rax 2 subq $16, %rsp
3 addq %rax, %rsi 3 mov(q $15213, 8(%rsp)
4 movg %rsi, (%rdi) 4 mov1l $3000, %esi
5 ret 5 leag 8(%rsp), %rdi
6 call incr
7 addq 8(%rsp), %rax
8 addq $16, %rsp
9 ret

Before calling 1ncr: Storing arguments

Initial Stack Structure

1| long call incr() {

2 long v1 = 15213;

3 long v2 = incr(&vl, 3000);
4 return vl1+v2;

5[)

1| call incr:

2 subq $16, %rsp

3 movq $15213, 8(%rsp)
4 mov1 $3000, %esi

5 leaq 8(%rsp), %rdi

6 call incr

7 addqg 8(%rsp), %rax

8 addqg $16, %rsp

9 ret

Return address

+«—— 3rsp

74

Before calling 1ncr: Storing arguments

Resulting Stack Structure

1| long call incr() {

2 long vl = 15213;

3 long v2 = incr(&vl, 3000);
4 return vl1+v2;

5] }

1| call incr:

2 subq $16, %rsp

3 movg $15213, 8(%rsp)
4 mov1 $3000, %esi

5 leaq 8(%rsp), %rdi

6 call incr

7 addqg 8(%rsp), %rax

8 addqg $16, %rsp

9 ret

Return address

15213

Unused

«— 3rsp+8

«—— 3Irsp

75

Before calling 1incr: Storing arguments

i e) Stack Structure
2 long vl = 15213;
3 long v2 = incr(&vl, 3000);
4 return vl1+v2;
5| }
Return address
1| call incr: 15213 +«— %rsp+8
2 subq $16, %rsp Unused «— Srsp
3 movq $15213, 8(%rsp)
4 mov1 $3000, %esi
Z igi? ?r(]f:sp), ordl Registers Use
7 addqg 8(%rsp), %rax %rdi &vl
8 addqg $16, %rsp %rsi 3000
9 ret

Before calling 1incr: Storing arguments

1| long call incr() { Stack Structure
2 long vl = 15213;
3 long v2 = incr(&vl, 3000);
4 return vl1+v2;
5[)
Aside 1: movl $3000, %esi
1| call_i « Remember, movl -> %exx zeros out high order 32 bits. P*8
2 b . Ly
- ;gvg Why use movl instead of movqg? 1 byte shorter. °P
4 mov1 $3000, %esi
5 leaq 8(%rsp), %rdi)
6 call incr Registers Use
7 addq 8(%rsp), %rax %rdi &vl
8 addq $16, %rsp UYprsi 3000
9 ret

Before calling 1incr: Storing arguments

P e o) Stack Structure
2 long vl = 15213;
3 long v2 = incr(&vl, 3000);
4 return vl1+v2;
5[)
Return address
1| call_ir Aside 2: leaq 8 (%rsp), %rdi | +— %xrsp+8
2| subd e Computes %rsp+8 «— %rsp
3 mov(_ N
al mov1 ¢ Actually, used for what it is meant!
3| leaq 8(krsp), xral Rogisters | Use
7 addq 8(%rsp), %rax %rdi &vl
8 addq $16, %rsp %Yprsi 3000
9 ret

Before calling 1incr: Storing arguments

i e) Stack Structure
2 long vl = 15213;
3 long v2 = incr(&vl, 3000);
4 return vl1+v2;
5| }
Return address
1| call incr: 15213 +«— %rsp+8
2 subq $16, %rsp Unused «— Srsp
3 movq $15213, 8(%rsp)
4 mov1 $3000, %esi
Z igi? ?r(]f:sp), ordl Registers Use
7 addqg 8(%rsp), %rax %rdi &vl
8 addqg $16, %rsp %rsi 3000
9 ret

Before calling 1incr: Storing arguments

i e) Stack Structure
2 long v1 = 15213;
3 long v2 = incr(&vl, 3000);
4 return vl1+v2;
5| }
Return address
1| call incr: 15213 +«— %rsp+8
2 subq $16, %rsp Unused «— Srsp
3 movq $15213, 8(%rsp)
4 mov1 $3000, %esi
Z i:i? ?r(é:sp), #rdl Registers Use
7 addqg 8(%rsp), %rax %rdi &vl
8 addqg $16, %rsp %rsi 3000
9 ret

Calling incr:

Stack Structure

Return address

15213

1| long incr(long *p, long val) {
2 long x = *p;

3 long y = x + val;
4 P = Yy;

5 return Xx;

6| }

1| incr:

2 movq (%rdi), %rax
3 addq %rax, »rsi

4 movq %rsi, (%rdi)
5 ret

Unused

«— %rsp+8

«— 3rsp

Registers

Use

%Brdi &vl

%rsi 3000

%rax Returnvalue

81

Calling incr:

Stack Structure

Return address

15213

1| long incr(long *p, long val) {
2 long x = *p;

3 long y = x + val;
4 P = Yy;

5 return Xx;

6| }

1| incr:

2 movq (%rdi), %rax
3 addq %rax, »rsi

4 movq %rsi, (%rdi)
5 ret

Unused

«— %rsp+8

«— 3rsp

Registers

Use

%Brdi &vl

%rsi 3000

%rax Returnvalue

82

After calling 1ncr: Getting return value

Stack Structure

1| long call incr() {

2 long v1 = 15213;

3 long v2 = incr(&vl, 3000);
4 return vl1+v2;

5[)

1| call incr:

2 subq $16, %rsp

3 movq $15213, 8(%rsp)
4 mov1 $3000, %esi

5 leaq 8(%rsp), %rdi

6 call incr

7 addqg 8(%rsp), %rax

8 addqg $16, %rsp

9 ret

Return address

15213 «— 3rsp+8
Unused «— 3rsp
Registers Use
%rax Returnvalue

83

After calling 1ncr: Calculating return value

1] long call incr() { Stack Structure
2 long v1 = 15213;
3 long v2 = incr(&vl, 3000);
4 return vi+v2;
5] }

Rtn address
1 Call_incr\: 18213 DR %rsp+8
2 subq $16, %rsp Unused |—— %rsp
3 movq $15213, 8(%rsp)
4 mov1 $3000, %esi
Z igi? ?r(]f:sp), #rdl Registers Use
7 addq 8(%rsp), %rax %rax Returnvalue
8 addqg $16, %rsp
9 ret

84

After calling 1ncr: Calculating return value

Stack Structure

Rtn address

1| long call incr() {

2 long v1 = 15213;

3 long v2 = incr(&vl, 3000);
4 return vi+v2;

5[)

1| call incr:

2 subq $16, %rsp

3 movq $15213, 8(%rsp)
4 mov1 $3000, %esi

5 leaq 8(%rsp), %rdi

6 call incr

7 addg 8(%rsp), %rax

8 addqg $16, %rsp

9 ret

18213 |— %rsp+8

Unused |—— 3rsp
Registers Use
%rax Returnvalue

85

After calling 1ncr: Deallocate space

Stack Structure

Rtn address

1| long call incr() {

2 long v1 = 15213;

3 long v2 = incr(&vl, 3000);
4 return vl+v2;

5[)

1| call incr:

2 subq $16, %rsp

3 movq $15213, 8(%rsp)
4 mov1 $3000, %esi

5 leaq 8(%rsp), %rdi

6 call incr

7 addqg 8(%rsp), %rax

8 addg $16, %rsp

9 ret

18213 |— %rsp+8

Unused |—— 3rsp
Registers Use
%rax Returnvalue

Updated Stack Structure

Rtn address

—— 3LSP

86

After calling 1ncr: Returning

Updated Stack Structure

Rtn address

—— 3rsp

1| long call incr() {

2 long v1 = 15213;

3 long v2 = incr(&vl, 3000);
4 return vl+v2;

5[)

1| call incr:

2 subq $16, %rsp

3 movq $15213, 8(%rsp)
4 mov1 $3000, %esi

5 leaq 8(%rsp), %rdi

6 call incr

7 addqg 8(%rsp), %rax

8 addqg $16, %rsp

9 ret

Registers Use
%rax Return value

Final Stack Structure

— JrSp

87

Register Saving Conventions

B When procedure yoo calls who:
= yoo is the caller
* who is the callee

B Can register be used for temporary storage?

yoOo: who:
movqg $15213, %rdx subg $18213,
call who o o o
addq %rdx, Srax ret
ret

$rdx

= Contents of register $rdx overwritten by who
= This could be trouble — something should be done!
- Need some coordination

Register Saving Conventions

B When procedure yoo calls who:
= yoo is the caller
* who is the callee

B Can register be used for temporary storage?

B Conventions
» “Caller Saved” (aka “Call-Clobbered”)
- Caller saves temporary values in its frame before the call
* “Callee Saved” (aka “Call-Preserved”)
= Callee saves temporary values in its frame before using
= Callee restores them before returning to caller

Xx86-64 Linux Register Usage #1

$rax
Return $rax
Return value value - = _
= Call-clobbered srdi
(i.e., caller must save&restore if Syrsi
value needed after the call)
srdx
Arguments <
i o
$rdi, ..., 3r9 cXCX
= Arguments °Sr8
= Call-clobbered
_ %r9
i o
$rl0, $rll Call-clobbered _ srl0
i o
= Call-clobbered temporaries srll

X86-64 Linux Register Usage #2

%$rbx, $rl2, $rl3, $rld4,

o
sr Lo g $rbx
= Call-preserved
(i.e., Callee must save & %rl2
restore) Call-preserved S
Temporaries < srl3
S rbp %rl4
= Call-preserved g $rlb5
: g/lay b? u;ed as;:rame pointer 3 Tbp
an mix & matc Special
3rsp

H3rsp
= Special form of call-preserved

= Restored to original value upon
exit from procedure

x86-64 Procedure Summary

H Important Points f
= Stack is the right data structure for procedure call/return
= If P calls Q, then Q returns before P Caller
Frame <
B Recursion (& mutual recursion) handled by
normal calling conventions
= Can safely store vqlues in local stack frame and in %rbp—>
call-preserved registers (Optional)

= Put function arguments at top of stack
= Result return in $rax

B Pointers are addresses of values
= On stack or global

srsp—

Arguments
7+

Return Addr

Old %rbp

Saved
Registers
+
Local
Variables

Argument
Build

Additional Slides

Recursive Function

/* Recursive popcount */
long pcount r (unsigned long x) {

if (x = 0)
return O;
else

return (x & 1)
+ pcount r(x >> 1);

pcount r:
movl
testq
je
pushqg
movq
andl
shrqgq
call
addq
popq

.L6:

$0, %eax
$rdi, %rdi
.L6

Srbx

$rdi, %rbx
$1, %ebx
Srdi
pcount r
$rbx, %rax
$rbx

rep, ret

Recursive Function Terminal Case

/* Recursive popcount */
long pcount r (unsigned long x) {

if (x = 0)
return O;
else

return (x & 1)
+ pcount r(x >> 1);

Register Use(s) Type
srdi X Argument
$rax Return value Return value

pcount r:
movl S0, %eax
testqg srdi, 5%rdi
je .L6
pushq Srbx
movq $rdi, S%rbx
andl $1, %ebx
shrq rdi
call pcount r
addqg srbx, %rax
pPopg Srbx

.L6:
rep,; ret

Recursive Function Register Save

/* Recursive popcount */
long pcount r (unsigned long x) {

if (x = 0)
return O;
else

return (x & 1)
+ pcount r(x >> 1);

Register Use(s) Type
srdi X Argument

pcount r:

movl $0, %eax
testqg srdi, 5%rdi
je .L6
pushqg srbx
movq $rdi, 3%rbx
andl $1, %ebx
shrq srdi
call pcount r
addq %¥rbx, 3%rax
popq srbx

.L6:
rep; ret

Rtn address

Saved $rbx f—— %rsp

Recursive Function Call Setup

/* Recursive popcount */
long pcount r (unsigned long x) {

if (x = 0)
return O;
else

return (x & 1)
+ pcount r(x >> 1);

Register Use(s) Type
srdi x > 1 Rec. argument
%rbx x &1 Callee-saved

pcount r:
movl $0, %eax
testqg srdi, 5%rdi
je .L6
pushq Srbx
movq srdi, %rbx
andl $1, %ebx
shrq srdi
call pcount r
addqg srbx, %rax
pPopg Srbx

.L6:
rep; ret

Recursive Function Call

/* Recursive popcount */
long pcount r (unsigned long x) {

if (x = 0)
return O;
else

return (x & 1)
+ pcount r(x >> 1);

Register Use(s) Type
$rbx x &1 Callee-saved
$rax Recursive call

return value

pcount r:
movl $0, %eax
testqg srdi, 5%rdi
je .L6
pushq Srbx
movq $rdi, S%rbx
andl $1, %ebx
shrq rdi
call pcount r
addqg srbx, %rax
pPopg Srbx

.L6:
rep; ret

Recursive Function Result

/* Recursive popcount */
long pcount r (unsigned long x) {

if (x = 0)
return O;
else

return (x & 1)
+ pcount r(x >> 1);

Register Use(s) Type
%rbx x &1 Callee-saved
%rax Return value

pcount r:
movl $0, %eax
testqg srdi, 5%rdi
je .L6
pushq Srbx
movq $rdi, S%rbx
andl $1, %ebx
shrq rdi
call pcount r
addq %$rbx, S%rax
pPopg Srbx

.L6:
rep; ret

Recursive Function Completion

/* Recursive popcount */
long pcount r (unsigned long x) {

if (x = 0)
return O;
else

return (x & 1)

+ pcount r(x >> 1);

Register Use(s) Type
$rax Return value Return value

pcount r:

movl $0, %eax
testqg srdi, 5%rdi
je .L6
pushqg srbx
movq $rdi, 3%rbx
andl $1, %ebx
shrq srdi
call pcount r
addq %¥rbx, 3%rax
popq $rbx

.L6:
rep,; ret

« srsp

Observations About Recursion

HmHandled Without Special Consideration
= Stack frames mean that each function call has private storage
- Saved registers & local variables
= Saved return pointer

= Register saving conventions prevent one function call from corrupting
another’s data

- Unless the C code explicitly does so (e.g., buffer overflow in Lecture 9)
= Stack discipline follows call / return pattern

= If P calls Q, then Q returns before P

= Last-In, First-Out

B Also works for mutual recursion
= PcallsQ; QcallsP

Small Exercise

long add5(long b0, long bl, long b2, long b3, long b4) {
return b0+bl+b2+b3+b4;
}

long add1l0(long a0, long al, long a2, long a3, long a4, long a5,
long a6, long a7, long a8, long a9) {
return add5 (a0, al, a2, a3, a4)+
add5 (a5, a6, a7, a8, a9);
}

BWhere are a0,..., a9 passed?
rdi, rsi, rdx, rex, r8, r9, stack

BWhere are b0,..., b4 passed?

rdi, rsi, rdx, rcx, r8

B Which registers do we need to save?

lll-posed question. Need assembly.
rbx, rbp, r9 (during first call to add5)

Return value

Arguments =

$rax

$rdi

Frsi

Srdx

$rcx

%r8

Caller-saved
temporaries ’

Callee-saved
Temporaries

Special {

%r9

$rl0

$rll

$rbx

$rl2

%$rl3

$rld

N

$rbp

%rsp

Small Exercise

}

a3, ad)+

long add5(long b0, long bl, long b2, long b3, long b4) {
return b0+bl+b2+b3+b4;

long add10(long a0, long al, long a2, long a3, long a4, long a5,
long a6, long a7, long a8, long a9) {
return add5 (a0, al, a2,

Return value

Arguments =

$rax

$rdi

%rsi

$rdx

$rcx

%r8

Caller-saved
temporaries ’

Callee-saved
Temporaries

Special {

ret

add5 (a5, a6, a7, a8, a9);
}
addlo0:
pushqg %rbp
pushg %rbx
movq %r9, %rbp
call add5
movq srax, 5%rbx
movq 48 (%rsp) , %r8
movq 40 (%rsp) , %rcx
movq 32 (%rsp), %rdx
movq 24 (%rsp), %rsi
movq %rbp, %rdi add5 -
20 2ell addqg $rsi, S%$rdi
addq %rbx, %rax addq e S —
EEIE e addq s%rdx, %rex
i:zq R leaq (%rcx,%xr8),

$rax

%$r9

$rl0

$rll

$rbx

$rl2

%rl3

$rld

$rbp

%rsp

Callee-Saved Example #1

o~ Initial Stack Structure

long call incr2 (lon@ {
long vl = 15213;

long v2 = incr(&vl, 3000);
retur 2;
}

Rtn address |« $rsp

* Xcomesinregister $rdi.
e We need $rdi for the call to incr.

* Where should be put x, so we can use
it after the call to incr?

Callee-Saved Example #2

Initial Stack Structure

long call incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

} Rtn address |« $rsp

call incr2:
pushqg srbx
subg $16, %rsp
movq srdi, S%rbx
movq $15213, 8 (%rsp)
movl $3000, %esi
leaq 8 ($rsp), %rdi

Resulting Stack Structure

call incr Rtn address
addqg $rbx, %rax Saved $rbx

a

srsp

addg $16, %$rsp
poprq srbx
ret

Callee-Saved Example #3

Initial Stack Structure

long call incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

} Rtn address

Saved $rbx

3rsp

3

call incr2:
pushq srbx
subg $16, %rsp
movq srdi, S%rbx
movq $15213, 8 (%rsp)
movl $3000, %esi
leaq 8 ($rsp), %rdi

Resulting Stack Structure

call incr Rtn address
addqg $rbx, %rax Saved $rbx

addg $16, %$rsp
poprq srbx
ret « %TSp

—— 3rsp+8

Callee-Saved Example #4

Stack Structure

long call incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

Rtn address

Saved $rbx

—— 3Trsp+8
call_incr2: P

pushq srbx «— 3rsp
subg $16, %rsp
movq srdi, S%rbx

movq $15213, 8 (%rsp)
movl $3000, %esi

neser BEUEER) e e Xsavedin $rbx.
call incr .
addq $%rbx, $%rax A callee saved register.

addg $16, %$rsp
poprq srbx
ret

Callee-Saved Example #5

Stack Structure

long call incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

Rtn address

Saved $rbx

Srsp+
call incr2: 15213 j— %rsp+8

pushqg %rbx Unused |—— 3rsp
subg $16, %rsp
movq srdi, S%rbx

movq $15213, 8 (%rsp)
movl $3000, %esi

neser BEUEER) e e Xsavedin $rbx.
call incr .
addq $%rbx, $%rax A callee saved register.

addg $16, %$rsp
poprq srbx
ret

Callee-Saved Example #6

Stack Structure
long call incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
} return x+v2; Rtn address
Saved $rbx

— % +8
call_incr2: LEale tSP

pushqg %rbx Unused |—— 3rsp
subg $16, %rsp
movq srdi, S%rbx

movq $15213, 8 (%rsp)
movl $3000, %esi

leaq 8 (%rsp), %rdi e Xlssafein $rbx
call incr e Returnresultin $rax

addqg srbx, %rax
addg $16, %$rsp
poprq srbx

ret

Callee-Saved Example #7

Stack Structure

long call incr2(long x) {

long vl = 15213;

long v2 = incr(&vl, 3000);

Rtn address

Saved $rbx

3

x+v2;

}

call incr2:
pushq srbx
subg $16, %rsp
movq srdi, S%rbx
movq $15213, 8 (%rsp)
movl $3000, %esi
leaq 8 ($rsp), %rdi
call incr
addq %¥rbx, 3%rax
addg $16, %rsp
poprq srbx

ret

Irsp
18213

Unused

e Returnresultin $rax

Callee-Saved Example #8

Initial Stack Structure

long call incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
} A Rtn address
Saved $rbx o
« %rsp
call incr2: 18213
pushg $rbx Unused
subqg $16, %rsp
movq $rdi, %rbx final Stack Structure
movq $15213, 8 (%rsp)
movl $3000, %esi
leaq 8 ($rsp), %rdi
call incr
addq $rbx, S%rax Rtn address < %rsp
addg $16, %$rsp Saved $rbx
EERE = 18213
ret
Unused

Callee-Saved Example #2

Resulting Stack Structure

long call incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

Rtn address

Saved $rbx

15213 |—— %rsp+8

call_incr2:

pushqg %rbx Unused |—— 3rsp

subg $16, %rsp

movq srdi, S%rbx

movq $15213, 8 (%rsp) Pre-return Stack Structure

movl $3000, %esi
leaq 8 ($rsp), %rdi

call incr
addq %¥rbx, 3%rax

addg $16, %rsp
poprq srbx
ret

Rtn address [«—— 3rsp

	Slide 1
	Slide 2
	Slide 3: Some things we need to review from last time…
	Slide 4: An x86-64 program’s view…
	Slide 5: An x86-64 program’s view…
	Slide 6: Traditional view of a stack
	Slide 7: Traditional view of a stack
	Slide 8: Traditional view of a stack
	Slide 9: Traditional view of a stack
	Slide 10: Traditional view of a stack
	Slide 11: By convention in this class, we draw the x86-64 stack “upside down”!
	Slide 12: By convention in this class, we draw the x86-64 stack “upside down”!
	Slide 13: By convention in this class, we draw the x86-64 stack “upside down”!
	Slide 14: Pushing stack data with pushq
	Slide 15: Pushing stack data with pushq
	Slide 16: Pushing stack data with pushq
	Slide 17: Pushing stack data with pushq
	Slide 18: Popping stack data with popq
	Slide 19: Popping stack data with popq
	Slide 20: Popping stack data with popq
	Slide 21: Popping stack data with popq
	Slide 22: Summary: Pushing and popping stack data
	Slide 23: Today: How does x86-64 implement C procedure calls?
	Slide 25: Today: How does x86-64 implement C procedure calls?
	Slide 26: Today: How does x86-64 implement C procedure calls?
	Slide 27: What mechanisms do we need to implement procedures?
	Slide 28: What mechanisms do we need to implement procedures: Passing Control
	Slide 29: What mechanisms do we need to implement procedures: Passing Control
	Slide 30: What mechanisms do we need to implement procedures: Passing Control
	Slide 31: What mechanisms do we need to implement procedures: Passing Data
	Slide 32: What mechanisms do we need to implement procedures: Passing Data
	Slide 33: What mechanisms do we need to implement procedures: Passing Data
	Slide 34: What mechanisms do we need to implement procedures: Managing Local Memory
	Slide 35: Today: How does x86-64 implement C procedure calls?
	Slide 36: Let’s examine this translation of C to x86-64:
	Slide 37: To implement passing control, programs use call and ret instructions which use the stack to store return address.
	Slide 38: call instruction pushes the return address on stack and ret instruction pops it
	Slide 39: Before call
	Slide 40: Executing call: push return address
	Slide 41: Executing call: jmp to address of function to execute
	Slide 42: After call
	Slide 43: Before ret
	Slide 44: Executing ret: pop return address
	Slide 45: Executing ret: jmp to return address
	Slide 46: After ret
	Slide 47: Today: How does x86-64 implement C procedure calls?
	Slide 48: Activity Time!
	Slide 49: The first 6 arguments to a procedure are stored in registers, the remaining are stored on stack.
	Slide 50: Example of where arguments and return values are stored:
	Slide 51: Arguments are “passed” in the argument registers.
	Slide 52: Return values are “returned” in return register.
	Slide 53: Today: How does x86-64 implement C procedure calls?
	Slide 54: Languages that support recursion like C require some place to store state for each instantiation of the same procedure.
	Slide 55: Let’s look at an example of calling a chain of functions.
	Slide 56: Let’s look at an example of calling a chain of functions.
	Slide 57: When calling a procedure, that procedure’s stack frame is pushed onto the stack.
	Slide 59: Example
	Slide 60: Example
	Slide 61: Example
	Slide 62: Example
	Slide 63: Example
	Slide 64: Example
	Slide 65: Example
	Slide 66: Example
	Slide 67: Example
	Slide 68: Example
	Slide 69: Example
	Slide 70: Quiz Time!
	Slide 71: x86-64/Linux Stack Frame
	Slide 72: Example: incr
	Slide 73: Example: Calling incr with a local variable address
	Slide 74: Before calling incr: Storing arguments
	Slide 75: Before calling incr: Storing arguments
	Slide 76: Before calling incr: Storing arguments
	Slide 77: Before calling incr: Storing arguments
	Slide 78: Before calling incr: Storing arguments
	Slide 79: Before calling incr: Storing arguments
	Slide 80: Before calling incr: Storing arguments
	Slide 81: Calling incr:
	Slide 82: Calling incr:
	Slide 83: After calling incr: Getting return value
	Slide 84: After calling incr: Calculating return value
	Slide 85: After calling incr: Calculating return value
	Slide 86: After calling incr: Deallocate space
	Slide 87: After calling incr: Returning
	Slide 88: Register Saving Conventions
	Slide 89: Register Saving Conventions
	Slide 90: x86-64 Linux Register Usage #1
	Slide 91: x86-64 Linux Register Usage #2
	Slide 92: x86-64 Procedure Summary
	Slide 93: Additional Slides
	Slide 94: Recursive Function
	Slide 95: Recursive Function Terminal Case
	Slide 96: Recursive Function Register Save
	Slide 97: Recursive Function Call Setup
	Slide 98: Recursive Function Call
	Slide 99: Recursive Function Result
	Slide 100: Recursive Function Completion
	Slide 101: Observations About Recursion
	Slide 102: Small Exercise
	Slide 103: Small Exercise
	Slide 104: Callee-Saved Example #1
	Slide 105: Callee-Saved Example #2
	Slide 106: Callee-Saved Example #3
	Slide 107: Callee-Saved Example #4
	Slide 108: Callee-Saved Example #5
	Slide 109: Callee-Saved Example #6
	Slide 110: Callee-Saved Example #7
	Slide 111: Callee-Saved Example #8
	Slide 112: Callee-Saved Example #2

