b VECCOVE " | - g

W

Quiz

DEVICES AWAY.
UNTIL EVERYONE IS DONE.

g2: yes all numbers are decimal

Al, bringing pencil and
paper back since 2024

int x = 27;
X += (~x) + 15

int x = 27;
X += (~x + 1) + 14

int x = 27;
X += -X + 14

X = 14

rdx = 5000

rax = 67/

rdi = 16

mov %rax, 22(%rdx, %rdi, 2)

mov D(Rb, Ri, S) >
*(D + Rb + Ri * S)

22 + 5000 + 16 * 2 - 5054

Previous lecture question followup

Gnu assembly == AT&T syntax

Alternative is Intel syntax

You can address low-order 32 and
16 bits of r8-r15: r8d, r8w

but not the ‘ah’, ‘al’ 8 bit chunks you
can with rax

Activities are posted on the website (we won’t
have time today, but you can do after lecture)

On shark machines:

wget http://www.cs.cmu.edu/~213/activities/machine-control.pdf
wget http://www.cs.cmu.edu/~213/activities/machine-control.tar
tar xf machine-control.tar

cd machine-control

Today’s slides differ from the ones | posted before class
(quiz solution...)

But content overall is the same.

Some review from last time, for your records

* Programs can do arithmetic on the same register!
imul %rax, %rax

* C translation to assembly

* An x86 program’s view

* Instruction register destinations

* Addressing modes

e lea

C code is translated into assembly code by a
compiler (ex: gcc).

Compilepl.c andp2.c withcommand: gcc -0g pl.c p2.c -0 p

text

Cprogram (pl.c p2.c)

Compiler (gcc -0Og -5)

text Asm program (pl.s p2.s)

Assembler (gcc —c or as)

binary

Object program (pl.o p2.0) Static libraries

. (.a)
Linker (gcc or 1d)
binary Executable program (p)

The specification for that assembly code is defined
by the instruction set architecture (ISA).

The ISA we learn in this class
IS x86-64.

Assembly code is a plain
text version of what will
eventually be object code.

Example:
gcc -0g -S sum.c

sumstore:
.LFB1:
.cfi_startproc
endbr64
pushqg %rbx
.cfi def cfa offset 16
.cfi offset 3, -16

mov(%rdx, %rbx
call plus
movq %rax, (%rbx)

popq %rbx

.cfi def cfa offset 8
ret

.cfi_endproc

10

The specification for that assembly code is defined
by the instruction set architecture (ISA).

The ISA we learn in this class
IS x86-64.

Assembly code is a plain
text version of what will
eventually be object code.

Example:
gcc -0g -S sum.c

sumstore:

pushq

mov(q
call
mov(q

popq

ret

%rbx

%rdx, %rbx
plus

%rax, (%rbx)
%rbx

11

Object code can be disassembled into assembly
using a disassembler (objdump -d or gdb).

>> gdb sum

(gdb) disas sumstore

Dump of assembler code for function sumstore:
0x0000000000001144 <+4>: push %rbp
0x0000000000001145 <+5>: mov %rsp,%rbp
0x0000000000001148 <+8>: sub S0x28,%rsp
0x000000000000114c <+12>: mov %rdi,-0x18(%rbp)
0x0000000000001150 <+16>: mov %rsi,-0x20(%rbp)
0x0000000000001154 <+20>: mov %rdx,-0x28(%rbp)
0x0000000000001158 <+24>: mov -0x20(%rbp),%rdx
0x000000000000115c <+28>: mov -0x18(%rbp),%rax

On these slides you will sometimes see the “gcc
compiled” version of assembly code and sometimes the
“objump” version of assembly code. (Some points are
easier to illustrate with one rather than the other.)

13

Let’s examine the translation of C to x86-64:

x86-64;

1| long plus(long x, long y);

2

3| void sumstore(long x, long y, long *dest)

41 1

5 long t = plus(x, y);

6 *dest = t;

7] }

1| ©000000000001133 <sumstore>:

2 1137: 53 push %rbx

3 1138: 48 89 d3 mov %rdx, %rbx
4 113b: e8 e9 ff ff ff call 1129 <plus>
5 1140: 48 89 03 mov %rax, (%rbx)
6 1143: 5b pop %rbx

7 1144: c3 ret

14

An x86-64

program’s view...

CPU

=

%rpi —

Program Counter (PC)

16 “General purpose”

.. Memory addresses

%rpi |Ox00ff Registers
%rsp |Oxff88
Condition Codes %rsi |1
7E 0 %rdi |10
SF 1 drax |11
OF 1
CF 0

Memory (Virtual)

Operating system

Code: functioninstructions stored here

Data: global variables stored here

Heap: dynamically allocated memory
grows as program allocates memory

N
N

max:

Stack: local variables and parameters
stored here

grows as program calls functions
shrinks on return from functions

15

An x86-64

program’s view...

CPU

Program Counter (PC)

16 “General purpose”

%rpi |Ox00ff Registers
%rsp |Oxff88
Condition Codes %rsi |1
7E 0 %rdi |10
SF 1 drax |11
OF 1
CF 0

A

Lower
addresses

Oxff50
Oxff58
Oxff60
Oxff68
oxff70
Oxff78
Oxff80
%rsp — Oxf{88

Stack

stack top

stack bottom
16

Sometimes an instruction may only change
portions of the register destination.

63 31 15 7 0
$rax %eax %ax %al
movabsq $0x0011223344556677, %rax %rax
movb $-1, %al xrax
MOVW $-1, %ax xrax
movl $-1, %eax xrax
movq $-1, %rax xrax

Lower order portions of integer
registers can be accessed as byte,
word (2-byte), double word (4-byte),
and quad word (8-byte).

0011223344556677
00112233445566FF
001122334455FFFF
0OOOOOOOFFFFFFFF
FFFFFFFFFFFFFFFF

17

Convention: Any instruction that generates a 32-bit
value for a register also sets upper 32 bits to 0.

63

31

15

$rax

$eax

$ax

$al

movl $-1, %eax

Lower order portions of integer

registers can be accessed as byte,
word (2-byte), double word (4-byte),
and quad word (8-byte).

18

There are several “addressing modes” that
allow the CPU to interact with memory
through addresses contained in registers.

Example with %rsi, %rdi, and %rax
* Dis“displacement”, a

General form: constantin 1,2, or 4 bytes
D(%rsi, %rdi, S) = Memory[%rsi + %rdi*S + D] * %rsiis a base register

* Could be an of 16 integer
Special Cases registers
(%rsi) Memory [%rsi] %rsiis an “index register”
(%rsi, %rdi) Memory[%rsi + %rdi] * Any, except for %rsp
D(%rsi, %rdi) Memory[%rsi + %rdi + D] Sisscaleis1,2,4,8
(%rsi, %rdi, S) Memory[%rsi + %rdi*S]

19

Address computation examples

srdx 0x£000

$rcx 0x0100

Expression Address Computation Address

0x8 ($rdx) 0xf000 + 0x8 0x£008
$rdx, $rcx) 0x£f000 + 0x100 0x£100
$rdx, %rcx,4) Ox£f000 + 4*0x100 |O0x£f400
0x80 (, $xrdx, 2) 2*0x£f000 + 0x80 0x1e080

20

Load effective addressing instruction (1ea)
does math and does not access memory.

Example of instructions that access memory:

Assembly C equivalent

mov 6(%rbx,%rdi,8), %ax ax = *(rbx + rdi*8 + 6)
add 6(%rbx,%rdi,8), %ax ax += *(rbx + rdi*8 + 6)
xor %ax, 6(%rbx,%rdi,8) *(rbx + rdi*8 + 6) A= ax

leais special and does not access memory:

Assembly C equivalent

lea 6(%rbx,%rdi,8), %rax rax = rbx + rdi*8 + 6

21

Why use lea?

Compiler authors often use it for ordinary arithmetic

* [t can do complex calculations in one instruction

* |t’s one of the only three-operand instructions the x86 has

* |ltdoesn’t touch the condition codes (we’ll come back to this)

long ml2 (long x)
{ leag (%rdi,%rdi,2), Srax # t = x+2*x
return x*12; salg $2, %rax # return t<<2

}

Today: How does x86-64 implement C
structures that change control flow?

* Condition codes

* Conditional branching

*Loops

* Switch statements (we won’t have time for
this)

Today: How does x86-64 implement C
structures that change control flow?

* Condition codes

* Conditional branching

*Loops

* Switch statements (we won’t have time for
this)

Every arithmetic and logical operation (except for
lea) implicitly updates special single-bit registers

called “condition codes”.

ZF Zero Flag

SF Sign Flag (for signed)

OF Overflow Flag (for signed)
CF Carry Flag (for unsigned)

GDB prints these
as one “eflags” register

eflags ©x246 [PF ZF IF] Zset, CSO clear

CPU

Program Counter (PC) 16 “General purpose”

%rpi | Ox00Ff Registers

%rsp | Oxff88

Condition Codes %rsi |1

7E 0 %rdi | 10

SF |1 %rax |11

OF |1

CF |0

26

Example:

addq Src,Dest t=a+b

ZF 1ift == (otherwise 0)

SF t < 9 (signed)

CF (unsigned)t < (unsignhed) a

000000000000..00000000000

OF (@ <@ ==b<09) & (t<o0 !=a< 0)

27

CF set when unsigned overflow:

I1XXXXKXXXXXXXX . . .

1 XXX . . .

]l | XXXXXXXXXXXXX. ..

1l | OXXXXXXXXXXXX . . .

1 XXXKXXKXXKXKXXXX . . .

1 XXX . . .

Carry

Borrow

28

OF set when signed overflow:

Example:

addq Src,Dest t = a+b

ZF
SF
OF
CF

1ift==0 (otherwise 0)

1ift<0 (as sighed)

1 if two’s-complement (signed overflow)

1 if carry out from most significant bit (unsigned overflow)

30

Before sub instruction:

CPU

sub %rsi, %»rax Program Counter (PC) 16 “General purpose”
%rpi | Ox00F0 Registers
. . %rsp | Oxff80
ain%rsi Condition Codes %rsi | a
b in %rax ZF o %rdi | 0
SF 0 %rax |b
OF |0
CF |0

31

After sub instruction:

CPU

sub %rsi, %»rax Program Counter (PC) 16 “General purpose”
%rpi | Ox00F8 Registers
%rsp | Oxff80
ain %r‘sj" bin%rax Condition Codes %rsi |a
compute b-a and store ZFE |1 %rdi | O
in %rax SF 0 %rax |b-a
OF 0
CF 0

32

cmp instruction computes subtraction but
does not change second operand.

CPU

cmp %rsi, %rax Program Counter (PC) 16 “General purpose”

%rpi | Ox00F8 Registers

%rsp | Oxff80

ain %r‘sj" bin%rax Condition Codes %rsi |a
computes y-x (no store!) ZE |1 %rdi | 0
used to compute SF__ |0 srax | b
if (a<b) {.} oF |0

CF 0

33

Why use a cmp instruction
instead of a sub instruction to
compare two?

test instruction computes & but does not
change second operand.

test %rdi, %rdi

z (which equals 0) in %rdi
computes z & z (no store!)
only updates ZF and SF!
used to check if %rdi is zero

CPU

Program Counter (PC) 16 “General purpose”

%rpi | Ox00F8 Registers

%rsp | Oxff80

Condition Codes %rsi | a

ZF 1 %rdi |0

SF 1 %rax |b

OF |0

CF |0

35

test instruction computes & but does not
change second operand.

CPU

test %rsi, %rax Program Counter (PC) 16 “General purpose”

%rpi | Ox00F8 Registers

%rsp | Oxff80

ain %r‘sj" bin%rax Condition Codes %rsi |a
computes a & b (no store!) 7E |1 %rdi | 0
used to check if any of the 1-bits | |SF__|1 %rax |b
in %rax are also set in %rsi oF |0
(and vice versa) CF |0

36

Set instructions read condition codes and set

a single byte in the destination.

Instruction Condition Description

sete ZF Equal/Zero

setne ~ZF Not Equal/ Not Zero
sets SF Negative

setns ~SF Nonnegative

setg ~(SF"OF)&ZF Greater (Signed)
setge ~(SF"OF) Greater or Equal (Signed)
setl (SF~OF) Less (Signed)

setle (SF"OF) | ZF Less or Equal (Signed)
seta ~CF&~ZF Above (unsigned)
setb CF Below (unsigned)
sete ZF Equal /Zero

37

Jump instructions let programs jump to different
parts of code depending on condition codes.

Instruction Condition Description

jmp 1 Unconditional

je ZF Equal/ Zero

jne ~ZF Not Equal/ Not Zero
js SF Negative

jns ~SF Nonnegative

jg ~(SF~OF)&ZF Greater (Signed)

jge ~(SF"OF) Greater or Equal (Signed)
jl (SF~OF) Less (Signed)

jle (SF~OF) | ZF Less or Equal (Signed)
ja ~CF&~ZF Above (unsigned)

jb CF Below (unsigned)

38

Jump instructions let programs jump to different
parts of code depending on condition codes.

Instructions

movq Src, Dest
movsbq Src,Dest
movzbq Src,Dest

cmove Src, Dest
cmovne Src, Dest
cmovs Src, Dest
cmovns Sre, Dest
cmovg Src, Dest
cmovge Src, Dest
cmovl Sre, Dest
cmovle Src, Dest
cmova Src, Dest
cmovae Src, Dest
cmovb Sre, Dest
cmovbe Src, Dest

cmpq Src2, Srcl
testq Src2, Srcl
jmp label

je label

jne label

js label

jns label

jg label

jge label

jl label

jle label

ja label

jb label
pushq Src
popq Dest
call label
ret

x86-64 Reference Sheet (GINU assembler format)

Data movement

Conditional move

Control transfer

Arithmetic operations Instruction suffixes
leaq Src, Dest Dest = address of Src b byte
incq Dest Dest = Dest + 1 w word (2 bytes)
Dest = Src decq Dest Dest = Dest — 1 1 long (4 bytes)
Dest (quad) = Src (byte), sign-extend addq Sre, Dest Dest = Dest + Src q quad (8 bytes)

Dest (quad) = Src (byte), zero-extend subq Src, Dest ~ Dest = Dest — Sre
imulg Src. Dest Dest = Dest * Src

You don’t need to memorize
every x86 instruction, use a reference
sheet like

movq $7, drax Y%rbp Calleesaved
Sets CCs Srcl Src2 e Normal Z?T;P g:ﬁCk POmtEI;
Sets CCs Srcl & Src2 (R) Mem|[Reg[R]] 701’9 S argumen
jump R: register R specifies memory address or t argumept
: . P %r10 Scratch register
jump equal movq (%rcx), %rax < .
jump not equal %rll Scratch register
A e Displacement %r12 Callee saved
JURRACH : D(R) Mem[Reg[R]+D] %r13 Callee saved
jump non-negative 8 | .
jump greater (signed >) R: register specifies start of memory region %r14 Callee saved
4 D: constant displacement D specifies offset %r15 Callee saved

jump greater or equal (signed >)

jump less (signed <) movq 8(%rdi), %rdx

jump less or equal (signed <) e Indexed

jump above (unsigned >) D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg(Ri]+D]
jump below (unsigned <) D: constant displacement 1, 2, or 4 bytes
Jorsp = %rsp 8, Mem|%rsp] = Src Rb: base register: any of 8 integer registers
Dest = Mem(%rsp), %rsp = %rsp + 8 Ri: index register: any, except %esp

push address of next instruction, jmp label g: scale: 1,2, 4, or 8

Yorip = Mem|[%rsp], %rsp = %rsp + 8 movq 0x100(%rcx,%rax,4), %rdx

39

https://www.cs.cmu.edu/afs/cs/academic/class/15213-s20/www/recitations/x86-cheat-sheet.pdf

To implement conditionals, programs use set
and jmp instructions.

: . . Program Counter (PC) 16 “General purpose”
set instructions read condition %rpi | 0x0078 Registers
codes and set a single byte in the %rsp | Oxff8o
destination Condition Codes %rsi |y

- 7E 0 %rdi | x
; ?nt gt(long x, long y) SF 0 %rax | Returnvalue
3 return x > y; OF 0
. CF |0
1| cmpg %rsi, %rdi | # Compare Xx:y
2| setg %al # Set when >
3| movzbl %al, %eax # Zero rest of %rax
41 ret

40

To implement conditionals, programs use set
and jmp instructions.

.) + I . purpose”
set instructions a move + zero extension: Lers
codes and set 4 mOVZbl (a nd Othel’S) 30
destination

movzbl %al, %eax
1| int gt(long x, i value
2 A |0xoooooooo %al
3 return x > |
4

} /
Zappedto all

1| cmpg %rsi, %r
)
2| setg %al O’s
3| movzbl %al, %eax # Zero rest ot %rax
4

ret

41

Today: How does x86-64 implement C
structures that change control flow?

* Condition codes

* Conditional branches

*Loops

* Switch statements (we won’t have time for
this)

Programs often need to change control flow
based on conditionals.

=

1| extern void opl(void); Tocis

2| extern void op2(void); ceiston

3

4| void decision(int x) {
5 if (x) {

6 opl(); — —
7 } else { Op2 op
8 op2();

9 }

0|} return

Control flow in x86 is all done with “goto code”

1| extern void opl(void); 1| decision:

2| extern void op2(void); 2 subg $8, %rsp
3 3 testl %edi, %edi
4| void decision(int x) { 4 je L2

5 if (x) { 5 call opl

6 opl(); 6 jmp L1

7 } else { 7| .L2:

8 op2(); 8 call op2

9 } o .L1:
10| } 10 addg $8, %rsp

11 ret

44

Useful to be able to know translation of code

to goto style.
1| long absdiff
2 (long x, long y)
3] 4
4 long result;
5 if (x > y)
6 result = x-y;
7 else
8 result = y-x;
9 return result;
10| }

coNO VT A WDN

long absdiff j
(long x, long y)

{
long result;
int ntest = x <= y;
if (ntest) goto FROG;
result = x-y;
goto Done;

FROG:
result = y-x;

Done:

return result;

}

45

Jumps are implemented by updating the
pointer to the next instruction (%rip)

oNOOuUVT A~ WNBR

long absdiff j
(long x, long y)

{
long result;
int ntest = x <= y;
if (ntest) goto Else;
result = x-y;
goto Done;
Else:
result = y-x;
Done:
return result;
}

1| ox1l1l2d <+4>: cmp %rsi,nrdi
2| 0x1130 <+7>: jle ©x1139 <absdiff+16>
3] 0x1132 <+9>: mov %rdi, %rax
4 ©0x1135 <+12>: sub %rsi,%srax
5| 0x1138 <+15>: ret
6| 0x1139 <+16>: mov %rsi,%srax
7| Ox113c <+19>: sub %rdi, %rax
8| Ox113f <+22>: ret
%rdi X
Before executing line 1: | %rsi y
%rax result
%rip ox112d

46

Jumps are implemented by updating the
pointer to the next instruction (%rip)

oNOOuUVT A~ WNBR

long absdiff j
(long x, long y)

{
long result;
int ntest = x <= y;
if (ntest) goto Else;
result = x-y;
goto Done;
Else:
result = y-x;
Done:
return result;
}

1| ox112d <+4>: cmp %rsi,nrdi
2| Ox1130 <+7>: jle ©x1139 <absdiff+16>
3] 0x1132 <+9>: mov %rdi, %rax
4 ©0x1135 <+12>: sub %rsi,%srax
5| 0x1138 <+15>: ret
6| 0x1139 <+16>: mov %rsi,%srax
7| Ox113c <+19>: sub %rdi, %rax
8| Ox113f <+22>: ret
%rdi X
After executing line 1: %rsi y
%rax result
%rip 0x1130

47

Jumps are implemented by updating the
pointer to the next instruction (%rip)

oNOOuUVT A~ WNBR

long absdiff j
(long x, long y)

{
long result;
int ntest = x <= y;
if (ntest) goto Else;
result = x-y;
goto Done;
Else:
result = y-x;
Done:
return result;
}

1| ox112d <+4>: cmp %rsi,nrdi
2| 0x1130 <+7>: jle ©x1139 <absdiff+16>
3] 0x1132 <+9>: mov %rdi, %rax
4 ©0x1135 <+12>: sub %rsi,%srax
5| 0x1138 <+15>: ret
6| Ox1139 <+16>: mov %rsi,%srax
7| Ox113c <+19>: sub %rdi, %rax
8| Ox113f <+22>: ret
%rdi X
After executing line 2: %rsi y
%rax result
%rip 0x1139

48

General Conditional Expression
Translation (Using Branches)

C Code

val = Test ? Then Expr :

Else_Expr ;

val = x>y ? x-y @ y-X;

Goto Version

ntest = !Test;
if (ntest) goto Else;
val = Then_Expr;
goto Done;
Else:
val = Else Expr;
Done:

= Create separate code regions for
then & else expressions

= Execute appropriate one

Using Conditional Moves

B Conditional Move Instructions
= |nstruction supports:
if (Test) Dest « Src

= Supportedin post-1995 x86
processors C Code
= GCC tries to use them val = Test
- But, only when known to be safe ? Then_Expr
Else Expr;
Why? .
- y , , Goto Version
= Branches are very disruptive to
instruction flow through pipelines result = Then_Expr;
* Conditional moves do not require eval = Else_Expr;
control transfer nt = !Test;
if (nt) result = eval;
return result;

Alternative to conditional branching with
conditional move

1| long absdiff 1| absdiff:
2 (long x, long y) 2 movq %rdi, %rax # x
31 { 3 subqg %rsi, %»rax # result = x-y
4 long result; 4 mov(q %rsi, %rdx
5 if (x > y) 5 subg %rdi, %rdx # eval = y-X
6 result = x-y; 6 cmpq %rsi, %rdi # Xx:y
7 else 7 cmovle %rdx, %rax # if <=, result = eval
8 result = y-x; 8 ret
9 return result;
10 .
J %rdi X
Before executing line 2: | %rsi y
%rdx
%rax

51

Alternative to conditional branching with
conditional move

1| long absdiff 1| absdiff:
2 (long x, long y) 2 movq %rdi, %rax # x
31 { 3 subqg %rsi, %»rax # result = x-y
4 long result; 4 mov(q %rsi, %rdx
5 if (x > y) 5 subg %rdi, %rdx # eval = y-X
6 result = x-y; 6 cmpq %rsi, %rdi # Xx:y
7 else 7 cmovle %rdx, %rax # if <=, result = eval
8 result = y-x; 8 ret
9 return result;
10 .
J %rdi X
After executing line 2: | %rsi y
%rdx
%rax X

52

Alternative to conditional branching with
conditional move

1| long absdiff 1| absdiff:
2 (long x, long y) 2 movq %rdi, %rax # x
31 { 3 subqg %rsi, %»rax # result = x-y
4 long result; 4 mov(q %rsi, %rdx
5 if (x > y) 5 subg %rdi, %rdx # eval = y-X
6 result = x-y; 6 cmpq %rsi, %rdi # Xx:y
7 else 7 cmovle %rdx, %rax # if <=, result = eval
8 result = y-x; 8 ret
9 return result;
10 .
J %rdi X
After executing line 3: | %rsi y
%rdx
%rax X-y

53

Alternative to conditional branching with
conditional move

1| long absdiff 1| absdiff:
2 (long x, long y) 2 movq %rdi, %rax # x
31 { 3 subqg %rsi, %»rax # result = x-y
4 long result; 4 mov(q %rsi, %rdx
5 if (x > y) 5 subg %rdi, %rdx # eval = y-X
6 result = x-y; 6 cmpq %rsi, %rdi # Xx:y
7 else 7 cmovle %rdx, %rax # if <=, result = eval
8 result = y-x; 8 ret
9 return result;
10 .
J %rdi X
After executing line 4. | %rsi y
%rdx y
%rax X-y

54

Alternative to conditional branching with
conditional move

1| long absdiff 1| absdiff:
2 (long x, long y) 2 movq %rdi, %rax # x
31 { 3 subqg %rsi, %»rax # result = x-y
4 long result; 4 mov(q %rsi, %rdx
5 if (x > y) 5 subg %rdi, %rdx # eval = y-X
6 result = x-y; 6 cmpq %rsi, %rdi # Xx:y
7 else 7 cmovle %rdx, %rax # if <=, result = eval
8 result = y-x; 8 ret
9 return result;
10 .
J %rdi X
After executing line 5: | %rsi y
%rdx Yy - X
%rax X -y

55

Alternative to conditional branching with
conditional move

1| long absdiff 1| absdiff:
2 (long x, long y) 2 movq %rdi, %rax # x
31 { 3 subqg %rsi, %»rax # result = x-y
4 long result; 4 mov(q %rsi, %rdx
5 if (x > y) 5 subg %rdi, %rdx # eval = y-X
6 result = x-y; 6 cmpq %rsi, %rdi # Xx:y
7 else 7 cmovle %rdx, %rax # if <=, result = eval
8 result = y-x; 8 ret
9 return result;
10 .
J %rdi X
After executing line 6 | %rsi y
and 7: Ardx y - X
%rax result

56

Bad Cases for Conditional Move

Expensive Computations
val = Test(x) ? Hardl (x) : Hard2(x);

Both values get computed Bad Performance

Only makes sense when computations are very simple

Risky Computations

val = p ? *p : O;

Both values get computed

Unsafe
May have undesirable effects
Computations with side effects
val = x > 0 ? x*=7 : x+=3;
Both values get computed IIIegaI

Must be side-effect free

Today: How does x86-64 implement C
structures that change control flow?

* Condition codes

* Conditional branches

*Loops

* Switch statements (we won’t have time for
this)

do{... body... } while (condition)

while (condition) {... body ... }

for (init; condition; update){ ... body ... }

59

Generic do ... while goto conversion

C Code Goto Version
do loop:
Body Body
while (Test) ; 1f (Test)
goto loop
HBody: (
Statement,;
Statement,;

Statement,;

}

“Do-While” Loop example: Count number of
1sin argument X

1| long pcount _do 1| long pcount _goto
2 (unsigned long x) { 2 (unsigned long x) {
3 long result = 0; 3 long result = 0;
4 do { 4| loop:
5 result += x & Ox1; 5 result += x & 0x1;
6 X >>= 1; 6 X >=1;
7 } while (x); 7 if(x) goto loop;
8 return result; 8 return result;
o } of }
10

“Do-While” Loop Compilation

1| long pcount_goto 1 [movl $0, %eax # result = ©
2 (unsigned long x) { 2| .L2: . # loop:
3 long result = 0; 3 mov(q %rdi, %rdx
4| 1loop: 4 andl $1, %edx # t = x & ox1
5 add %rdx, %rax #¥ result += t
= result += x & @x1; 6 shrg %rdi ¥ x >=1
6 X >>= 1 7 jne L2 # if (x) goto loop
7 if(x) goto loop; g rep; ret
8 return result;
9 }
10 Loop iteration #1:
: : %rdi
Before executing line 3:
%rax 0

%rdx

62

“Do-While” Loop Compilation

1| long pcount_goto 1 [movl $0, %eax # result = ©
2 (unsigned long x) { 2| .L2: . # loop:
3 long result = 0; 3 mov(q %rdi, %rdx
4| 1loop: 4 andl $1, %edx # t = x & ox1
5 add %rdx, %rax #¥ result += t
5 result += x & 0x1; 6 shrg %rdi B % Sy 1
6 X >>= 1 7 jne L2 # if (x) goto loop
7 if(x) goto loop; g rep; ret
8 return result;
9 }
10 Loop iteration #1:
- - %rdi
After executing line 3: !
%rax 0

%Brdx X

63

“Do-While” Loop Compilation

OLoNOTUVLTE, WN PR

=
QY

long pcount_goto
(unsigned long x) {
long result = ©;
loop:
result += x & 0x1;
X >>= 1;
if(x) goto loop;
return result;

1| movl $0, %eax # result = 0
2| .L2: # loop:
3 mov(q %rdi, %rdx
4 andl $1, %edx # t = x & ox1
5 addq %rdx, %rax # result +=t
6 shrq %rdi # X >»=1
7 jne .L2 # 1if (x) goto loop
8 rep; ret
Loop iteration #1:
. . %rdi X
After executing line 4.
%rax 0
%rdx X & Ox1

64

“Do-While” Loop Compilation

OLoNOTUVLTE, WN PR

=
QY

long pcount_goto
(unsigned long x) {
long result = ©;
loop:
result += x & 0x1;
X >>= 1;
if(x) goto loop;
return result;

1| movl $0, %eax # result = 0
2| .L2: # loop:
3 movq %rdi, %rdx
4 andl $1, %edx # t = x & ox1
5 addq %rdx, %rax # result +=t
6 shrq %rdi # X >»=1
7 jne .L2 # 1if (x) goto loop
8 rep; ret
Loop iteration #1:
. . %rdi X
After executing line 5:
%rax X & Ox1
%rdx X & Ox1

65

“Do-While” Loop Compilation

OLoNOTUVLTE, WN PR

=
QY

long pcount_goto
(unsigned long x) {
long result = ©;
loop:
result += x & 0x1;
X >>= 1;
if(x) goto loop;
return result;

1| movl $0, %eax # result = 0
2| .L2: # loop:
3 movq %rdi, %rdx
4 andl $1, %edx # t = x & ox1
5 addq %rdx, %rax # result +=t
6 shrq %rdi # X >»=1
7 jne .L2 # 1if (x) goto loop
8 rep; ret
Loop iteration #1:
. . %rdi X >> 1
After executing line 6:
%rax X & Ox1
%rdx X & Ox1

66

“Do-While” Loop Compilation

OLoNOTUVLTE, WN PR

=
QY

long pcount_goto
(unsigned long x) {
long result = ©;
loop:
result += x & 0x1;
X >>= 1;
if(x) goto loop;
return result;

1| movl $0, %eax # result = 0
2| .L2: # loop:
3 movq %rdi, %rdx
4 andl $1, %edx # t = x & ox1
5 addq %rdx, %rax # result +=t
6 shrq %rdi # X >»=1
7 jne .L2 # 1if (x) goto loop
8 rep; ret
Loop iteration #2:
. . %rdi X > 1
After executing line
%rax X & Ox1
6&7:
%rdx X & Ox1

(goto .L2)

67

“Do-While” Loop Compilation

OLoNOTUVLTE, WN PR

=
QY

long pcount_goto 1| movl $0, %eax # result =0
(unsigned long x) { 2| .L2: # loop:
long result = 9; 3 mov(q %srdi, %rdx
loop: 4 andl $1, %edx # t = x & ox1
. 1t += & Ox1: 5 addq %rdx, %rax # result += t
resu o X XL 6 shrq %rdi # x >>=1
X oC L 7 jne L2 # if (x) goto loop
if(x) goto loop; 3 rep; ret
return result;
}
Loop iteration #2:
After executing line 3: [2r4 X >> 1
%rax X & 0x1
%rdi stores loop control variable X %rdx X >> 1

%rax storesreturnvalue result

68

“Jump-to-middle” while (test) loop
iImplementation

B Used with -Og
Goto Version

goto test;

. . loop:
While version Body
while (Test) ‘ test:

Body if (Test)

goto loop;
done:

While Loop Example #1

C Code

long pcount while
(unsigned long x) {
long result = 0;
while (x) {
result += x & 0Ox1;
x >>=1;

}

return result;

Jump to Middle

long pcount goto jtm
(unsigned long x) {
long result = 0;
goto test;
loop:
result += x & 0x1;
x >>= 1;
test:
if (x) goto loop;
return result;

}

B Compare to do-while version of function

M Initial goto starts loop at test

“guarded-do” do-while loop
Implementation

While version

(Test)

while

Body

$

Do-While Version

1f (! Test)
goto done;
do
Body
while (Test) ;
done:

B “Do-while” conversion
B Used with -01

—)

Goto Version

1f (!Test)
goto done;
loop:
Body
1f (Test)
goto loop;
done:

While Loop Example #2

C Code

long pcount while
(unsigned long x) {
long result = 0;
while (x) {
result += x & 0Ox1;
x >>=1;
}

return result;

Do-While Version

long pcount goto dw
(unsigned long x) {
long result = 0;
if (!'x) goto done;
loop:
result += x & 0Ox1;
x >>= 1;
if (x) goto loop;
done:
return result;

}

B Compare to do-while version of function

B Initial conditional guards entrance to loop

“For” Loop = Do-While Loop

For version

m Initial test can often be
optimized away — why?

Goto Version

Do-While Version if (! Test)
1t (! Test) goto done;
goto done; loop:
do | Body
Body Update
Update if (T7est)
} while (7est) ; goto loop;
done: done:

“For” Loop Do-While Conversion

Goto Version

C Code

long pcount for

{

(unsigned long x)

size t i;
long result = 0;
for (1 = 0; i < WSIZE; i++)

{
unsigned bit =
(x >> i) & 0x1;
result += bit;
}

return result;

B Initial test can be optimized

away

long pcount for goto dw
(unsigned long x) {
size t 1i;
long result = 0;
i=0 Ini

dote ! Test
loop:
{
unsigned bit =
(x >> i) & O0x1;
result += bit;
}
i++; Update
if (i < WSIZE)
goto loop;
done:
return result;

Body

Test

Reverse engineering loops is challenging!

* Compiler may use variables in assembly code that have no C
equivalent and vice-versa

 Compiler may “optimize” away conditional checks
* Compiler may reuse registers

76

If you remember nothing else from this
lecture...

There are three ways to set condition codes:
- Arithmetic and logical operations (not lea)
- Test

- Cmp

There are many ways to do things different depending on condition condes:
- Set bytes

- Jumps

- Conditional moves

You can mix and match these combinations. You’ll understand the details as you do
the labs, attend recitation and lecture in the next few weeks.

77

X86-64 code reading tips..

* Use an x86-64 reference while reading code (you don’t need to
memorize everything!)

* You can use gdb hex to decimal conversions!

(gdb) print /x ©6x8 + Ox8

0x10

* Put a breakpoint before the function that that you want to inspect
(gdb) break phase 1

* Code trace with simulated inputs like what happens ifxisin%rsi
andyis »rdi, etc. Write things down and draw things like register
state after each instruction.

78

Today: How does x86-64 implement C
structures that change control flow?

* Condition codes

* Conditional branches

*Loops

*Switch statements (we won’t have time for
this)

long switch eg
(long x, long y, long z)
{
long w = 1;
switch (x) {
case 1:
w = y*z;
break;
case 2:
w=y/z;
/* Fall Through */
case 3:
w += z;
break;
case 5:
case 6:
w -= ZzZ;
break;
default:
w = 2;
}

return w;

Switch Statement
Example

B Multiple case labels
" Here:5&6

B Fall through cases
"= Here: 2

Bl Missing cases
= Here: 4

Jump Table Structure

Switch Form Jump Table Jump Targets
switch (x) { j tab: Targo Targo . Code Block
case val O: 1 0
Block 0 Targ
case val 1: Targ2)
Block 1 — Targl : Code Block
[J [[] * 1
case val n-1: .
Block n-1 Taran—1 Targ2 . Code Block
} g 2
Translation (Extended C) .
goto *JTab[x]; *

Targn-1: Code Block
n-1

long my switch I
g my_swi Switch Statement
(long x, long y, long z)
{ Example
long w = 1;
switch (x) {
case 1: my switch:
.L3: w = y*z; S $6, %rdi # x:6
break: ja .L8 # if x > 6 jump
case 2: _ # t? default
.L5: w=y/z; Jmp *.L4(,%rdi,8)
/* Fall Through */
case 3:
.L9: w += z;
break ’ .section .rodata
case 5: .align 8
case 6: .14 . . 4 .
5 —— 5 .qua .L X =
Lt WT= .quad I3 #x =1
break; .quad IS5 O # x = 2
default: .quad L9 # x =3
.L8: w = 2; .quad 18 # x =4
.quad L7 # x =5
} .quad L7 # x =6
return w;
}

Assembly Setup Explanation

B Table Structure
= Each target requires 8 bytes
= Base address at .14

B Jumping
* Direct: jmp .L8
Jump target is denoted by label . L8

* Indirect: ymp *.L4 (,%rdi, 8)
= Start of jump table: . L4

Jump table
.section .rodata
.align 8

.L4:
.quad .L8
.quad .L3
.quad .L5
.quad .L9
.quad .18
.quad .L7
.quad .L7

HHH HHH A

EE T A -

o Ul WM KR O

= Must scale by factor of 8 (addresses are 8 bytes)
= Fetch target from effective Address .L4 + x*8

« Onlyfor 0<x<6

Code Blocks (x =

:1)

switch (x) {

case 1: // .L3
w = y*z;
break;

.L3:

movq
imulq
ret

$rsi, %rax
$rdx, %rax

#y
$ y*z

Register

Use(s)

$rdi

Argument x

$rsi

Argument y

$rdx

Argument z

$rax

Return value

Handling Fall-Through

long w = 1;

.séiéch(x) {

case 2:
w=y/z;

case 2:
w=y/z;
goto merge;

/* Fall Through */
case 3:

break;

case 3:

merge:

Code Blocks (x == 2, x == 3)

long w = 1;
switch (x) {

case 2:

w=y/z;

/* Fall Through */
case 3:

w += z;

break;

.L5: # Case 2
movq %¥rsi, %rax
cqto
idivg srcx $# vy/z
jmp .L6 # goto merge

.L9: # Case 3
movl $1, %eax ¥ w=1

.L6: # merge:
addg grcx, %rax # w += z
ret

Register Use(s)

srdi Argument x

srsi Argument y

srdx Argument z

$rax

Return value

Code Blocks (x == 5, x == 6, default)

switch (x) {

case 5: // .L7

case 6: // .L7
W = Z;
break;

default: // .L8
w = 2;

L7: # Case 5,6
movl $1, %eax ¥ w=1
subg %rdx, %rax # w -= z
ret

.L8: # Default:
movl $2, %eax ¥ 2
ret

Register Use(s)

srdi Argument x
srsi Argument y
srdx Argument z
$rax Return value

Finding Jump Table in Binary

00000000004005e0 <switch_eg>:

4005e0: 48 89 dil mov $rdx, $rcx

4005e3: 48 83 f£f 06 cmp $0x6, $rdi

4005e7: 77 2b ja 400614 <switch eg+0x34>
4005e9: £ff 24 £d4d £0 07 40 00 jmpqgq *0x4007£0 (,%rdi, 8)
4005£0: 48 89 £fO0 mov $rsi,%rax

4005£3: 48 0f af c2 imul $rdx, $rax

4005£7: c3 retq

4005£8: 48 89 fO0 mov $rsi,%rax

4005fb: 48 99 cqto

4005£d: 48 £7 £9 idiv $rcx

400600: eb 05 jmp 400607 <switch eg+0x27>
400602: b8 01 00 00 0O mov $0x1, %eax

400607 48 01 c8 add %$rcx, $rax

40060a: c3 retq

40060b: b8 01 00 00 0O mov $0x1, %eax

400610: 48 29 dO sub $rdx, $rax

400613: c3 retqg

400614: b8 02 00 00 0O mov $0x2 , %Seax

400619: c3 retqg

Finding Jump Table in Binary

00000000004005e0 <switch_eg>:

4005e9: ff 24 £fd £0 07 40 00

jmpq *0x4007£0 (,%rdi, 8)

% gdb switch
(gdb) x /8xg 0x4007£f0

0x4007£0: 0x0000000000400614
0x400800: 0x00000000004005£8
0x400810: 0x0000000000400614
0x400820: 0x000000000040060b

(gdb)

0x00000000004005£0
0x0000000000400602
0x000000000040060b
0x2c646c25203d2078

Which numbers are pointers?

* They aren’t labeled
* You have to figure it out from context

(gdb)
rax

bx

-

rcx
rdx
rsi
rdi
rbp
rsp
r8

r9

rl0
rll
rl2
rl3
rl4
rlb

rip

info registers

0x40057d

0x0

0x4005e0
Ox7fffffffdc28
Ox7fffffffdcl8
0x1

0x0
Ox7fffff£f£db38
O0x7£f£££7dd5e80
0x0
Ox7fff££££d7c0
O0x7fff££7a2£460
0x400490
Ox7ff££f£f££fdcl0
0x0

0x0

0x40057d

4195709

0

4195808
140737488346152
140737488346136
1

0x0
Ox7fff£f£f££db38
140737351868032
0
140737488345024
140737348039776
4195472
140737488346128
0

0

0x40057d

Which numbers are pointers?

* They aren’t labeled

* You have to figure it out from context

* %rsp and

always hold pointers

(gdb)
rax

bx

-

rcx
rdx
rsi
rdi
rbp
rsp
r8

r9

rl0
rll
rl2
rl3
rl4
rlb

info registers

0x40057d

0x0

0x4005e0
Ox7fffffffdc28
Ox7fffffffdcl8
0x1

0x0
Ox7fff££f££fdb38
O0x7£f£££7dd5e80
0x0
Ox7fff££££d7c0
O0x7fff££7a2£460
0x400490
Ox7ff££f£f££fdcl0
0x0

0x0

4195709

0

4195808
140737488346152
140737488346136
1

0x0
OxT7EE££f££££db38
140737351868032
0
140737488345024
140737348039776
4195472
140737488346128
0

0

Which numbers are pointers?

rl5

0x0

* They aren’t labeled

* You have to figure it out from context == oo 0
rdx Ox7fffffffdc28 140737488346152

PY %I’Sp and always hOld pOinterS rsi Ox7fffffffdcl8 140737488346136

. rdi 0x1 1
. Reglsjcer values that are “close”to %rsp =~ .
r %rip are probably also pointers

rsp OxT7EEf££££db38 OxT7EE££f££££db38
r8 Ox7££££7dd5e80 140737351868032
r9 0x0 0
rl0 Ox7Tf££f££££d7c0 140737488345024
rll Ox7f£££7a2£460 140737348039776
rl3 Ox7ffffff£fdcl0 140737488346128
rl4 0x0 0

0

Which numbers are pointers?

* If aregisteris being used as a
pointer...

Dump of assembler code for function main:

=> 0x40057d <+0>:

0x400581
0x400584
0x400589
0x40058e

<+4>:

<+7>:

<+12>:

<+17>:

sub
mov
mov
mov

call

$0x8, %rsp
(%$rsi), srsi
$0x400670, $edi
S0x0, $Seax

0x400460

Which numbers are pointers?

° If Ei rEBE;iEStEBT'iES t)EBir1§§ Ljf;é;(j Dump of assembler code for function main:

=> 0x40057d <+0>:

as d pOInter"° 0x400581 <+4>:
* mov (%rsi), %rsi 0x400584 <+7>:
 ...Thenits value is expected "% =*+*~
0x40058e <+17>:

to be a pointer.

sub $0x8, $rsp

mov ,%rsi
mov S0x400670, $edi
mov $0x0, $eax

call 0x400460

* There might be a bug that makes its value incorrect.

Which numbers are pointers?

* If aregisteris being used
as a pointer... 0x400581

* mov (%rsi), %rsi 0x400584

» ..Thenitsvalueis expected =~
to be a pointer.

0x40058e

=> 0x40057d <+0>:

<+4>:
<+7>:
<+12>:

<+17>:

Dump of assembler code for function main:

sub $0x8, %rsp

mov ,%rsi
mov $0x400670, $edi
mov $0x0, $eax

call 0x400460

* There might be a bug that makes its value incorrect.

* Not as obvious with complicated address “modes”
* (%rsi, %rbx) — One of these is a pointer, we don’t know

which.

* (%rsi, %rbx, 2) — %rsiis a pointer, %rbx isn’t (why?)
* 0x400570(, %rbx, 2) — 0x400570 is a pointer, %rbx isn’t

(why?)

* lea (anything), %rax — (anything) may or may not be a pointer

Assembly Syntax

* Intel versus AT&T
In this class we will be using the AT&T syntax

Feature AT&T Syntax Intel Syntax
Operand Order source, destination destination, source
Register Prefix % (e.g., Yoeax) None (e.g., eax)

ImmeS:::;eXValue $ (e.g., $10) None (e.g., 10)

Memory displacement(base, index, [base +index*scale +

Addressing scale) displacement]

Operand Size
Suffix

Inferred or ptr prefixes (e.g.,

b, w, L, q(e.g., movl) dword ptr)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Previous lecture question followup
	Slide 6: Activities are posted on the website (we won’t have time today, but you can do after lecture)
	Slide 7
	Slide 8: Some review from last time, for your records
	Slide 9: C code is translated into assembly code by a compiler (ex: gcc).
	Slide 10: The specification for that assembly code is defined by the instruction set architecture (ISA).
	Slide 11: The specification for that assembly code is defined by the instruction set architecture (ISA).
	Slide 12: Object code can be disassembled into assembly using a disassembler (objdump –d or gdb).
	Slide 13: On these slides you will sometimes see the “gcc compiled” version of assembly code and sometimes the “objump” version of assembly code. (Some points are easier to illustrate with one rather than the other.)
	Slide 14: Let’s examine the translation of C to x86-64:
	Slide 15: An x86-64 program’s view…
	Slide 16: An x86-64 program’s view…
	Slide 17: Sometimes an instruction may only change portions of the register destination.
	Slide 18: Convention: Any instruction that generates a 32-bit value for a register also sets upper 32 bits to 0.
	Slide 19: There are several “addressing modes” that allow the CPU to interact with memory through addresses contained in registers.
	Slide 20: Address computation examples
	Slide 21: Load effective addressing instruction (lea) does math and does not access memory.
	Slide 22: Why use lea?
	Slide 23: Today: How does x86-64 implement C structures that change control flow?
	Slide 25: Today: How does x86-64 implement C structures that change control flow?
	Slide 26: Every arithmetic and logical operation (except for lea) implicitly updates special single-bit registers called “condition codes”.
	Slide 27: Example:
	Slide 28: CF set when unsigned overflow:
	Slide 29: OF set when signed overflow:
	Slide 30: Example:
	Slide 31: Before sub instruction:
	Slide 32: After sub instruction:
	Slide 33: cmp instruction computes subtraction but does not change second operand.
	Slide 34: Why use a cmp instruction instead of a sub instruction to compare two?
	Slide 35: test instruction computes & but does not change second operand.
	Slide 36: test instruction computes & but does not change second operand.
	Slide 37: Set instructions read condition codes and set a single byte in the destination.
	Slide 38: Jump instructions let programs jump to different parts of code depending on condition codes.
	Slide 39: Jump instructions let programs jump to different parts of code depending on condition codes.
	Slide 40: To implement conditionals, programs use set and jmp instructions.
	Slide 41: To implement conditionals, programs use set and jmp instructions.
	Slide 42: Today: How does x86-64 implement C structures that change control flow?
	Slide 43: Programs often need to change control flow based on conditionals.
	Slide 44: Control flow in x86 is all done with “goto code”
	Slide 45: Useful to be able to know translation of code to goto style.
	Slide 46: Jumps are implemented by updating the pointer to the next instruction (%rip)
	Slide 47: Jumps are implemented by updating the pointer to the next instruction (%rip)
	Slide 48: Jumps are implemented by updating the pointer to the next instruction (%rip)
	Slide 49: General Conditional Expression Translation (Using Branches)
	Slide 50: Using Conditional Moves
	Slide 51: Alternative to conditional branching with conditional move
	Slide 52: Alternative to conditional branching with conditional move
	Slide 53: Alternative to conditional branching with conditional move
	Slide 54: Alternative to conditional branching with conditional move
	Slide 55: Alternative to conditional branching with conditional move
	Slide 56: Alternative to conditional branching with conditional move
	Slide 57: Bad Cases for Conditional Move
	Slide 58: Today: How does x86-64 implement C structures that change control flow?
	Slide 59
	Slide 60: Generic do … while goto conversion
	Slide 61: “Do-While” Loop example: Count number of 1s in argument x
	Slide 62: “Do-While” Loop Compilation
	Slide 63: “Do-While” Loop Compilation
	Slide 64: “Do-While” Loop Compilation
	Slide 65: “Do-While” Loop Compilation
	Slide 66: “Do-While” Loop Compilation
	Slide 67: “Do-While” Loop Compilation
	Slide 68: “Do-While” Loop Compilation
	Slide 70
	Slide 71: While Loop Example #1
	Slide 72: “guarded-do” do-while loop implementation
	Slide 73: While Loop Example #2
	Slide 74: “For” Loop  Do-While Loop
	Slide 75: “For” Loop Do-While Conversion
	Slide 76: Reverse engineering loops is challenging!
	Slide 77: If you remember nothing else from this lecture…
	Slide 78: x86-64 code reading tips..
	Slide 80: Today: How does x86-64 implement C structures that change control flow?
	Slide 81: Switch Statement Example
	Slide 82: Jump Table Structure
	Slide 83: Switch Statement Example
	Slide 84: Assembly Setup Explanation
	Slide 85: Code Blocks (x == 1)
	Slide 86: Handling Fall-Through
	Slide 87: Code Blocks (x == 2, x == 3)
	Slide 88: Code Blocks (x == 5, x == 6, default)
	Slide 89: Finding Jump Table in Binary
	Slide 90: Finding Jump Table in Binary
	Slide 91: Which numbers are pointers?
	Slide 92: Which numbers are pointers?
	Slide 93: Which numbers are pointers?
	Slide 94: Which numbers are pointers?
	Slide 95: Which numbers are pointers?
	Slide 96: Which numbers are pointers?
	Slide 97: Assembly Syntax

