
1

2

Quiz

DEVICES AWAY.
UNTIL EVERYONE IS DONE.

q2: yes all numbers are decimal

AI, bringing pencil and
paper back since 2024

3

int x = 27;
x += (~x) + 15

int x = 27;
x += (~x + 1) + 14

int x = 27;
x += -x + 14

x = 14

4

rdx = 5000
rax = 67
rdi = 16
mov %rax, 22(%rdx, %rdi, 2)

mov D(Rb, Ri, S) →
 *(D + Rb + Ri * S)

22 + 5000 + 16 * 2 → 5054

Previous lecture question followup

Gnu assembly == AT&T syntax

Alternative is Intel syntax

You can address low-order 32 and
16 bits of r8-r15: r8d, r8w

but not the ‘ah’, ‘al’ 8 bit chunks you
can with rax

Activities are posted on the website (we won’t
have time today, but you can do after lecture)
On shark machines:
wget http://www.cs.cmu.edu/~213/activities/machine-control.pdf

wget http://www.cs.cmu.edu/~213/activities/machine-control.tar

tar xf machine-control.tar

cd machine-control

6

Today’s slides differ from the ones I posted before class

(quiz solution…)

But content overall is the same.

7

Some review from last time, for your records

• Programs can do arithmetic on the same register!
imul %rax, %rax

• C translation to assembly
• An x86 program’s view
• Instruction register destinations
• Addressing modes
• lea

8

C code is translated into assembly code by a
compiler (ex: gcc).

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc –c or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Compile p1.c and p2.c with command: gcc –Og p1.c p2.c -o p

9

The specification for that assembly code is defined
by the instruction set architecture (ISA).
The ISA we learn in this class
is x86-64.

Assembly code is a plain
text version of what will
eventually be object code.

Example:
gcc -Og –S sum.c

sumstore:
.LFB1:
 .cfi_startproc
 endbr64
 pushq %rbx
 .cfi_def_cfa_offset 16
 .cfi_offset 3, -16
 movq %rdx, %rbx
 call plus
 movq %rax, (%rbx)
 popq %rbx
 .cfi_def_cfa_offset 8
 ret
 .cfi_endproc

10

The specification for that assembly code is defined
by the instruction set architecture (ISA).
The ISA we learn in this class
is x86-64.

Assembly code is a plain
text version of what will
eventually be object code.

Example:
gcc -Og –S sum.c

sumstore:
.LFB1:
 .cfi_startproc
 endbr64
 pushq %rbx
 .cfi_def_cfa_offset 16
 .cfi_offset 3, -16
 movq %rdx, %rbx
 call plus
 movq %rax, (%rbx)
 popq %rbx
 .cfi_def_cfa_offset 8
 ret
 .cfi_endproc

11

Object code can be disassembled into assembly
using a disassembler (objdump –d or gdb).

>> gdb sum
(gdb) disas sumstore
Dump of assembler code for function sumstore:

 0x0000000000001144 <+4>: push %rbp
 0x0000000000001145 <+5>: mov %rsp,%rbp
 0x0000000000001148 <+8>: sub $0x28,%rsp
 0x000000000000114c <+12>: mov %rdi,-0x18(%rbp)
 0x0000000000001150 <+16>: mov %rsi,-0x20(%rbp)
 0x0000000000001154 <+20>: mov %rdx,-0x28(%rbp)
 0x0000000000001158 <+24>: mov -0x20(%rbp),%rdx
 0x000000000000115c <+28>: mov -0x18(%rbp),%rax

12

On these slides you will sometimes see the “gcc
compiled” version of assembly code and sometimes the
“objump” version of assembly code. (Some points are
easier to illustrate with one rather than the other.)

13

1
2
3
4
5
6
7

Let’s examine the translation of C to x86-64:
long plus(long x, long y);

void sumstore(long x, long y, long *dest)
{
 long t = plus(x, y);
 *dest = t;
}

1
2
3
4
5
6
7

0000000000001133 <sumstore>:
 1137: 53 push %rbx
 1138: 48 89 d3 mov %rdx,%rbx
 113b: e8 e9 ff ff ff call 1129 <plus>
 1140: 48 89 03 mov %rax,(%rbx)
 1143: 5b pop %rbx
 1144: c3 ret

C:

x86-64:

14

An x86-64
program’s view…

Operating system

Code: function instructions stored here

Data: global variables stored here

Heap: dynamically allocated memory
grows as program allocates memory

Stack: local variables and parameters
stored here
grows as program calls functions
shrinks on return from functions

Memory (Virtual)

max:

0:
1:
2:
...

…
. M

em
or

y
ad

dr
es

se
s

…
..

CPU
Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff88

%rsi 1

%rdi 10

%rax 11

...

%rpi 0x00ff

ZF 0

SF 1

OF 1

CF 0

15

%rpi

Stack

0xff50

0xff58

0xff60

0xff68

0xff70

0xff78

0xff80

0xff88

Lower
addresses

%rsp

An x86-64
program’s view…

stack top

stack bottom

CPU
Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff88

%rsi 1

%rdi 10

%rax 11

...

%rpi 0x00ff

ZF 0

SF 1

OF 1

CF 0

16

Sometimes an instruction may only change
portions of the register destination.

movabsq $0x0011223344556677, %rax
movb $-1, %al
movw $-1, %ax
movl $-1, %eax
movq $-1, %rax

%rax = 0011223344556677
%rax = 00112233445566FF
%rax = 001122334455FFFF
%rax = 00000000FFFFFFFF
%rax = FFFFFFFFFFFFFFFF

%rax %eax %ax %al

63 31 0715 Lower order portions of integer
registers can be accessed as byte,
word (2-byte), double word (4-byte),
and quad word (8-byte).

17

Convention: Any instruction that generates a 32-bit
value for a register also sets upper 32 bits to 0.

movabsq $0x0011223344556677, %rax
movb $-1, %al
movw $-1, %ax
movl $-1, %eax
movq $-1, %rax

%rax = 0011223344556677
%rax = 00112233445566FF
%rax = 001122334455FFFF
%rax = 00000000FFFFFFFF
%rax = FFFFFFFFFFFFFFFF

%rax %eax %ax %al

63 31 0715 Lower order portions of integer
registers can be accessed as byte,
word (2-byte), double word (4-byte),
and quad word (8-byte).

18

There are several “addressing modes” that
allow the CPU to interact with memory
through addresses contained in registers.
Example with %rsi, %rdi, and %rax

General form:
D(%rsi, %rdi, S) = Memory[%rsi + %rdi*S + D]

Special Cases
(%rsi) Memory[%rsi]

(%rsi, %rdi) Memory[%rsi + %rdi]

D(%rsi, %rdi) Memory[%rsi + %rdi + D]

(%rsi, %rdi, S) Memory[%rsi + %rdi*S]

19

• D is “displacement”, a
constant in 1,2, or 4 bytes

• %rsi is a base register
• Could be an of 16 integer

registers

%rsi is an “index register”
• Any, except for %rsp

S is scale is 1, 2, 4, 8

Address computation examples

20

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx,%rcx) 0xf000 + 0x100 0xf100

(%rdx,%rcx,4) 0xf000 + 4*0x100 0xf400

0x80(,%rdx,2) 2*0xf000 + 0x80 0x1e080

%rdx 0xf000

%rcx 0x0100

Load effective addressing instruction (lea)
does math and does not access memory.
Example of instructions that access memory:

lea is special and does not access memory:

21

Assembly C equivalent

mov 6(%rbx,%rdi,8), %ax ax = *(rbx + rdi*8 + 6)

add 6(%rbx,%rdi,8), %ax ax += *(rbx + rdi*8 + 6)

xor %ax, 6(%rbx,%rdi,8) *(rbx + rdi*8 + 6) ^= ax

Assembly C equivalent

lea 6(%rbx,%rdi,8), %rax rax = rbx + rdi*8 + 6

Why use lea?

Compiler authors often use it for ordinary arithmetic
• It can do complex calculations in one instruction
• It’s one of the only three-operand instructions the x86 has
• It doesn’t touch the condition codes (we’ll come back to this)

22

long m12(long x)

{

 return x*12;

}

leaq (%rdi,%rdi,2), %rax # t = x+2*x

salq $2, %rax # return t<<2

Today: How does x86-64 implement C
structures that change control flow?
•Condition codes
•Conditional branching
•Loops
•Switch statements (we won’t have time for

this)

23

Today: How does x86-64 implement C
structures that change control flow?
•Condition codes
•Conditional branching
•Loops
•Switch statements (we won’t have time for

this)

25

Every arithmetic and logical operation (except for
lea) implicitly updates special single-bit registers
called “condition codes”.

CPU
Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff88

%rsi 1

%rdi 10

%rax 11

...

%rpi 0x00ff

ZF 0

SF 1

OF 1

CF 0

ZF Zero Flag
SF Sign Flag (for signed)
OF Overflow Flag (for signed)
CF Carry Flag (for unsigned)

GDB prints these
as one “eflags” register

eflags 0x246 [PF ZF IF] Z set, CSO clear

26

Example:

addq Src,Dest t = a + b

ZF 1 if t == 0 (otherwise 0) 000000000000…00000000000

1xxxxxxxxxxx…xxxxxxxxxxxSF t < 0 (signed)

CF (unsigned) t < (unsigned) a

OF (a < 0 == b < 0) && (t < 0 != a < 0)

27

CF set when unsigned overflow:

1xxxxxxxxxxxx...

1xxxxxxxxxxxx...
+

xxxxxxxxxxxxx...1

0xxxxxxxxxxxx...

1xxxxxxxxxxxx...

_

1xxxxxxxxxxxx...

1

Carry

Borrow

28

OF set when signed overflow:

wxxxxxxxxxxxx...

yxxxxxxxxxxxx...+

zxxxxxxxxxxxx...

w==y && w!=z

29

Example:

addq Src,Dest t = a+b

ZF 1 if t == 0 (otherwise 0)
SF 1 if t < 0 (as signed)
OF 1 if two’s-complement (signed overflow)
CF 1 if carry out from most significant bit (unsigned overflow)

30

Before sub instruction:

sub %rsi, %rax

a in %rsi
b in %rax

Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff80

%rsi a

%rdi 0

%rax b

...

%rpi 0x00f0

ZF 0

SF 0

OF 0

CF 0

CPU

31

After sub instruction:

sub %rsi, %rax

a in %rsi, b in %rax
compute b-a and store
in %rax

Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff80

%rsi a

%rdi 0

%rax b-a

...

%rpi 0x00f8

ZF 1

SF 0

OF 0

CF 0

CPU

32

cmp instruction computes subtraction but
does not change second operand.

cmp %rsi, %rax

a in %rsi, b in %rax
computes y-x (no store!)
used to compute
if (a < b) { … }

Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff80

%rsi a

%rdi 0

%rax b

...

%rpi 0x00f8

ZF 1

SF 0

OF 0

CF 0

CPU

33

Why use a cmp instruction
instead of a sub instruction to
compare two?

34

test instruction computes & but does not
change second operand.

test %rdi, %rdi

z (which equals 0) in %rdi
computes z & z (no store!)
only updates ZF and SF!
used to check if %rdi is zero

Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff80

%rsi a

%rdi 0

%rax b

...

%rpi 0x00f8

ZF 1

SF 1

OF 0

CF 0

CPU

35

test instruction computes & but does not
change second operand.

test %rsi, %rax

a in %rsi, b in %rax
computes a & b (no store!)
used to check if any of the 1-bits
in %rax are also set in %rsi
(and vice versa)

Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff80

%rsi a

%rdi 0

%rax b

...

%rpi 0x00f8

ZF 1

SF 1

OF 0

CF 0

CPU

36

Set instructions read condition codes and set
a single byte in the destination.

Instruction Condition Description
sete ZF Equal / Zero
setne ~ZF Not Equal / Not Zero
sets SF Negative
setns ~SF Nonnegative
setg ~(SF^OF)&~ZF Greater (Signed)
setge ~(SF^OF) Greater or Equal (Signed)
setl (SF^OF) Less (Signed)
setle (SF^OF)|ZF Less or Equal (Signed)
seta ~CF&~ZF Above (unsigned)
setb CF Below (unsigned)
sete ZF Equal / Zero

37

Jump instructions let programs jump to different
parts of code depending on condition codes.

Instruction Condition Description
jmp 1 Unconditional

je ZF Equal / Zero

jne ~ZF Not Equal / Not Zero

js SF Negative

jns ~SF Nonnegative

jg ~(SF^OF)&~ZF Greater (Signed)

jge ~(SF^OF) Greater or Equal (Signed)

jl (SF^OF) Less (Signed)

jle (SF^OF)|ZF Less or Equal (Signed)

ja ~CF&~ZF Above (unsigned)

jb CF Below (unsigned)

38

Jump instructions let programs jump to different
parts of code depending on condition codes.

Instruction Condition Description
jmp 1 Unconditional
je ZF Equal / Zero
jne ~ZF Not Equal / Not Zero
js SF Negative
jns ~SF Nonnegative
jg ~(SF^OF)&~ZF Greater (Signed)
jge ~(SF^OF) Greater or Equal (Signed)
jl (SF^OF) Less (Signed)
jle (SF^OF)|ZF Less or Equal (Signed)
ja ~CF&~ZF Above (unsigned)
jb CF Below (unsigned)

You don’t need to memorize
every x86 instruction, use a reference

sheet like this.

39

https://www.cs.cmu.edu/afs/cs/academic/class/15213-s20/www/recitations/x86-cheat-sheet.pdf

set instructions read condition
codes and set a single byte in the
destination

To implement conditionals, programs use set
and jmp instructions.

1
2
3
4

int gt(long x, long y)
{
 return x > y;
}

1
2
3
4

cmpq %rsi, %rdi
setg %al
movzbl %al, %eax
ret

Compare x:y
Set when >
Zero rest of %rax

Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff80

%rsi y

%rdi x

%rax Return value

...

%rpi 0x00f8

ZF 0

SF 0

OF 0

CF 0

40

set instructions read condition
codes and set a single byte in the
destination

To implement conditionals, programs use set
and jmp instructions.

1
2
3
4

int gt(long x, long y)
{
 return x > y;
}

1
2
3
4

cmpq %rsi, %rdi
setg %al
movzbl %al, %eax
ret

Compare x:y
Set when >
Zero rest of %rax

Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff80

%rsi y

%rdi x

%rax Return value

...

%rpi 0x00f8

ZF 0

SF 0

OF 0

CF 0

a move + zero extension:
 movzbl (and others)

movzbl %al, %eax

%eax %al%rax0x00000000 0x000000 %al

Zapped to all
0’s

41

Today: How does x86-64 implement C
structures that change control flow?
•Condition codes
•Conditional branches
•Loops
•Switch statements (we won’t have time for

this)

42

Programs often need to change control flow
based on conditionals.
1
2
3
4
5
6
7
8
9
10

extern void op1(void);
extern void op2(void);

void decision(int x) {
 if (x) {
 op1();
 } else {
 op2();
 }
}

43

decision

x != 0

op2 op1

return

Control flow in x86 is all done with “goto code”
decision:
 subq $8, %rsp
 testl %edi, %edi
 je .L2
 call op1
 jmp .L1
.L2:
 call op2
.L1:
 addq $8, %rsp
 ret

1
2
3
4
5
6
7
8
9
10

extern void op1(void);
extern void op2(void);

void decision(int x) {
 if (x) {
 op1();
 } else {
 op2();
 }
}

1
2
3
4
5
6
7
8
9
10
11

44

Useful to be able to know translation of code
to goto style.
1
2
3
4
5
6
7
8
9
10

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

1
2
3
4
5
6
7
8
9
10
11
12
13

long absdiff_j
 (long x, long y)
{
 long result;
 int ntest = x <= y;
 if (ntest) goto FROG;
 result = x-y;
 goto Done;
FROG:
 result = y-x;
Done:
 return result;
}

45

Jumps are implemented by updating the
pointer to the next instruction (%rip)
1
2
3
4
5
6
7
8
9
10
11
12
13

long absdiff_j
 (long x, long y)
{
 long result;
 int ntest = x <= y;
 if (ntest) goto Else;
 result = x-y;
 goto Done;
Else:
 result = y-x;
Done:
 return result;
}

46

%rdi x

%rsi y

%rax result

%rip 0x112d

1
2
3
4
5
6
7
8

0x112d <+4>: cmp %rsi,%rdi
0x1130 <+7>: jle 0x1139 <absdiff+16>
0x1132 <+9>: mov %rdi,%rax
0x1135 <+12>: sub %rsi,%rax
0x1138 <+15>: ret
0x1139 <+16>: mov %rsi,%rax
0x113c <+19>: sub %rdi,%rax
0x113f <+22>: ret

Before executing line 1:

Jumps are implemented by updating the
pointer to the next instruction (%rip)

%rdi x

%rsi y

%rax result

%rip 0x1130

1
2
3
4
5
6
7
8

0x112d <+4>: cmp %rsi,%rdi
0x1130 <+7>: jle 0x1139 <absdiff+16>
0x1132 <+9>: mov %rdi,%rax
0x1135 <+12>: sub %rsi,%rax
0x1138 <+15>: ret
0x1139 <+16>: mov %rsi,%rax
0x113c <+19>: sub %rdi,%rax
0x113f <+22>: ret

1
2
3
4
5
6
7
8
9
10
11
12
13

long absdiff_j
 (long x, long y)
{
 long result;
 int ntest = x <= y;
 if (ntest) goto Else;
 result = x-y;
 goto Done;
Else:
 result = y-x;
Done:
 return result;
}

47

After executing line 1:

Jumps are implemented by updating the
pointer to the next instruction (%rip)

%rdi x

%rsi y

%rax result

%rip 0x1139

1
2
3
4
5
6
7
8

0x112d <+4>: cmp %rsi,%rdi
0x1130 <+7>: jle 0x1139 <absdiff+16>
0x1132 <+9>: mov %rdi,%rax
0x1135 <+12>: sub %rsi,%rax
0x1138 <+15>: ret
0x1139 <+16>: mov %rsi,%rax
0x113c <+19>: sub %rdi,%rax
0x113f <+22>: ret

1
2
3
4
5
6
7
8
9
10
11
12
13

long absdiff_j
 (long x, long y)
{
 long result;
 int ntest = x <= y;
 if (ntest) goto Else;
 result = x-y;
 goto Done;
Else:
 result = y-x;
Done:
 return result;
}

48

After executing line 2:

C Code

val = Test ? Then_Expr : Else_Expr;

Goto Version
ntest = !Test;

 if (ntest) goto Else;

 val = Then_Expr;
 goto Done;

Else:

 val = Else_Expr;
Done:

 . . .

General Conditional Expression
Translation (Using Branches)

▪ Create separate code regions for
then & else expressions

▪ Execute appropriate one

val = x>y ? x-y : y-x;

C Code

val = Test
 ? Then_Expr
 : Else_Expr;

Goto Version

result = Then_Expr;
 eval = Else_Expr;
 nt = !Test;
 if (nt) result = eval;

 return result;

Using Conditional Moves
⬛Conditional Move Instructions

▪ Instruction supports:
if (Test) Dest ← Src

▪ Supported in post-1995 x86
processors

▪ GCC tries to use them
▪ But, only when known to be safe

⬛Why?
▪ Branches are very disruptive to

instruction flow through pipelines
▪ Conditional moves do not require

control transfer

Alternative to conditional branching with
conditional move

51

1
2
3
4
5
6
7
8
9
10

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

absdiff:
 movq %rdi, %rax # x
 subq %rsi, %rax # result = x-y
 movq %rsi, %rdx
 subq %rdi, %rdx # eval = y-x
 cmpq %rsi, %rdi # x:y
 cmovle %rdx, %rax # if <=, result = eval
 ret

1
2
3
4
5
6
7
8

%rdi x

%rsi y

%rdx

%rax

Before executing line 2:

Alternative to conditional branching with
conditional move

52

1
2
3
4
5
6
7
8
9
10

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

absdiff:
 movq %rdi, %rax # x
 subq %rsi, %rax # result = x-y
 movq %rsi, %rdx
 subq %rdi, %rdx # eval = y-x
 cmpq %rsi, %rdi # x:y
 cmovle %rdx, %rax # if <=, result = eval
 ret

1
2
3
4
5
6
7
8

%rdi x

%rsi y

%rdx

%rax x

After executing line 2:

Alternative to conditional branching with
conditional move

53

1
2
3
4
5
6
7
8
9
10

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

absdiff:
 movq %rdi, %rax # x
 subq %rsi, %rax # result = x-y
 movq %rsi, %rdx
 subq %rdi, %rdx # eval = y-x
 cmpq %rsi, %rdi # x:y
 cmovle %rdx, %rax # if <=, result = eval
 ret

1
2
3
4
5
6
7
8

%rdi x

%rsi y

%rdx

%rax x - y

After executing line 3:

Alternative to conditional branching with
conditional move

54

1
2
3
4
5
6
7
8
9
10

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

absdiff:
 movq %rdi, %rax # x
 subq %rsi, %rax # result = x-y
 movq %rsi, %rdx
 subq %rdi, %rdx # eval = y-x
 cmpq %rsi, %rdi # x:y
 cmovle %rdx, %rax # if <=, result = eval
 ret

1
2
3
4
5
6
7
8

%rdi x

%rsi y

%rdx y

%rax x - y

After executing line 4:

Alternative to conditional branching with
conditional move

55

1
2
3
4
5
6
7
8
9
10

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

absdiff:
 movq %rdi, %rax # x
 subq %rsi, %rax # result = x-y
 movq %rsi, %rdx
 subq %rdi, %rdx # eval = y-x
 cmpq %rsi, %rdi # x:y
 cmovle %rdx, %rax # if <=, result = eval
 ret

1
2
3
4
5
6
7
8

%rdi x

%rsi y

%rdx y - x

%rax x - y

After executing line 5:

Alternative to conditional branching with
conditional move

56

1
2
3
4
5
6
7
8
9
10

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

absdiff:
 movq %rdi, %rax # x
 subq %rsi, %rax # result = x-y
 movq %rsi, %rdx
 subq %rdi, %rdx # eval = y-x
 cmpq %rsi, %rdi # x:y
 cmovle %rdx, %rax # if <=, result = eval
 ret

1
2
3
4
5
6
7
8

%rdi x

%rsi y

%rdx y - x

%rax result

After executing line 6
and 7:

Expensive Computations

Bad Cases for Conditional Move

Both values get computed

Only makes sense when computations are very simple

val = Test(x) ? Hard1(x) : Hard2(x);

Risky Computations

Both values get computed

May have undesirable effects

val = p ? *p : 0;

Computations with side effects

Both values get computed

Must be side-effect free

val = x > 0 ? x*=7 : x+=3;

Bad Performance

Unsafe

Illegal

Today: How does x86-64 implement C
structures that change control flow?
•Condition codes
•Conditional branches
•Loops
•Switch statements (we won’t have time for

this)

58

do { … body … } while (condition)

while (condition) { … body … }

for (init; condition; update) { … body … }

59

C Code

do

 Body
 while (Test);

Goto Version

loop:

 Body
 if (Test)
 goto loop

⬛Body: {

 Statement1;

 Statement2;

 …

 Statementn;

}

Generic do … while goto conversion

“Do-While” Loop example: Count number of
1s in argument x

61

1
2
3
4
5
6
7
8
9

long pcount_do
 (unsigned long x) {
 long result = 0;
 do {
 result += x & 0x1;
 x >>= 1;
 } while (x);
 return result;
}

1
2
3
4
5
6
7
8
9
10

long pcount_goto
 (unsigned long x) {
 long result = 0;
loop:
 result += x & 0x1;
 x >>= 1;
 if(x) goto loop;
 return result;
}

“Do-While” Loop Compilation

62

1
2
3
4
5
6
7
8
9
10

long pcount_goto
 (unsigned long x) {
 long result = 0;
loop:
 result += x & 0x1;
 x >>= 1;
 if(x) goto loop;
 return result;
}

movl $0, %eax # result = 0
.L2: # loop:
 movq %rdi, %rdx
 andl $1, %edx # t = x & 0x1
 addq %rdx, %rax # result += t
 shrq %rdi # x >>= 1
 jne .L2 # if (x) goto loop
 rep; ret

1
2
3
4
5
6
7
8

%rdi x

%rax 0

%rdx

Before executing line 3:
Loop iteration #1:

“Do-While” Loop Compilation

63

1
2
3
4
5
6
7
8
9
10

long pcount_goto
 (unsigned long x) {
 long result = 0;
loop:
 result += x & 0x1;
 x >>= 1;
 if(x) goto loop;
 return result;
}

movl $0, %eax # result = 0
.L2: # loop:
 movq %rdi, %rdx
 andl $1, %edx # t = x & 0x1
 addq %rdx, %rax # result += t
 shrq %rdi # x >>= 1
 jne .L2 # if (x) goto loop
 rep; ret

1
2
3
4
5
6
7
8

After executing line 3:
Loop iteration #1:

%rdi x

%rax 0

%rdx x

“Do-While” Loop Compilation

64

1
2
3
4
5
6
7
8
9
10

long pcount_goto
 (unsigned long x) {
 long result = 0;
loop:
 result += x & 0x1;
 x >>= 1;
 if(x) goto loop;
 return result;
}

movl $0, %eax # result = 0
.L2: # loop:
 movq %rdi, %rdx
 andl $1, %edx # t = x & 0x1
 addq %rdx, %rax # result += t
 shrq %rdi # x >>= 1
 jne .L2 # if (x) goto loop
 rep; ret

1
2
3
4
5
6
7
8

%rdi x

%rax 0

%rdx x & 0x1

After executing line 4:
Loop iteration #1:

“Do-While” Loop Compilation

65

1
2
3
4
5
6
7
8
9
10

long pcount_goto
 (unsigned long x) {
 long result = 0;
loop:
 result += x & 0x1;
 x >>= 1;
 if(x) goto loop;
 return result;
}

movl $0, %eax # result = 0
.L2: # loop:
 movq %rdi, %rdx
 andl $1, %edx # t = x & 0x1
 addq %rdx, %rax # result += t
 shrq %rdi # x >>= 1
 jne .L2 # if (x) goto loop
 rep; ret

1
2
3
4
5
6
7
8

%rdi x

%rax x & 0x1

%rdx x & 0x1

After executing line 5:
Loop iteration #1:

“Do-While” Loop Compilation

66

1
2
3
4
5
6
7
8
9
10

long pcount_goto
 (unsigned long x) {
 long result = 0;
loop:
 result += x & 0x1;
 x >>= 1;
 if(x) goto loop;
 return result;
}

movl $0, %eax # result = 0
.L2: # loop:
 movq %rdi, %rdx
 andl $1, %edx # t = x & 0x1
 addq %rdx, %rax # result += t
 shrq %rdi # x >>= 1
 jne .L2 # if (x) goto loop
 rep; ret

1
2
3
4
5
6
7
8

%rdi x >> 1

%rax x & 0x1

%rdx x & 0x1

After executing line 6:
Loop iteration #1:

“Do-While” Loop Compilation

67

1
2
3
4
5
6
7
8
9
10

long pcount_goto
 (unsigned long x) {
 long result = 0;
loop:
 result += x & 0x1;
 x >>= 1;
 if(x) goto loop;
 return result;
}

movl $0, %eax # result = 0
.L2: # loop:
 movq %rdi, %rdx
 andl $1, %edx # t = x & 0x1
 addq %rdx, %rax # result += t
 shrq %rdi # x >>= 1
 jne .L2 # if (x) goto loop
 rep; ret

1
2
3
4
5
6
7
8

%rdi x >> 1

%rax x & 0x1

%rdx x & 0x1

After executing line
6 & 7:
(goto .L2)

Loop iteration #2:

“Do-While” Loop Compilation

68

1
2
3
4
5
6
7
8
9
10

long pcount_goto
 (unsigned long x) {
 long result = 0;
loop:
 result += x & 0x1;
 x >>= 1;
 if(x) goto loop;
 return result;
}

movl $0, %eax # result = 0
.L2: # loop:
 movq %rdi, %rdx
 andl $1, %edx # t = x & 0x1
 addq %rdx, %rax # result += t
 shrq %rdi # x >>= 1
 jne .L2 # if (x) goto loop
 rep; ret

1
2
3
4
5
6
7
8

%rdi x >> 1

%rax x & 0x1

%rdx x >> 1

After executing line 3:
Loop iteration #2:

%rdi stores loop control variable x
%rax stores return value result

While version

while (Test)
 Body

⬛ Used with -Og

Goto Version

goto test;

loop:

 Body
test:

 if (Test)
 goto loop;

done:

“jump-to-middle” while (test) loop
implementation

C Code
long pcount_while

 (unsigned long x) {

 long result = 0;

 while (x) {

 result += x & 0x1;

 x >>= 1;

 }

 return result;

}

Jump to Middle
Versionlong pcount_goto_jtm

 (unsigned long x) {

 long result = 0;

 goto test;

 loop:

 result += x & 0x1;

 x >>= 1;

 test:

 if(x) goto loop;

 return result;

}

While Loop Example #1

⬛Compare to do-while version of function

⬛Initial goto starts loop at test

While version

while (Test)
 Body

Do-While Version

if (!Test)
 goto done;

 do

 Body
 while(Test);
done:

“guarded-do” do-while loop
implementation

⬛ “Do-while” conversion

⬛ Used with –O1

Goto Version

if (!Test)
 goto done;

loop:

 Body
 if (Test)
 goto loop;

done:

C Code
long pcount_while

 (unsigned long x) {

 long result = 0;

 while (x) {

 result += x & 0x1;

 x >>= 1;

 }

 return result;

}

Do-While Version
long pcount_goto_dw

 (unsigned long x) {

 long result = 0;

 if (!x) goto done;

 loop:

 result += x & 0x1;

 x >>= 1;

 if(x) goto loop;

 done:

 return result;

}

While Loop Example #2

⬛ Compare to do-while version of function

⬛ Initial conditional guards entrance to loop

For version

Do-While Version

if (!Test)
 goto done;

 do {

 Body
 Update
 } while(Test);
done:

Goto Version

if (!Test)
 goto done;

loop:

 Body
 Update
 if (Test)
 goto loop;

done:

for (Init; Test; Update)

 Body

“For” Loop → Do-While Loop

 Initial test can often be
optimized away – why?

C Code

“For” Loop Do-While Conversion

⬛ Initial test can be optimized
away

long pcount_for

 (unsigned long x)

{

 size_t i;

 long result = 0;

 for (i = 0; i < WSIZE; i++)

 {

 unsigned bit =

 (x >> i) & 0x1;

 result += bit;

 }

 return result;

}

Goto Version
long pcount_for_goto_dw

 (unsigned long x) {

 size_t i;

 long result = 0;

 i = 0;

 if (!(i < WSIZE))

 goto done;

 loop:

 {

 unsigned bit =

 (x >> i) & 0x1;

 result += bit;

 }

 i++;

 if (i < WSIZE)

 goto loop;

 done:

 return result;

}

Ini
t
!Test

Body

Update

Test

Reverse engineering loops is challenging!

• Compiler may use variables in assembly code that have no C
equivalent and vice-versa

• Compiler may “optimize” away conditional checks
• Compiler may reuse registers

76

If you remember nothing else from this
lecture…
There are three ways to set condition codes:
- Arithmetic and logical operations (not lea)
- Test
- Cmp

There are many ways to do things different depending on condition condes:
- Set bytes
- Jumps
- Conditional moves

You can mix and match these combinations. You’ll understand the details as you do
the labs, attend recitation and lecture in the next few weeks.

77

x86-64 code reading tips..

• Use an x86-64 reference while reading code (you don’t need to
memorize everything!)

• You can use gdb hex to decimal conversions!
(gdb) print /x 0x8 + 0x8

0x10

• Put a breakpoint before the function that that you want to inspect
(gdb) break phase_1

• Code trace with simulated inputs like what happens if x is in %rsi
and y is %rdi, etc. Write things down and draw things like register
state after each instruction.

78

Today: How does x86-64 implement C
structures that change control flow?
•Condition codes
•Conditional branches
•Loops
•Switch statements (we won’t have time for

this)

80

Switch Statement
Example

⬛ Multiple case labels
▪ Here: 5 & 6

⬛ Fall through cases
▪ Here: 2

⬛ Missing cases
▪ Here: 4

long switch_eg

 (long x, long y, long z)

{

 long w = 1;

 switch(x) {

 case 1:

 w = y*z;

 break;

 case 2:

 w = y/z;

 /* Fall Through */

 case 3:

 w += z;

 break;

 case 5:

 case 6:

 w -= z;

 break;

 default:

 w = 2;

 }

 return w;

}

Jump Table Structure

Code Block
0

Targ0:

Code Block
1

Targ1:

Code Block
2

Targ2:

Code Block
n–1

Targn-1:

•

•

•

Targ0

Targ1

Targ2

Targn-1

•

•

•

jtab:

goto *JTab[x];

switch(x) {

 case val_0:

 Block 0
 case val_1:

 Block 1
 • • •

 case val_n-1:

 Block n–1
}

Switch Form

Translation (Extended C)

Jump Table Jump Targets

Switch Statement
Example

long my_switch

 (long x, long y, long z)

{

 long w = 1;

 switch(x) {

 case 1:

 w = y*z;

 break;

 case 2:

 w = y/z;

 /* Fall Through */

 case 3:

 w += z;

 break;

 case 5:

 case 6:

 w -= z;

 break;

 default:

 w = 2;

 }

 return w;

}

.section .rodata

 .align 8

.L4:

 .quad .L8 # x = 0

 .quad .L3 # x = 1

 .quad .L5 # x = 2

 .quad .L9 # x = 3

 .quad .L8 # x = 4

 .quad .L7 # x = 5

 .quad .L7 # x = 6

.L3:

.L5:

.L9:

.L7:

.L8:

my_switch:

 cmpq $6, %rdi # x:6

ja .L8 # if x > 6 jump

 # to default

jmp *.L4(,%rdi,8)

Assembly Setup Explanation

⬛ Table Structure
▪ Each target requires 8 bytes

▪ Base address at .L4

⬛ Jumping
▪ Direct: jmp .L8

▪ Jump target is denoted by label .L8

▪ Indirect: jmp *.L4(,%rdi,8)

▪ Start of jump table: .L4

▪ Must scale by factor of 8 (addresses are 8 bytes)

▪ Fetch target from effective Address .L4 + x*8

▪ Only for 0 ≤ x ≤ 6

Jump table

.section .rodata

 .align 8

.L4:

 .quad .L8 # x = 0

 .quad .L3 # x = 1

 .quad .L5 # x = 2

 .quad .L9 # x = 3

 .quad .L8 # x = 4

 .quad .L7 # x = 5

 .quad .L7 # x = 6

Code Blocks (x == 1)

.L3:

 movq %rsi, %rax # y

 imulq %rdx, %rax # y*z

 ret

switch(x) {

 case 1: // .L3

 w = y*z;

 break;

 . . .

}

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z

%rax Return value

Handling Fall-Through

long w = 1;

 . . .

 switch(x) {

 . . .

 case 2:

 w = y/z;

 /* Fall Through */

 case 3:

 w += z;

 break;

 . . .

 }
case 3:

 w = 1;

case 2:

 w = y/z;

 goto merge;

merge:

 w += z;

Code Blocks (x == 2, x == 3)

.L5: # Case 2

 movq %rsi, %rax

 cqto

 idivq %rcx # y/z

 jmp .L6 # goto merge

.L9: # Case 3

 movl $1, %eax # w = 1

.L6: # merge:

 addq %rcx, %rax # w += z

 ret

long w = 1;

 . . .

 switch(x) {

 . . .

 case 2:

 w = y/z;

 /* Fall Through */

 case 3:

 w += z;

 break;

 . . .

 } Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z

%rax Return value

Code Blocks (x == 5, x == 6, default)

.L7: # Case 5,6

 movl $1, %eax # w = 1

 subq %rdx, %rax # w -= z

 ret

.L8: # Default:

 movl $2, %eax # 2

 ret

switch(x) {

 . . .

 case 5: // .L7

 case 6: // .L7

 w -= z;

 break;

 default: // .L8

 w = 2;

}

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z

%rax Return value

Finding Jump Table in Binary

00000000004005e0 <switch_eg>:

 4005e0: 48 89 d1 mov %rdx,%rcx

 4005e3: 48 83 ff 06 cmp $0x6,%rdi

 4005e7: 77 2b ja 400614 <switch_eg+0x34>

 4005e9: ff 24 fd f0 07 40 00 jmpq *0x4007f0(,%rdi,8)

 4005f0: 48 89 f0 mov %rsi,%rax

 4005f3: 48 0f af c2 imul %rdx,%rax

 4005f7: c3 retq

 4005f8: 48 89 f0 mov %rsi,%rax

 4005fb: 48 99 cqto

 4005fd: 48 f7 f9 idiv %rcx

 400600: eb 05 jmp 400607 <switch_eg+0x27>

 400602: b8 01 00 00 00 mov $0x1,%eax

 400607: 48 01 c8 add %rcx,%rax

 40060a: c3 retq

 40060b: b8 01 00 00 00 mov $0x1,%eax

 400610: 48 29 d0 sub %rdx,%rax

 400613: c3 retq

 400614: b8 02 00 00 00 mov $0x2,%eax

 400619: c3 retq

Finding Jump Table in Binary

00000000004005e0 <switch_eg>:

 . . .

 4005e9: ff 24 fd f0 07 40 00 jmpq *0x4007f0(,%rdi,8)

 . . .

% gdb switch

(gdb) x /8xg 0x4007f0

0x4007f0: 0x0000000000400614 0x00000000004005f0

0x400800: 0x00000000004005f8 0x0000000000400602

0x400810: 0x0000000000400614 0x000000000040060b

0x400820: 0x000000000040060b 0x2c646c25203d2078

(gdb)

Which numbers are pointers?

• They aren’t labeled
• You have to figure it out from context

(gdb) info registers

rax 0x40057d 4195709

rbx 0x0 0

rcx 0x4005e0 4195808

rdx 0x7fffffffdc28 140737488346152

rsi 0x7fffffffdc18 140737488346136

rdi 0x1 1

rbp 0x0 0x0

rsp 0x7fffffffdb38 0x7fffffffdb38

r8 0x7ffff7dd5e80 140737351868032

r9 0x0 0

r10 0x7fffffffd7c0 140737488345024

r11 0x7ffff7a2f460 140737348039776

r12 0x400490 4195472

r13 0x7fffffffdc10 140737488346128

r14 0x0 0

r15 0x0 0

rip 0x40057d 0x40057d

Which numbers are pointers?

• They aren’t labeled
• You have to figure it out from context

• %rsp and %rip always hold pointers

(gdb) info registers

rax 0x40057d 4195709

rbx 0x0 0

rcx 0x4005e0 4195808

rdx 0x7fffffffdc28 140737488346152

rsi 0x7fffffffdc18 140737488346136

rdi 0x1 1

rbp 0x0 0x0

rsp 0x7fffffffdb38 0x7fffffffdb38

r8 0x7ffff7dd5e80 140737351868032

r9 0x0 0

r10 0x7fffffffd7c0 140737488345024

r11 0x7ffff7a2f460 140737348039776

r12 0x400490 4195472

r13 0x7fffffffdc10 140737488346128

r14 0x0 0

r15 0x0 0

rip 0x40057d 0x40057d

Which numbers are pointers?

• They aren’t labeled
• You have to figure it out from context

• %rsp and %rip always hold pointers
• Register values that are “close” to %rsp

or %rip are probably also pointers

(gdb) info registers

rax 0x40057d 4195709

rbx 0x0 0

rcx 0x4005e0 4195808

rdx 0x7fffffffdc28 140737488346152

rsi 0x7fffffffdc18 140737488346136

rdi 0x1 1

rbp 0x0 0x0

rsp 0x7fffffffdb38 0x7fffffffdb38

r8 0x7ffff7dd5e80 140737351868032

r9 0x0 0

r10 0x7fffffffd7c0 140737488345024

r11 0x7ffff7a2f460 140737348039776

r12 0x400490 4195472

r13 0x7fffffffdc10 140737488346128

r14 0x0 0

r15 0x0 0

rip 0x40057d 0x40057d

Which numbers are pointers?

• If a register is being used as a
pointer…

Dump of assembler code for function main:

=> 0x40057d <+0>: sub $0x8,%rsp

 0x400581 <+4>: mov (%rsi),%rsi

 0x400584 <+7>: mov $0x400670,%edi

 0x400589 <+12>: mov $0x0,%eax

 0x40058e <+17>: call 0x400460

Which numbers are pointers?
• If a register is being used

as a pointer…
• mov (%rsi), %rsi
• …Then its value is expected

to be a pointer.
• There might be a bug that makes its value incorrect.

Dump of assembler code for function main:

=> 0x40057d <+0>: sub $0x8,%rsp

 0x400581 <+4>: mov (%rsi),%rsi

 0x400584 <+7>: mov $0x400670,%edi

 0x400589 <+12>: mov $0x0,%eax

 0x40058e <+17>: call 0x400460

Which numbers are pointers?
• If a register is being used

as a pointer…
• mov (%rsi), %rsi
• …Then its value is expected

to be a pointer.
• There might be a bug that makes its value incorrect.

• Not as obvious with complicated address “modes”
• (%rsi, %rbx) – One of these is a pointer, we don’t know

which.
• (%rsi, %rbx, 2) – %rsi is a pointer, %rbx isn’t (why?)
• 0x400570(, %rbx, 2) – 0x400570 is a pointer, %rbx isn’t

(why?)
• lea (anything), %rax – (anything) may or may not be a pointer

Dump of assembler code for function main:

=> 0x40057d <+0>: sub $0x8,%rsp

 0x400581 <+4>: mov (%rsi),%rsi

 0x400584 <+7>: mov $0x400670,%edi

 0x400589 <+12>: mov $0x0,%eax

 0x40058e <+17>: call 0x400460

Assembly Syntax

• Intel versus AT&T
In this class we will be using the AT&T syntax

Feature AT&T Syntax Intel Syntax
Operand Order source, destination destination, source
Register Prefix % (e.g., %eax) None (e.g., eax)

Immediate Value
Prefix $ (e.g., $10) None (e.g., 10)

Memory
Addressing

displacement(base, index,
scale)

[base + index*scale +
displacement]

Operand Size
Suffix b, w, l, q (e.g., movl) Inferred or ptr prefixes (e.g.,

dword ptr)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Previous lecture question followup
	Slide 6: Activities are posted on the website (we won’t have time today, but you can do after lecture)
	Slide 7
	Slide 8: Some review from last time, for your records
	Slide 9: C code is translated into assembly code by a compiler (ex: gcc).
	Slide 10: The specification for that assembly code is defined by the instruction set architecture (ISA).
	Slide 11: The specification for that assembly code is defined by the instruction set architecture (ISA).
	Slide 12: Object code can be disassembled into assembly using a disassembler (objdump –d or gdb).
	Slide 13: On these slides you will sometimes see the “gcc compiled” version of assembly code and sometimes the “objump” version of assembly code. (Some points are easier to illustrate with one rather than the other.)
	Slide 14: Let’s examine the translation of C to x86-64:
	Slide 15: An x86-64 program’s view…
	Slide 16: An x86-64 program’s view…
	Slide 17: Sometimes an instruction may only change portions of the register destination.
	Slide 18: Convention: Any instruction that generates a 32-bit value for a register also sets upper 32 bits to 0.
	Slide 19: There are several “addressing modes” that allow the CPU to interact with memory through addresses contained in registers.
	Slide 20: Address computation examples
	Slide 21: Load effective addressing instruction (lea) does math and does not access memory.
	Slide 22: Why use lea?
	Slide 23: Today: How does x86-64 implement C structures that change control flow?
	Slide 25: Today: How does x86-64 implement C structures that change control flow?
	Slide 26: Every arithmetic and logical operation (except for lea) implicitly updates special single-bit registers called “condition codes”.
	Slide 27: Example:
	Slide 28: CF set when unsigned overflow:
	Slide 29: OF set when signed overflow:
	Slide 30: Example:
	Slide 31: Before sub instruction:
	Slide 32: After sub instruction:
	Slide 33: cmp instruction computes subtraction but does not change second operand.
	Slide 34: Why use a cmp instruction instead of a sub instruction to compare two?
	Slide 35: test instruction computes & but does not change second operand.
	Slide 36: test instruction computes & but does not change second operand.
	Slide 37: Set instructions read condition codes and set a single byte in the destination.
	Slide 38: Jump instructions let programs jump to different parts of code depending on condition codes.
	Slide 39: Jump instructions let programs jump to different parts of code depending on condition codes.
	Slide 40: To implement conditionals, programs use set and jmp instructions.
	Slide 41: To implement conditionals, programs use set and jmp instructions.
	Slide 42: Today: How does x86-64 implement C structures that change control flow?
	Slide 43: Programs often need to change control flow based on conditionals.
	Slide 44: Control flow in x86 is all done with “goto code”
	Slide 45: Useful to be able to know translation of code to goto style.
	Slide 46: Jumps are implemented by updating the pointer to the next instruction (%rip)
	Slide 47: Jumps are implemented by updating the pointer to the next instruction (%rip)
	Slide 48: Jumps are implemented by updating the pointer to the next instruction (%rip)
	Slide 49: General Conditional Expression Translation (Using Branches)
	Slide 50: Using Conditional Moves
	Slide 51: Alternative to conditional branching with conditional move
	Slide 52: Alternative to conditional branching with conditional move
	Slide 53: Alternative to conditional branching with conditional move
	Slide 54: Alternative to conditional branching with conditional move
	Slide 55: Alternative to conditional branching with conditional move
	Slide 56: Alternative to conditional branching with conditional move
	Slide 57: Bad Cases for Conditional Move
	Slide 58: Today: How does x86-64 implement C structures that change control flow?
	Slide 59
	Slide 60: Generic do … while goto conversion
	Slide 61: “Do-While” Loop example: Count number of 1s in argument x
	Slide 62: “Do-While” Loop Compilation
	Slide 63: “Do-While” Loop Compilation
	Slide 64: “Do-While” Loop Compilation
	Slide 65: “Do-While” Loop Compilation
	Slide 66: “Do-While” Loop Compilation
	Slide 67: “Do-While” Loop Compilation
	Slide 68: “Do-While” Loop Compilation
	Slide 70
	Slide 71: While Loop Example #1
	Slide 72: “guarded-do” do-while loop implementation
	Slide 73: While Loop Example #2
	Slide 74: “For” Loop  Do-While Loop
	Slide 75: “For” Loop Do-While Conversion
	Slide 76: Reverse engineering loops is challenging!
	Slide 77: If you remember nothing else from this lecture…
	Slide 78: x86-64 code reading tips..
	Slide 80: Today: How does x86-64 implement C structures that change control flow?
	Slide 81: Switch Statement Example
	Slide 82: Jump Table Structure
	Slide 83: Switch Statement Example
	Slide 84: Assembly Setup Explanation
	Slide 85: Code Blocks (x == 1)
	Slide 86: Handling Fall-Through
	Slide 87: Code Blocks (x == 2, x == 3)
	Slide 88: Code Blocks (x == 5, x == 6, default)
	Slide 89: Finding Jump Table in Binary
	Slide 90: Finding Jump Table in Binary
	Slide 91: Which numbers are pointers?
	Slide 92: Which numbers are pointers?
	Slide 93: Which numbers are pointers?
	Slide 94: Which numbers are pointers?
	Slide 95: Which numbers are pointers?
	Slide 96: Which numbers are pointers?
	Slide 97: Assembly Syntax

