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Quiz

DEVICES AWAY.
UNTIL EVERYONE IS DONE.

q2: yes all numbers are decimal

AI, bringing pencil and 
paper back since 2024
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int x = 27;
x += (~x) + 15

int x = 27;
x += (~x + 1) + 14

int x = 27;
x += -x + 14

x = 14
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rdx = 5000
rax = 67
rdi = 16
mov %rax, 22(%rdx, %rdi, 2)

mov D(Rb, Ri, S) → 
  *(D + Rb + Ri * S)

22 + 5000 + 16 * 2 → 5054



Previous lecture question followup

Gnu assembly == AT&T syntax

Alternative is Intel syntax

You can address low-order 32 and 
16 bits of r8-r15: r8d, r8w

but not the ‘ah’, ‘al’ 8 bit chunks you 
can with rax



Activities are posted on the website (we won’t 
have time today, but you can do after lecture)
On shark machines:
wget http://www.cs.cmu.edu/~213/activities/machine-control.pdf

wget http://www.cs.cmu.edu/~213/activities/machine-control.tar

tar xf machine-control.tar

cd machine-control
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Today’s slides differ from the ones I posted before class

(quiz solution…)

But content overall is the same.
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Some review from last time, for your records

• Programs can do arithmetic on the same register!
imul %rax, %rax

• C translation to assembly
• An x86 program’s view
• Instruction register destinations
• Addressing modes
• lea
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C code is translated into assembly code by a 
compiler (ex: gcc).

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc –c or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries 
(.a)

Compile p1.c and p2.c with command:  gcc –Og p1.c p2.c -o p
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The specification for that assembly code is defined 
by the instruction set architecture (ISA).
The ISA we learn in this class
is x86-64.

Assembly code is a plain 
text version of what will 
eventually be object code.

Example:
gcc -Og –S sum.c

sumstore:
.LFB1:
    .cfi_startproc
    endbr64
    pushq  %rbx
    .cfi_def_cfa_offset 16
    .cfi_offset 3, -16
    movq   %rdx, %rbx
    call   plus
    movq   %rax, (%rbx)
    popq   %rbx
    .cfi_def_cfa_offset 8
    ret
    .cfi_endproc
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The specification for that assembly code is defined 
by the instruction set architecture (ISA).
The ISA we learn in this class
is x86-64.

Assembly code is a plain 
text version of what will 
eventually be object code.

Example:
gcc -Og –S sum.c

sumstore:
.LFB1:
    .cfi_startproc
    endbr64
    pushq  %rbx
    .cfi_def_cfa_offset 16
    .cfi_offset 3, -16
    movq   %rdx, %rbx
    call   plus
    movq   %rax, (%rbx)
    popq   %rbx
    .cfi_def_cfa_offset 8
    ret
    .cfi_endproc
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Object code can be disassembled into assembly 
using a disassembler (objdump –d or gdb).

>> gdb sum
(gdb) disas sumstore
Dump of assembler code for function sumstore:

 0x0000000000001144 <+4>:   push  %rbp
 0x0000000000001145 <+5>:   mov   %rsp,%rbp
 0x0000000000001148 <+8>:   sub   $0x28,%rsp
 0x000000000000114c <+12>:   mov   %rdi,-0x18(%rbp)
 0x0000000000001150 <+16>:   mov   %rsi,-0x20(%rbp)
 0x0000000000001154 <+20>:   mov   %rdx,-0x28(%rbp)
 0x0000000000001158 <+24>:   mov   -0x20(%rbp),%rdx
 0x000000000000115c <+28>:   mov   -0x18(%rbp),%rax
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On these slides you will sometimes see the “gcc 
compiled” version of assembly code and sometimes the 
“objump” version of assembly code. (Some points are 
easier to illustrate with one rather than the other.)
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1
2
3
4
5
6
7

Let’s examine the translation of C to x86-64:
long plus(long x, long y); 

void sumstore(long x, long y, long *dest) 
{ 
 long t = plus(x, y); 
 *dest = t; 
}

1
2
3
4
5
6
7

0000000000001133 <sumstore>:
  1137:  53         push  %rbx
  1138:  48 89 d3      mov   %rdx,%rbx
  113b:  e8 e9 ff ff ff   call  1129 <plus>
  1140:  48 89 03      mov   %rax,(%rbx)
  1143:  5b         pop   %rbx
  1144:  c3         ret

C:

x86-64:
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An x86-64 
program’s view…

Operating system

Code: function instructions stored here

Data: global variables stored here

Heap: dynamically allocated memory 
grows as program allocates memory

Stack: local variables and parameters 
stored here
grows as program calls functions
shrinks on return from functions

Memory (Virtual)

max:

0:
1:
2:
...

…
. M

em
or

y 
ad

dr
es

se
s 

…
..

CPU
Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff88

%rsi 1

%rdi 10

%rax 11

...

%rpi 0x00ff

ZF 0

SF 1

OF 1

CF 0

15

%rpi



Stack

0xff50

0xff58

0xff60

0xff68

0xff70

0xff78

0xff80

0xff88

Lower 
addresses

%rsp

An x86-64 
program’s view…

stack top

stack bottom

CPU
Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff88

%rsi 1

%rdi 10

%rax 11

...

%rpi 0x00ff

ZF 0

SF 1

OF 1

CF 0

16



Sometimes an instruction may only change 
portions of the register destination.

movabsq $0x0011223344556677, %rax
movb  $-1, %al
movw  $-1, %ax
movl  $-1, %eax
movq  $-1, %rax

%rax = 0011223344556677
%rax = 00112233445566FF
%rax = 001122334455FFFF
%rax = 00000000FFFFFFFF
%rax = FFFFFFFFFFFFFFFF

%rax %eax %ax %al

63 31 0715 Lower order portions of integer
registers can be accessed as byte, 
word (2-byte), double word (4-byte),
and quad word (8-byte).
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Convention: Any instruction that generates a 32-bit 
value for a register also sets upper 32 bits to 0.

movabsq $0x0011223344556677, %rax
movb  $-1, %al
movw  $-1, %ax
movl  $-1, %eax
movq  $-1, %rax

%rax = 0011223344556677
%rax = 00112233445566FF
%rax = 001122334455FFFF
%rax = 00000000FFFFFFFF
%rax = FFFFFFFFFFFFFFFF

%rax %eax %ax %al

63 31 0715 Lower order portions of integer
registers can be accessed as byte, 
word (2-byte), double word (4-byte),
and quad word (8-byte).
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There are several “addressing modes” that 
allow the CPU to interact with memory 
through addresses contained in registers.
Example with %rsi, %rdi, and %rax

General form:
D(%rsi, %rdi, S) = Memory[%rsi + %rdi*S + D]

Special Cases
(%rsi)   Memory[%rsi]

(%rsi, %rdi)  Memory[%rsi + %rdi]

D(%rsi, %rdi)  Memory[%rsi + %rdi + D]

(%rsi, %rdi, S) Memory[%rsi + %rdi*S]

19

• D is “displacement”, a 
constant in 1,2, or 4 bytes

• %rsi is a base register 
• Could be an of 16 integer 

registers

%rsi is an “index register”
• Any, except for %rsp

S is scale is 1, 2, 4, 8



Address computation examples

20

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx,%rcx) 0xf000 + 0x100 0xf100

(%rdx,%rcx,4) 0xf000 + 4*0x100 0xf400

0x80(,%rdx,2) 2*0xf000 + 0x80 0x1e080

%rdx 0xf000

%rcx 0x0100



Load effective addressing instruction (lea) 
does math and does not access memory.
Example of instructions that access memory:

lea is special and does not access memory:

21

Assembly C equivalent

mov 6(%rbx,%rdi,8), %ax ax = *(rbx + rdi*8 + 6)

add 6(%rbx,%rdi,8), %ax ax += *(rbx + rdi*8 + 6)

xor %ax, 6(%rbx,%rdi,8) *(rbx + rdi*8 + 6) ^= ax

Assembly C equivalent

lea 6(%rbx,%rdi,8), %rax rax = rbx + rdi*8 + 6



Why use lea?

Compiler authors often use it for ordinary arithmetic
• It can do complex calculations in one instruction
• It’s one of the only three-operand instructions the x86 has
• It doesn’t touch the condition codes (we’ll come back to this)

22

long m12(long x)

{

  return x*12;

}

leaq (%rdi,%rdi,2), %rax  # t = x+2*x

salq $2, %rax             # return t<<2



Today: How does x86-64 implement C 
structures that change control flow?
•Condition codes
•Conditional branching
•Loops
•Switch statements (we won’t have time for 

this)
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Today: How does x86-64 implement C 
structures that change control flow?
•Condition codes
•Conditional branching
•Loops
•Switch statements (we won’t have time for 

this)

25



Every arithmetic and logical operation (except for 
lea) implicitly updates special single-bit registers 
called “condition codes”.

CPU
Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff88

%rsi 1

%rdi 10

%rax 11

...

%rpi 0x00ff

ZF 0

SF 1

OF 1

CF 0

ZF Zero Flag
SF Sign Flag (for signed)
OF Overflow Flag (for signed)
CF Carry Flag (for unsigned)

GDB prints these 
as one “eflags” register

eflags  0x246  [ PF ZF IF ] Z set, CSO clear
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Example: 

addq Src,Dest t = a + b

ZF 1 if t == 0 (otherwise 0) 000000000000…00000000000

1xxxxxxxxxxx…xxxxxxxxxxxSF t < 0 (signed)

CF (unsigned) t < (unsigned) a

OF (a < 0 == b < 0) && (t < 0 != a < 0)

27



CF set when unsigned overflow:

1xxxxxxxxxxxx...

1xxxxxxxxxxxx...
+

xxxxxxxxxxxxx...1

0xxxxxxxxxxxx...

1xxxxxxxxxxxx...

_

1xxxxxxxxxxxx...

1

Carry

Borrow

28



OF set when signed overflow:

wxxxxxxxxxxxx...

yxxxxxxxxxxxx...+

zxxxxxxxxxxxx...

w==y && w!=z

29



Example: 

addq Src,Dest t = a+b

ZF 1 if t == 0 (otherwise 0)
SF 1 if t < 0 (as signed)
OF 1 if two’s-complement (signed overflow)
CF 1 if carry out from most significant bit (unsigned overflow)
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Before sub instruction: 

sub %rsi, %rax

a in %rsi 
b in %rax

Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff80

%rsi a

%rdi 0

%rax b

...

%rpi 0x00f0

ZF 0

SF 0

OF 0

CF 0

CPU
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After sub instruction: 

sub %rsi, %rax

a in %rsi, b in %rax
compute b-a and store 
in %rax

Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff80

%rsi a

%rdi 0

%rax b-a

...

%rpi 0x00f8

ZF 1

SF 0

OF 0

CF 0

CPU
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cmp instruction computes subtraction but 
does not change second operand.

cmp %rsi, %rax

a in %rsi, b in %rax
computes y-x (no store!)
used  to compute 
if ( a < b ) { … }

Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff80

%rsi a

%rdi 0

%rax b

...

%rpi 0x00f8

ZF 1

SF 0

OF 0

CF 0

CPU
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Why use a cmp instruction 
instead of a sub instruction to 
compare two?
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test instruction computes & but does not 
change second operand.

test %rdi, %rdi

z (which equals 0) in %rdi 
computes z & z (no store!)
only updates ZF and SF!
used to check if %rdi is zero

Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff80

%rsi a

%rdi 0

%rax b

...

%rpi 0x00f8

ZF 1

SF 1

OF 0

CF 0

CPU
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test instruction computes & but does not 
change second operand.

test %rsi, %rax

a in %rsi, b in %rax
computes a & b (no store!)
used to check if any of the 1-bits
in %rax are also set in %rsi
(and vice versa)

Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff80

%rsi a

%rdi 0

%rax b

...

%rpi 0x00f8

ZF 1

SF 1

OF 0

CF 0

CPU
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Set instructions read condition codes and set 
a single byte in the destination.

Instruction Condition Description
sete ZF Equal / Zero
setne ~ZF Not Equal / Not Zero
sets SF Negative
setns ~SF Nonnegative
setg ~(SF^OF)&~ZF Greater (Signed)
setge ~(SF^OF) Greater or Equal (Signed)
setl (SF^OF) Less (Signed)
setle (SF^OF)|ZF Less or Equal (Signed)
seta ~CF&~ZF Above (unsigned)
setb CF Below (unsigned)
sete ZF Equal / Zero
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Jump instructions let programs jump to different 
parts of code depending on condition codes.

Instruction Condition Description
jmp 1 Unconditional

je ZF Equal / Zero

jne ~ZF Not Equal / Not Zero

js SF Negative

jns ~SF Nonnegative

jg ~(SF^OF)&~ZF Greater (Signed)

jge ~(SF^OF) Greater or Equal (Signed)

jl (SF^OF) Less (Signed)

jle (SF^OF)|ZF Less or Equal (Signed)

ja ~CF&~ZF Above (unsigned)

jb CF Below (unsigned)
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Jump instructions let programs jump to different 
parts of code depending on condition codes.

Instruction Condition Description
jmp 1 Unconditional
je ZF Equal / Zero
jne ~ZF Not Equal / Not Zero
js SF Negative
jns ~SF Nonnegative
jg ~(SF^OF)&~ZF Greater (Signed)
jge ~(SF^OF) Greater or Equal (Signed)
jl (SF^OF) Less (Signed)
jle (SF^OF)|ZF Less or Equal (Signed)
ja ~CF&~ZF Above (unsigned)
jb CF Below (unsigned)

You don’t need to memorize 
every x86 instruction, use a reference 

sheet like this. 

39

https://www.cs.cmu.edu/afs/cs/academic/class/15213-s20/www/recitations/x86-cheat-sheet.pdf


set instructions read condition 
codes and set a single byte in the 
destination

To implement conditionals, programs use set 
and jmp instructions.

1
2
3
4

int gt(long x, long y) 
{ 
 return x > y;
}

1
2
3
4

cmpq   %rsi, %rdi   
setg   %al          
movzbl %al, %eax   
ret

# Compare x:y
# Set when >
# Zero rest of %rax

Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff80

%rsi y

%rdi x

%rax Return value

...

%rpi 0x00f8

ZF 0

SF 0

OF 0

CF 0
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set instructions read condition 
codes and set a single byte in the 
destination

To implement conditionals, programs use set 
and jmp instructions.

1
2
3
4

int gt(long x, long y) 
{ 
 return x > y;
}

1
2
3
4

cmpq   %rsi, %rdi   
setg   %al          
movzbl %al, %eax   
ret

# Compare x:y
# Set when >
# Zero rest of %rax

Program Counter (PC)

Condition Codes

16 “General purpose”
Registers

%rsp 0xff80

%rsi y

%rdi x

%rax Return value

...

%rpi 0x00f8

ZF 0

SF 0

OF 0

CF 0

a move + zero extension:
 movzbl (and others)

movzbl %al, %eax

%eax %al%rax0x00000000 0x000000 %al

Zapped to all 
0’s
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Today: How does x86-64 implement C 
structures that change control flow?
•Condition codes
•Conditional branches
•Loops
•Switch statements (we won’t have time for 

this)

42



Programs often need to change control flow 
based on conditionals.
1
2
3
4
5
6
7
8
9
10

extern void op1(void);
extern void op2(void);

void decision(int x) {
    if (x) {
        op1();
    } else {
        op2();
    }
}

43

decision

x != 0

op2 op1

return



Control flow in x86 is all done with “goto code”
decision:
 subq    $8, %rsp
 testl   %edi, %edi
 je      .L2
 call    op1
 jmp     .L1
.L2:
 call    op2
.L1:
 addq    $8, %rsp
 ret

1
2
3
4
5
6
7
8
9
10

extern void op1(void);
extern void op2(void);

void decision(int x) {
    if (x) {
        op1();
    } else {
        op2();
    }
}

1
2
3
4
5
6
7
8
9
10
11
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Useful to be able to know translation of code 
to goto style.
1
2
3
4
5
6
7
8
9
10

long absdiff
  (long x, long y)
{
    long result;
    if (x > y)
        result = x-y;
    else
        result = y-x;
    return result;
}

1
2
3
4
5
6
7
8
9
10
11
12
13

long absdiff_j
  (long x, long y)
{
    long result;
    int ntest = x <= y;
    if (ntest) goto FROG;
    result = x-y;
    goto Done;
FROG:
  result = y-x;
Done:    
  return result;
}
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Jumps are implemented by updating the 
pointer to the next instruction (%rip)
1
2
3
4
5
6
7
8
9
10
11
12
13

long absdiff_j
  (long x, long y)
{
    long result;
    int ntest = x <= y;
    if (ntest) goto Else;
    result = x-y;
    goto Done;
Else:
  result = y-x;
Done:    
  return result;
}

46

%rdi x

%rsi y

%rax result

%rip 0x112d

1
2
3
4
5
6
7
8

0x112d <+4>:   cmp   %rsi,%rdi
0x1130 <+7>:   jle   0x1139 <absdiff+16>
0x1132 <+9>:   mov   %rdi,%rax
0x1135 <+12>:   sub   %rsi,%rax
0x1138 <+15>:   ret  
0x1139 <+16>:   mov   %rsi,%rax
0x113c <+19>:   sub   %rdi,%rax
0x113f <+22>:   ret

Before executing line 1:



Jumps are implemented by updating the 
pointer to the next instruction (%rip)

%rdi x

%rsi y

%rax result

%rip 0x1130

1
2
3
4
5
6
7
8

0x112d <+4>:   cmp   %rsi,%rdi
0x1130 <+7>:   jle   0x1139 <absdiff+16>
0x1132 <+9>:   mov   %rdi,%rax
0x1135 <+12>:   sub   %rsi,%rax
0x1138 <+15>:   ret  
0x1139 <+16>:   mov   %rsi,%rax
0x113c <+19>:   sub   %rdi,%rax
0x113f <+22>:   ret

1
2
3
4
5
6
7
8
9
10
11
12
13

long absdiff_j
  (long x, long y)
{
    long result;
    int ntest = x <= y;
    if (ntest) goto Else;
    result = x-y;
    goto Done;
Else:
  result = y-x;
Done:    
  return result;
}

47

After executing line 1:



Jumps are implemented by updating the 
pointer to the next instruction (%rip)

%rdi x

%rsi y

%rax result

%rip 0x1139

1
2
3
4
5
6
7
8

0x112d <+4>:   cmp   %rsi,%rdi
0x1130 <+7>:   jle   0x1139 <absdiff+16>
0x1132 <+9>:   mov   %rdi,%rax
0x1135 <+12>:   sub   %rsi,%rax
0x1138 <+15>:   ret  
0x1139 <+16>:   mov   %rsi,%rax
0x113c <+19>:   sub   %rdi,%rax
0x113f <+22>:   ret

1
2
3
4
5
6
7
8
9
10
11
12
13

long absdiff_j
  (long x, long y)
{
    long result;
    int ntest = x <= y;
    if (ntest) goto Else;
    result = x-y;
    goto Done;
Else:
  result = y-x;
Done:    
  return result;
}
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After executing line 2:



C Code

val = Test ? Then_Expr : Else_Expr;

Goto Version
ntest = !Test;

 if (ntest) goto Else;

 val = Then_Expr;
  goto Done;

Else:

  val = Else_Expr;
Done:

 . . .

General Conditional Expression 
Translation (Using Branches)

▪ Create separate code regions for 
then & else expressions

▪ Execute appropriate one

val = x>y ? x-y : y-x;



C Code

val = Test 
   ? Then_Expr 
   : Else_Expr;

Goto Version

result = Then_Expr;
  eval = Else_Expr;
  nt = !Test;
  if (nt) result = eval;

  return result;

Using Conditional Moves
⬛Conditional Move Instructions

▪ Instruction supports:
if (Test) Dest ← Src

▪ Supported in post-1995 x86 
processors

▪ GCC tries to use them
▪ But, only when known to be safe

⬛Why?
▪ Branches are very disruptive to 

instruction flow through pipelines
▪ Conditional moves do not require 

control transfer



Alternative to conditional branching with 
conditional move

51

1
2
3
4
5
6
7
8
9
10

long absdiff
  (long x, long y)
{
    long result;
    if (x > y)
        result = x-y;
    else
        result = y-x;
    return result;
}

absdiff:
   movq    %rdi, %rax  # x
   subq    %rsi, %rax  # result = x-y
   movq    %rsi, %rdx
   subq    %rdi, %rdx  # eval = y-x
   cmpq    %rsi, %rdi  # x:y
   cmovle  %rdx, %rax  # if <=, result = eval
   ret

1
2
3
4
5
6
7
8

%rdi x

%rsi y

%rdx

%rax

Before executing line 2:



Alternative to conditional branching with 
conditional move

52

1
2
3
4
5
6
7
8
9
10

long absdiff
  (long x, long y)
{
    long result;
    if (x > y)
        result = x-y;
    else
        result = y-x;
    return result;
}

absdiff:
   movq    %rdi, %rax  # x
   subq    %rsi, %rax  # result = x-y
   movq    %rsi, %rdx
   subq    %rdi, %rdx  # eval = y-x
   cmpq    %rsi, %rdi  # x:y
   cmovle  %rdx, %rax  # if <=, result = eval
   ret

1
2
3
4
5
6
7
8

%rdi x

%rsi y

%rdx

%rax x

After executing line 2:



Alternative to conditional branching with 
conditional move

53

1
2
3
4
5
6
7
8
9
10

long absdiff
  (long x, long y)
{
    long result;
    if (x > y)
        result = x-y;
    else
        result = y-x;
    return result;
}

absdiff:
   movq    %rdi, %rax  # x
   subq    %rsi, %rax  # result = x-y
   movq    %rsi, %rdx
   subq    %rdi, %rdx  # eval = y-x
   cmpq    %rsi, %rdi  # x:y
   cmovle  %rdx, %rax  # if <=, result = eval
   ret

1
2
3
4
5
6
7
8

%rdi x

%rsi y

%rdx

%rax x - y

After executing line 3:



Alternative to conditional branching with 
conditional move
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1
2
3
4
5
6
7
8
9
10

long absdiff
  (long x, long y)
{
    long result;
    if (x > y)
        result = x-y;
    else
        result = y-x;
    return result;
}

absdiff:
   movq    %rdi, %rax  # x
   subq    %rsi, %rax  # result = x-y
   movq    %rsi, %rdx
   subq    %rdi, %rdx  # eval = y-x
   cmpq    %rsi, %rdi  # x:y
   cmovle  %rdx, %rax  # if <=, result = eval
   ret

1
2
3
4
5
6
7
8

%rdi x

%rsi y

%rdx y

%rax x - y

After executing line 4:



Alternative to conditional branching with 
conditional move
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1
2
3
4
5
6
7
8
9
10

long absdiff
  (long x, long y)
{
    long result;
    if (x > y)
        result = x-y;
    else
        result = y-x;
    return result;
}

absdiff:
   movq    %rdi, %rax  # x
   subq    %rsi, %rax  # result = x-y
   movq    %rsi, %rdx
   subq    %rdi, %rdx  # eval = y-x
   cmpq    %rsi, %rdi  # x:y
   cmovle  %rdx, %rax  # if <=, result = eval
   ret

1
2
3
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8

%rdi x

%rsi y

%rdx y - x

%rax x - y

After executing line 5:



Alternative to conditional branching with 
conditional move
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long absdiff
  (long x, long y)
{
    long result;
    if (x > y)
        result = x-y;
    else
        result = y-x;
    return result;
}

absdiff:
   movq    %rdi, %rax  # x
   subq    %rsi, %rax  # result = x-y
   movq    %rsi, %rdx
   subq    %rdi, %rdx  # eval = y-x
   cmpq    %rsi, %rdi  # x:y
   cmovle  %rdx, %rax  # if <=, result = eval
   ret

1
2
3
4
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%rdi x

%rsi y

%rdx y - x

%rax result

After executing line 6
and 7:



Expensive Computations

Bad Cases for Conditional Move

Both values get computed

Only makes sense when computations are very simple

val = Test(x) ? Hard1(x) : Hard2(x);

Risky Computations

Both values get computed

May have undesirable effects

val = p ? *p : 0;

Computations with side effects

Both values get computed

Must be side-effect free

val = x > 0 ? x*=7 : x+=3;

Bad Performance

Unsafe

Illegal



Today: How does x86-64 implement C 
structures that change control flow?
•Condition codes
•Conditional branches
•Loops
•Switch statements (we won’t have time for 

this)
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do { … body … } while (condition)

while (condition) { … body … }

for (init; condition; update) { … body … }
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C Code

do 

  Body
  while (Test);

Goto Version

loop:

  Body
  if (Test)
    goto loop

⬛Body: {

  Statement1;

  Statement2;

    …

  Statementn;

}

Generic do … while goto conversion



“Do-While” Loop example: Count number of 
1s in argument x
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long pcount_do
  (unsigned long x) {
  long result = 0;
  do {
    result += x & 0x1;
    x >>= 1;
  } while (x);
  return result;
}

1
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long pcount_goto
  (unsigned long x) {
  long result = 0;
loop:
  result += x & 0x1;
  x >>= 1;
  if(x) goto loop;
  return result;
}



“Do-While” Loop Compilation
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long pcount_goto
  (unsigned long x) {
  long result = 0;
loop:
  result += x & 0x1;
  x >>= 1;
  if(x) goto loop;
  return result;
}

movl    $0, %eax  #  result = 0
.L2:      # loop:
   movq    %rdi, %rdx 
   andl    $1, %edx  #  t = x & 0x1
   addq    %rdx, %rax  #  result += t
   shrq    %rdi   #  x >>= 1
   jne     .L2    #  if (x) goto loop
   rep; ret

1
2
3
4
5
6
7
8

%rdi x

%rax 0

%rdx

Before executing line 3:
Loop iteration #1:



“Do-While” Loop Compilation
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long pcount_goto
  (unsigned long x) {
  long result = 0;
loop:
  result += x & 0x1;
  x >>= 1;
  if(x) goto loop;
  return result;
}

movl    $0, %eax  #  result = 0
.L2:      # loop:
   movq    %rdi, %rdx 
   andl    $1, %edx  #  t = x & 0x1
   addq    %rdx, %rax  #  result += t
   shrq    %rdi   #  x >>= 1
   jne     .L2    #  if (x) goto loop
   rep; ret

1
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After executing line 3:
Loop iteration #1:

%rdi x

%rax 0

%rdx x



“Do-While” Loop Compilation
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long pcount_goto
  (unsigned long x) {
  long result = 0;
loop:
  result += x & 0x1;
  x >>= 1;
  if(x) goto loop;
  return result;
}

movl    $0, %eax  #  result = 0
.L2:      # loop:
   movq    %rdi, %rdx 
   andl    $1, %edx  #  t = x & 0x1
   addq    %rdx, %rax  #  result += t
   shrq    %rdi   #  x >>= 1
   jne     .L2    #  if (x) goto loop
   rep; ret

1
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%rdi x

%rax 0

%rdx x & 0x1

After executing line 4:
Loop iteration #1:



“Do-While” Loop Compilation
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long pcount_goto
  (unsigned long x) {
  long result = 0;
loop:
  result += x & 0x1;
  x >>= 1;
  if(x) goto loop;
  return result;
}

movl    $0, %eax  #  result = 0
.L2:      # loop:
   movq    %rdi, %rdx 
   andl    $1, %edx  #  t = x & 0x1
   addq    %rdx, %rax  #  result += t
   shrq    %rdi   #  x >>= 1
   jne     .L2    #  if (x) goto loop
   rep; ret

1
2
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7
8

%rdi x

%rax x & 0x1

%rdx x & 0x1

After executing line 5:
Loop iteration #1:



“Do-While” Loop Compilation
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long pcount_goto
  (unsigned long x) {
  long result = 0;
loop:
  result += x & 0x1;
  x >>= 1;
  if(x) goto loop;
  return result;
}

movl    $0, %eax  #  result = 0
.L2:      # loop:
   movq    %rdi, %rdx 
   andl    $1, %edx  #  t = x & 0x1
   addq    %rdx, %rax  #  result += t
   shrq    %rdi   #  x >>= 1
   jne     .L2    #  if (x) goto loop
   rep; ret

1
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%rdi x >> 1

%rax x & 0x1

%rdx x & 0x1

After executing line 6:
Loop iteration #1:



“Do-While” Loop Compilation
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long pcount_goto
  (unsigned long x) {
  long result = 0;
loop:
  result += x & 0x1;
  x >>= 1;
  if(x) goto loop;
  return result;
}

movl    $0, %eax  #  result = 0
.L2:      # loop:
   movq    %rdi, %rdx 
   andl    $1, %edx  #  t = x & 0x1
   addq    %rdx, %rax  #  result += t
   shrq    %rdi   #  x >>= 1
   jne     .L2    #  if (x) goto loop
   rep; ret

1
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%rdi x >> 1

%rax x & 0x1

%rdx x & 0x1

After executing line 
6 & 7:
(goto .L2)

Loop iteration #2:



“Do-While” Loop Compilation
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long pcount_goto
  (unsigned long x) {
  long result = 0;
loop:
  result += x & 0x1;
  x >>= 1;
  if(x) goto loop;
  return result;
}

movl    $0, %eax  #  result = 0
.L2:      # loop:
   movq    %rdi, %rdx 
   andl    $1, %edx  #  t = x & 0x1
   addq    %rdx, %rax  #  result += t
   shrq    %rdi   #  x >>= 1
   jne     .L2    #  if (x) goto loop
   rep; ret

1
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%rdi x >> 1

%rax x & 0x1

%rdx x >> 1

After executing line 3:
Loop iteration #2:

%rdi stores loop control variable x
%rax stores return value result



While version

while (Test)
  Body

⬛ Used with -Og

Goto Version

goto test;

loop:

  Body
test:

  if (Test)
    goto loop;

done:

“jump-to-middle” while (test) loop 
implementation



C Code
long pcount_while

  (unsigned long x) {

  long result = 0;

  while (x) {

    result += x & 0x1;

    x >>= 1;

  }

  return result;

}

Jump to Middle 
Versionlong pcount_goto_jtm

  (unsigned long x) {

  long result = 0;

  goto test;

 loop:

  result += x & 0x1;

  x >>= 1;

 test:

  if(x) goto loop;

  return result;

}

While Loop Example #1

⬛Compare to do-while version of function

⬛Initial goto starts loop at test



While version

while (Test)
  Body

Do-While Version

if (!Test) 
    goto done;

  do

    Body
    while(Test);
done:

“guarded-do” do-while loop 
implementation

⬛ “Do-while” conversion

⬛ Used with –O1

Goto Version

if (!Test)
    goto done;

loop:

  Body
  if (Test)
    goto loop;

done:



C Code
long pcount_while

  (unsigned long x) {

  long result = 0;

  while (x) {

    result += x & 0x1;

    x >>= 1;

  }

  return result;

}

Do-While Version
long pcount_goto_dw

  (unsigned long x) {

  long result = 0;

  if (!x) goto done;

 loop:

  result += x & 0x1;

  x >>= 1;

  if(x) goto loop;

 done:

  return result;

}

While Loop Example #2

⬛ Compare to do-while version of function

⬛ Initial conditional guards entrance to loop



For version

Do-While Version

if (!Test) 
    goto done;

  do {

    Body
          Update
  } while(Test);
done:

Goto Version

if (!Test)
    goto done;

loop:

  Body
     Update
  if (Test)
    goto loop;

done:

for (Init; Test; Update )

    Body

“For” Loop → Do-While Loop

 Initial test can often be 
optimized away – why?



C Code

“For” Loop Do-While Conversion

⬛ Initial test can be optimized 
away

long pcount_for

  (unsigned long x)

{

  size_t i;

  long result = 0;

  for (i = 0; i < WSIZE; i++)

  {

    unsigned bit = 

      (x >> i) & 0x1;

    result += bit;

  }

  return result;

}

Goto Version
long pcount_for_goto_dw

  (unsigned long x) {

  size_t i;

  long result = 0;

  i = 0;

  if (!(i < WSIZE))

    goto done;

 loop:

  {

    unsigned bit = 

      (x >> i) & 0x1;

    result += bit;

  }

  i++;

  if (i < WSIZE)

    goto loop;

 done:

  return result;

}

Ini
t
!Test

Body

Update

Test



Reverse engineering loops is challenging!

• Compiler may use variables in assembly code that have no C 
equivalent and vice-versa

• Compiler may “optimize” away conditional checks
• Compiler may reuse registers
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If you remember nothing else from this 
lecture…
There are three ways to set condition codes:
- Arithmetic and logical operations (not lea)
- Test
- Cmp

There are many ways to do things different depending on condition condes:
- Set bytes
- Jumps
- Conditional moves

You can mix and match these combinations. You’ll understand the details as you do 
the labs, attend recitation and lecture in the next few weeks.
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x86-64 code reading tips..

• Use an x86-64 reference while reading code (you don’t need to 
memorize everything!)

• You can use gdb hex to decimal conversions!
(gdb) print /x 0x8 + 0x8

0x10

• Put a breakpoint before the function that that you want to inspect
(gdb) break phase_1

• Code trace with simulated inputs like what happens if x is in %rsi 
and y is %rdi, etc. Write things down and draw things like register 
state after each instruction.
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Today: How does x86-64 implement C 
structures that change control flow?
•Condition codes
•Conditional branches
•Loops
•Switch statements (we won’t have time for 

this)
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Switch Statement 
Example

⬛ Multiple case labels
▪ Here: 5 & 6

⬛ Fall through cases
▪ Here: 2

⬛ Missing cases
▪ Here: 4

long switch_eg

   (long x, long y, long z)

{

    long w = 1;

    switch(x) {

    case 1:

        w = y*z;

        break;

    case 2:

        w = y/z;

        /* Fall Through */

    case 3:

        w += z;

        break;

    case 5:

    case 6:

        w -= z;

        break;

    default:

        w = 2;

    }

    return w;

}



Jump Table Structure

Code Block
0

Targ0:

Code Block
1

Targ1:

Code Block
2

Targ2:

Code Block
n–1

Targn-1:

•

•

•

Targ0

Targ1

Targ2

Targn-1

•

•

•

jtab:

goto *JTab[x];

switch(x) {

  case val_0:

    Block 0
  case val_1:

    Block 1
    • • •

  case val_n-1:

    Block n–1
}

Switch Form

Translation (Extended C)

Jump Table Jump Targets



Switch Statement   
Example

long my_switch

   (long x, long y, long z)

{

    long w = 1;

    switch(x) {

    case 1:  

        w = y*z;

        break;

    case 2:  

        w = y/z;

        /* Fall Through */

    case 3:  

        w += z;

        break;

    case 5:

    case 6:

        w -= z;

        break;

    default:

        w = 2;

    }

    return w;

}

.section .rodata

 .align 8

.L4:

 .quad .L8 # x = 0

 .quad .L3 # x = 1

 .quad .L5 # x = 2

 .quad .L9 # x = 3

 .quad .L8 # x = 4

 .quad .L7 # x = 5

 .quad .L7 # x = 6

.L3:

.L5:

.L9:

.L7:

.L8:

my_switch:

    cmpq    $6, %rdi   # x:6

ja      .L8   # if x > 6 jump

                  # to default

jmp     *.L4(,%rdi,8)



Assembly Setup Explanation

⬛ Table Structure
▪ Each target requires 8 bytes

▪ Base address at .L4

⬛ Jumping
▪ Direct: jmp .L8

▪ Jump target is denoted by label .L8

▪ Indirect: jmp *.L4(,%rdi,8)

▪ Start of jump table: .L4

▪ Must scale by factor of 8 (addresses are 8 bytes)

▪ Fetch target from effective Address .L4 + x*8

▪ Only for  0 ≤ x ≤ 6

Jump table

.section .rodata

 .align 8

.L4:

 .quad .L8 # x = 0

 .quad .L3 # x = 1

 .quad .L5 # x = 2

 .quad .L9 # x = 3

 .quad .L8 # x = 4

 .quad .L7 # x = 5

 .quad .L7 # x = 6



Code Blocks (x == 1)

.L3:

   movq    %rsi, %rax  # y

   imulq   %rdx, %rax  # y*z

   ret

switch(x) {

  case 1:   // .L3

        w = y*z;

        break;

   . . .

}

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z

%rax Return value



Handling Fall-Through

long w = 1;

 . . .

    switch(x) {

 . . . 

    case 2:

        w = y/z;

        /* Fall Through */

    case 3:

        w += z;

        break;

 . . .

    }
case 3:

        w = 1;

   

case 2:

        w = y/z;

        goto merge;

merge:

        w += z;



Code Blocks (x == 2, x == 3)

.L5:                  # Case 2

   movq    %rsi, %rax

   cqto

   idivq   %rcx       #  y/z

   jmp     .L6        #  goto merge

.L9:                  # Case 3

   movl    $1, %eax   #  w = 1

.L6:                  # merge:

   addq    %rcx, %rax #  w += z

   ret

long w = 1;

 . . .

    switch(x) {

 . . . 

    case 2:

        w = y/z;

        /* Fall Through */

    case 3:

        w += z;

        break;

 . . .

    } Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z

%rax Return value



Code Blocks (x == 5, x == 6, default)

.L7:               # Case 5,6

  movl  $1, %eax   #  w = 1

  subq  %rdx, %rax #  w -= z

  ret

.L8:               # Default:

  movl  $2, %eax   #  2

  ret

switch(x) {

    . . .

    case 5:  // .L7

    case 6:  // .L7

        w -= z;

        break;

    default: // .L8

        w = 2; 

}

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z

%rax Return value



Finding Jump Table in Binary

00000000004005e0 <switch_eg>:

  4005e0:       48 89 d1                mov    %rdx,%rcx

  4005e3:       48 83 ff 06             cmp    $0x6,%rdi

  4005e7:       77 2b                   ja     400614 <switch_eg+0x34>

  4005e9:       ff 24 fd f0 07 40 00    jmpq   *0x4007f0(,%rdi,8)

  4005f0:       48 89 f0                mov    %rsi,%rax

  4005f3:       48 0f af c2             imul   %rdx,%rax

  4005f7:       c3                      retq

  4005f8:       48 89 f0                mov    %rsi,%rax

  4005fb:       48 99                   cqto

  4005fd:       48 f7 f9                idiv   %rcx

  400600:       eb 05                   jmp    400607 <switch_eg+0x27>

  400602:       b8 01 00 00 00          mov    $0x1,%eax

  400607:       48 01 c8                add    %rcx,%rax

  40060a:       c3                      retq

  40060b:       b8 01 00 00 00          mov    $0x1,%eax

  400610:       48 29 d0                sub    %rdx,%rax

  400613:       c3                      retq

  400614:       b8 02 00 00 00          mov    $0x2,%eax

  400619:       c3                      retq



Finding Jump Table in Binary

00000000004005e0 <switch_eg>:

  . . .

  4005e9:       ff 24 fd f0 07 40 00    jmpq   *0x4007f0(,%rdi,8)

  . . .

% gdb switch

(gdb) x /8xg 0x4007f0

0x4007f0:       0x0000000000400614      0x00000000004005f0

0x400800:       0x00000000004005f8      0x0000000000400602

0x400810:       0x0000000000400614      0x000000000040060b

0x400820:       0x000000000040060b      0x2c646c25203d2078

(gdb) 



Which numbers are pointers?

• They aren’t labeled
• You have to figure it out from context

(gdb) info registers

rax     0x40057d         4195709

rbx     0x0              0

rcx     0x4005e0         4195808

rdx     0x7fffffffdc28   140737488346152

rsi     0x7fffffffdc18   140737488346136

rdi     0x1              1

rbp     0x0              0x0

rsp     0x7fffffffdb38   0x7fffffffdb38

r8      0x7ffff7dd5e80   140737351868032

r9      0x0              0

r10     0x7fffffffd7c0   140737488345024

r11     0x7ffff7a2f460   140737348039776

r12     0x400490         4195472

r13     0x7fffffffdc10   140737488346128

r14     0x0              0

r15     0x0              0

rip     0x40057d         0x40057d



Which numbers are pointers?

• They aren’t labeled
• You have to figure it out from context

• %rsp and %rip always hold pointers

(gdb) info registers

rax     0x40057d         4195709

rbx     0x0              0

rcx     0x4005e0         4195808

rdx     0x7fffffffdc28   140737488346152

rsi     0x7fffffffdc18   140737488346136

rdi     0x1              1

rbp     0x0              0x0

rsp     0x7fffffffdb38   0x7fffffffdb38

r8      0x7ffff7dd5e80   140737351868032

r9      0x0              0

r10     0x7fffffffd7c0   140737488345024

r11     0x7ffff7a2f460   140737348039776

r12     0x400490         4195472

r13     0x7fffffffdc10   140737488346128

r14     0x0              0

r15     0x0              0

rip     0x40057d         0x40057d



Which numbers are pointers?

• They aren’t labeled
• You have to figure it out from context

• %rsp and %rip always hold pointers
• Register values that are “close” to %rsp 

or %rip are probably also pointers

(gdb) info registers

rax     0x40057d         4195709

rbx     0x0              0

rcx     0x4005e0         4195808

rdx     0x7fffffffdc28   140737488346152

rsi     0x7fffffffdc18   140737488346136

rdi     0x1              1

rbp     0x0              0x0

rsp     0x7fffffffdb38   0x7fffffffdb38

r8      0x7ffff7dd5e80   140737351868032

r9      0x0              0

r10     0x7fffffffd7c0   140737488345024

r11     0x7ffff7a2f460   140737348039776

r12     0x400490         4195472

r13     0x7fffffffdc10   140737488346128

r14     0x0              0

r15     0x0              0

rip     0x40057d         0x40057d



Which numbers are pointers?

• If a register is being used  as a 
pointer…

Dump of assembler code for function main:

=> 0x40057d <+0>:  sub   $0x8,%rsp

   0x400581 <+4>:  mov   (%rsi),%rsi

   0x400584 <+7>:  mov   $0x400670,%edi

   0x400589 <+12>: mov   $0x0,%eax

   0x40058e <+17>: call  0x400460



Which numbers are pointers?
• If a register is being used 

as a pointer…
• mov (%rsi), %rsi
• …Then its value is expected

to be a pointer.
• There might be a bug that makes its value incorrect.

Dump of assembler code for function main:

=> 0x40057d <+0>:  sub   $0x8,%rsp

   0x400581 <+4>:  mov   (%rsi),%rsi

   0x400584 <+7>:  mov   $0x400670,%edi

   0x400589 <+12>: mov   $0x0,%eax

   0x40058e <+17>: call  0x400460



Which numbers are pointers?
• If a register is being used 

as a pointer…
• mov (%rsi), %rsi
• …Then its value is expected

to be a pointer.
• There might be a bug that makes its value incorrect.

• Not as obvious with complicated address “modes”
• (%rsi, %rbx) – One of these is a pointer, we don’t know 

which.
• (%rsi, %rbx, 2) – %rsi is a pointer, %rbx isn’t (why?)
• 0x400570(, %rbx, 2) – 0x400570 is a pointer, %rbx isn’t 

(why?)
• lea (anything), %rax – (anything) may or may not be a pointer

Dump of assembler code for function main:

=> 0x40057d <+0>:  sub   $0x8,%rsp

   0x400581 <+4>:  mov   (%rsi),%rsi

   0x400584 <+7>:  mov   $0x400670,%edi

   0x400589 <+12>: mov   $0x0,%eax

   0x40058e <+17>: call  0x400460



Assembly Syntax

• Intel versus AT&T
In this class we will be using the AT&T syntax

Feature AT&T Syntax Intel Syntax
Operand Order source, destination destination, source
Register Prefix % (e.g., %eax) None (e.g., eax)

Immediate Value 
Prefix $ (e.g., $10) None (e.g., 10)

Memory 
Addressing

displacement(base, index, 
scale)

[base + index*scale + 
displacement]

Operand Size 
Suffix b, w, l, q (e.g., movl) Inferred or ptr prefixes (e.g., 

dword ptr)
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