

The 8-point algorithm

16-385 Computer Vision (Kris Kitani)
Carnegie Mellon University

Fundamental Matrix Estimation

Given a set of matched *image* points

$$\{x_i, x'_i\}$$

Estimate the Fundamental Matrix

$$\mathbf{F}$$

What's the relationship between F and x ?

Assume you have M point correspondences

$$\{\mathbf{x}_m, \mathbf{x}'_m\} \quad m = 1, \dots, M$$

Each correspondence should satisfy

$$\mathbf{x}'_m^\top \mathbf{F} \mathbf{x}_m = 0$$

How would you solve for the 3×3 \mathbf{F} matrix?

Assume you have M point correspondences

$$\{\mathbf{x}_m, \mathbf{x}'_m\} \quad m = 1, \dots, M$$

Each correspondence should satisfy

$$\mathbf{x}'_m^\top \mathbf{F} \mathbf{x}_m = 0$$

How would you solve for the $3 \times 3 \mathbf{F}$ matrix?

S

Assume you have M point correspondences

$$\{\mathbf{x}_m, \mathbf{x}'_m\} \quad m = 1, \dots, M$$

Each correspondence should satisfy

$$\mathbf{x}'_m^\top \mathbf{F} \mathbf{x}_m = 0$$

How would you solve for the $3 \times 3 \mathbf{F}$ matrix?

S V

Assume you have M point correspondences

$$\{\mathbf{x}_m, \mathbf{x}'_m\} \quad m = 1, \dots, M$$

Each correspondence should satisfy

$$\mathbf{x}'_m^\top \mathbf{F} \mathbf{x}_m = 0$$

How would you solve for the $3 \times 3 \mathbf{F}$ matrix?

S V D

Assume you have M point correspondences

$$\{\mathbf{x}_m, \mathbf{x}'_m\} \quad m = 1, \dots, M$$

Each correspondence should satisfy

$$\mathbf{x}'_m^\top \mathbf{F} \mathbf{x}_m = 0$$

How would you solve for the $3 \times 3 \mathbf{F}$ matrix?

Set up a homogeneous linear system with 9 unknowns

$$\mathbf{x}'_m^\top \mathbf{F} \mathbf{x}_m = 0$$

$$\begin{bmatrix} x'_m & y'_m & 1 \end{bmatrix} \begin{bmatrix} f_1 & f_2 & f_3 \\ f_4 & f_5 & f_6 \\ f_7 & f_8 & f_9 \end{bmatrix} \begin{bmatrix} x_m \\ y_m \\ 1 \end{bmatrix} = 0$$

How many equation do you get from one correspondence?

$$\begin{bmatrix} x'_m & y'_m & 1 \end{bmatrix} \begin{bmatrix} f_1 & f_2 & f_3 \\ f_4 & f_5 & f_6 \\ f_7 & f_8 & f_9 \end{bmatrix} \begin{bmatrix} x_m \\ y_m \\ 1 \end{bmatrix} = 0$$

ONE correspondence gives you ONE equation

$$\begin{aligned}
 & x_m x'_m f_1 + x_m y'_m f_2 + x_m f_3 + \\
 & y_m x'_m f_4 + y_m y'_m f_5 + y_m f_6 + \\
 & x'_m f_7 + y'_m f_8 + f_9 = 0
 \end{aligned}$$

$$\begin{bmatrix} x'_m & y'_m & 1 \end{bmatrix} \begin{bmatrix} f_1 & f_2 & f_3 \\ f_4 & f_5 & f_6 \\ f_7 & f_8 & f_9 \end{bmatrix} \begin{bmatrix} x_m \\ y_m \\ 1 \end{bmatrix} = 0$$

Set up a homogeneous linear system with 9 unknowns

$$\begin{bmatrix} x_1 x'_1 & x_1 y'_1 & x_1 & y_1 x'_1 & y_1 y'_1 & y_1 & x'_1 & y'_1 & 1 \\ \vdots & \vdots \\ x_M x'_M & x_M y'_M & x_M & y_M x'_M & y_M y'_M & y_M & x'_M & y'_M & 1 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ f_8 \\ f_9 \end{bmatrix} = 0$$

How many equations do you need?

Each point pair (according to epipolar constraint) contributes only one scalar equation

$$\mathbf{x}'_m^\top \mathbf{F} \mathbf{x}_m = 0$$

Note: This is different from the Homography estimation where each point pair contributes 2 equations.

Each point pair (according to epipolar constraint) contributes only one scalar equation

$$\mathbf{x}'_m^\top \mathbf{F} \mathbf{x}_m = 0$$

Note: This is different from the Homography estimation where each point pair contributes 2 equations.

We need at least 8 points

Hence, the 8 point algorithm!

How do you solve a homogeneous linear system?

$$\mathbf{A}\mathbf{X} = \mathbf{0}$$

How do you solve a homogeneous linear system?

$$\mathbf{A}\mathbf{X} = \mathbf{0}$$

Total Least Squares

$$\text{minimize} \quad \|\mathbf{A}\mathbf{x}\|^2$$

$$\text{subject to} \quad \|\mathbf{x}\|^2 = 1$$

How do you solve a homogeneous linear system?

$$\mathbf{A}\mathbf{X} = \mathbf{0}$$

Total Least Squares

$$\text{minimize} \quad \|\mathbf{A}\mathbf{x}\|^2$$

$$\text{subject to} \quad \|\mathbf{x}\|^2 = 1$$

S

How do you solve a homogeneous linear system?

$$\mathbf{A}\mathbf{X} = \mathbf{0}$$

Total Least Squares

$$\text{minimize} \quad \|\mathbf{A}\mathbf{x}\|^2$$

$$\text{subject to} \quad \|\mathbf{x}\|^2 = 1$$

SV

How do you solve a homogeneous linear system?

$$\mathbf{A}\mathbf{X} = \mathbf{0}$$

Total Least Squares

$$\text{minimize} \quad \|\mathbf{A}\mathbf{x}\|^2$$

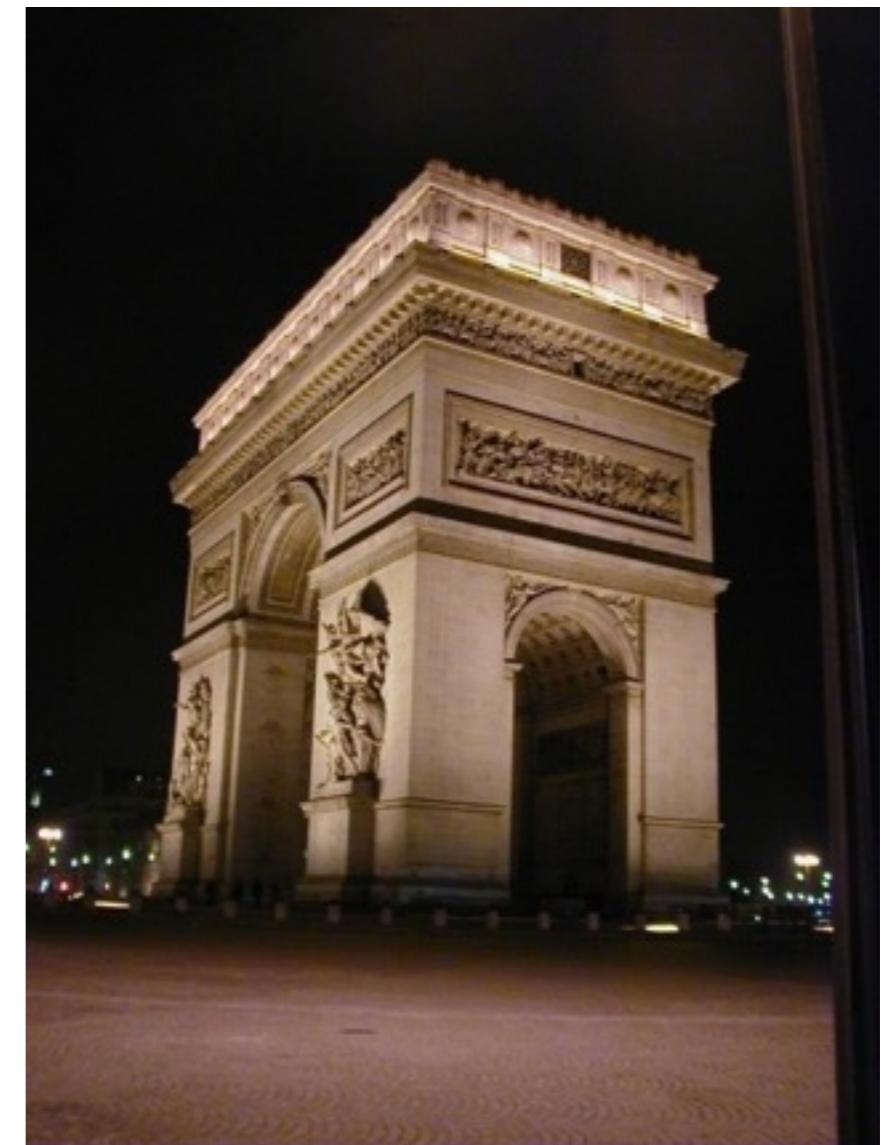
$$\text{subject to} \quad \|\mathbf{x}\|^2 = 1$$

SVD!

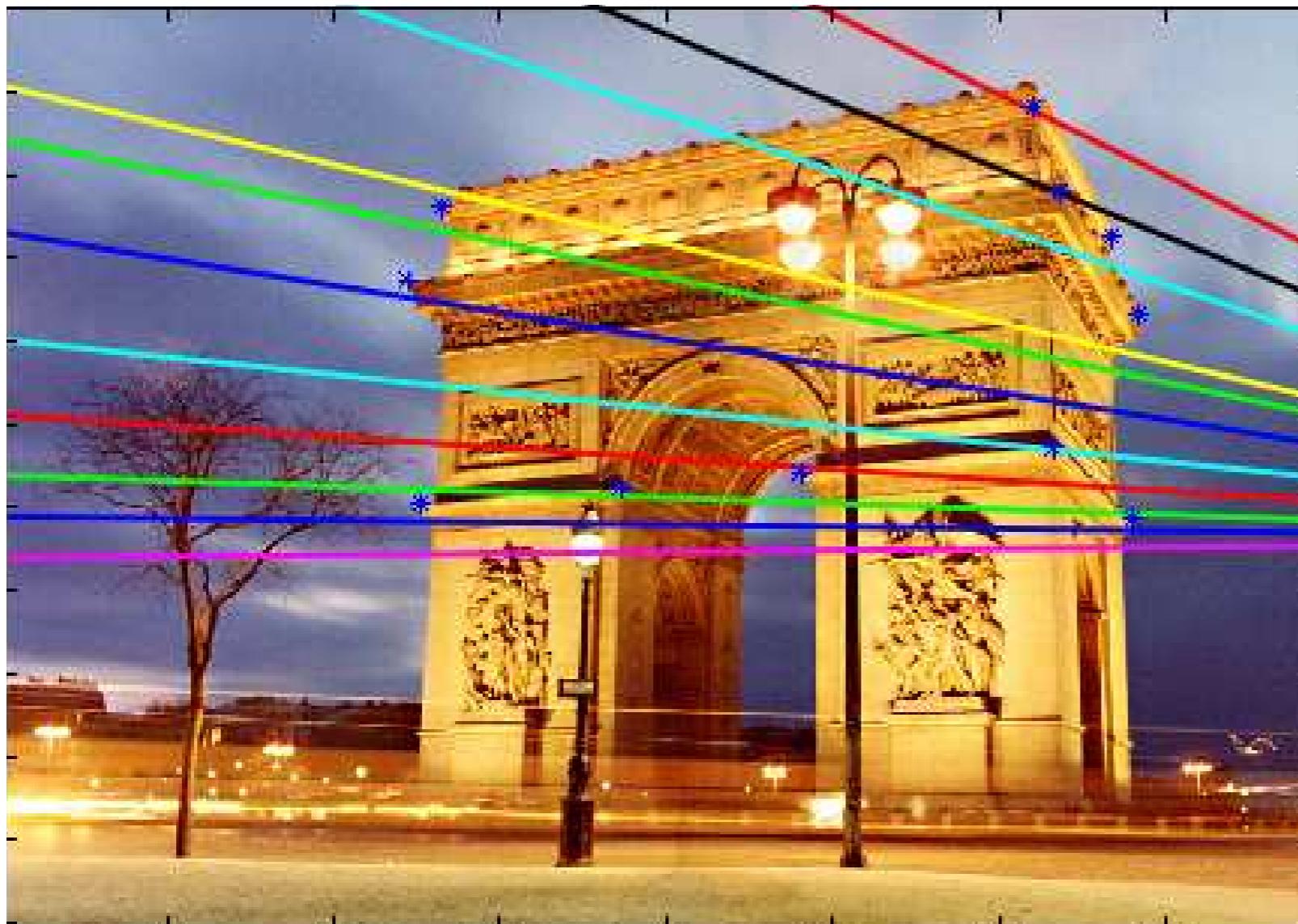
Eight-Point Algorithm

0. (Normalize points)
1. Construct the $M \times 9$ matrix \mathbf{A}
2. Find the SVD of $\mathbf{A}^T \mathbf{A}$
3. Entries of \mathbf{F} are the elements of column of \mathbf{V} corresponding to the least singular value
4. (Enforce rank 2 constraint on \mathbf{F})
5. (Un-normalize \mathbf{F})

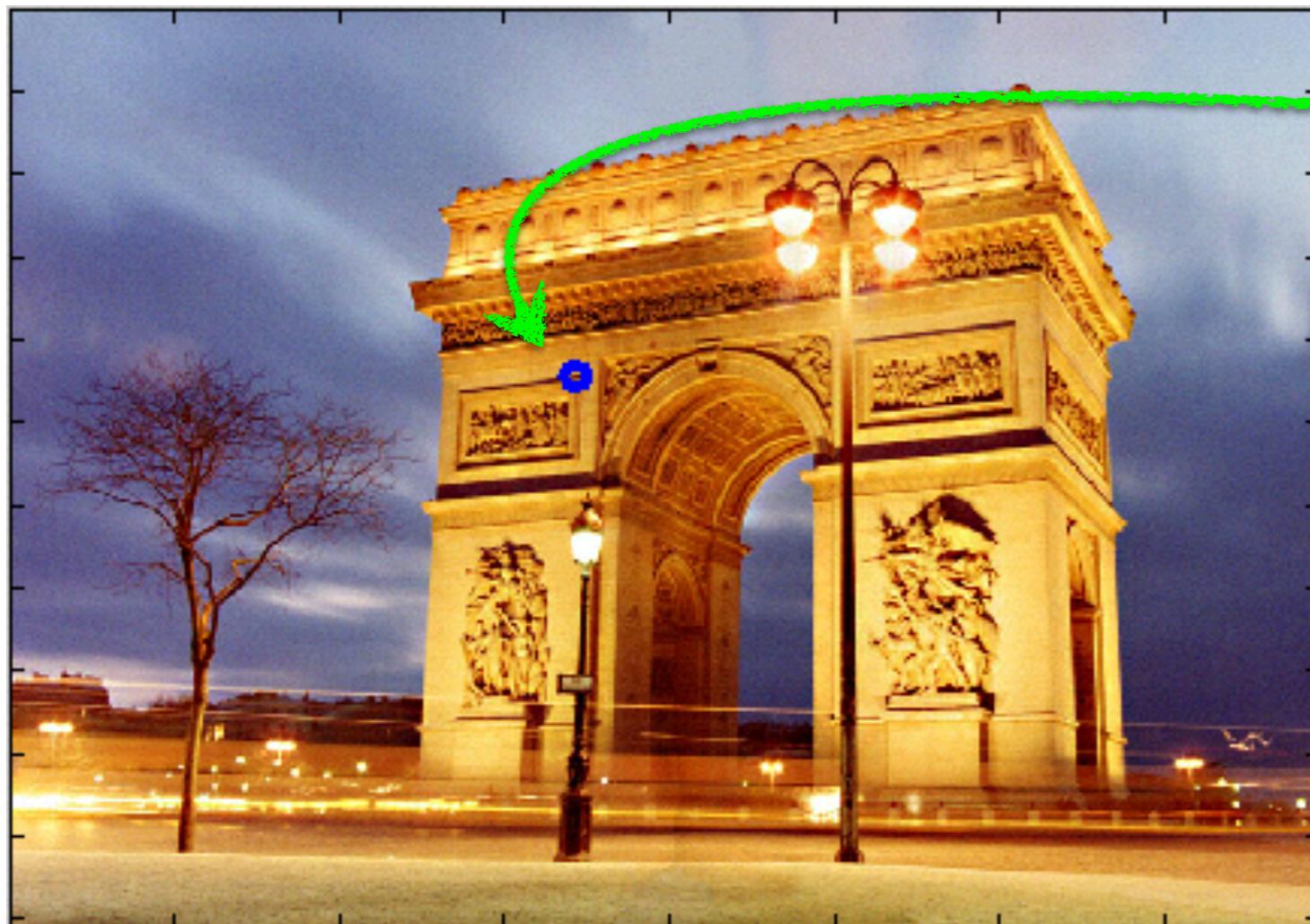
Example



epipolar lines



$$\mathbf{F} = \begin{bmatrix} -0.00310695 & -0.0025646 & 2.96584 \\ -0.028094 & -0.00771621 & 56.3813 \\ 13.1905 & -29.2007 & -9999.79 \end{bmatrix}$$



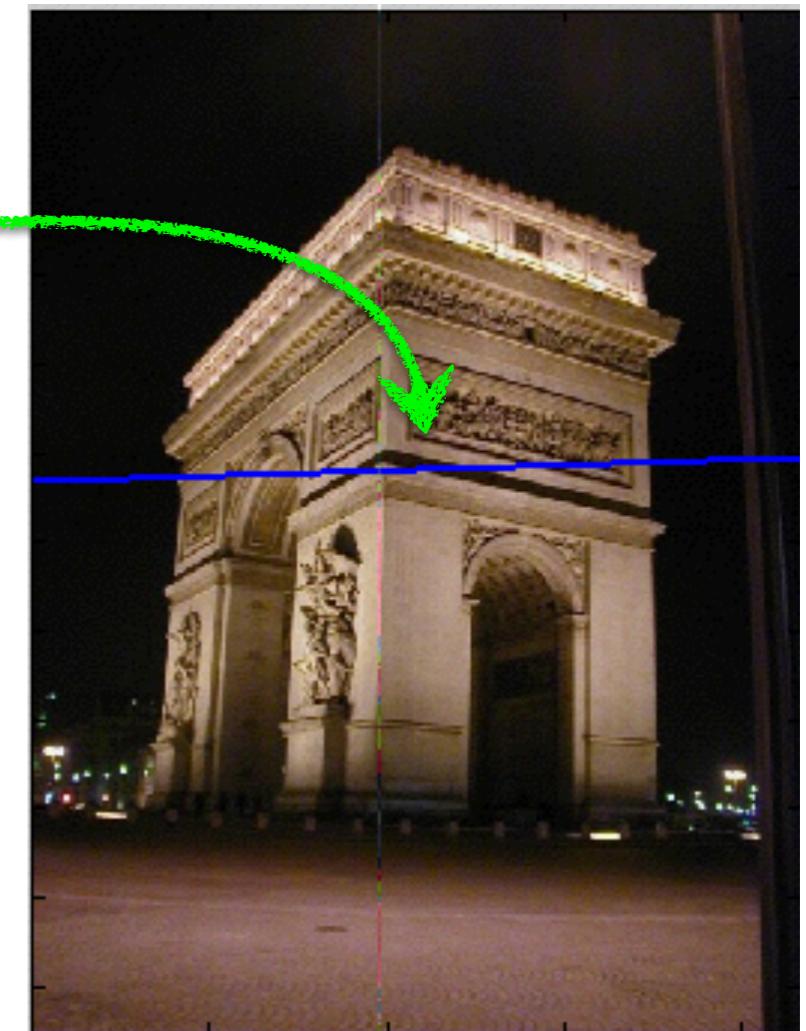
$$\mathbf{x} = \begin{bmatrix} 343.53 \\ 221.70 \\ 1.0 \end{bmatrix}$$

$$\mathbf{l}' = \mathbf{F}\mathbf{x}$$

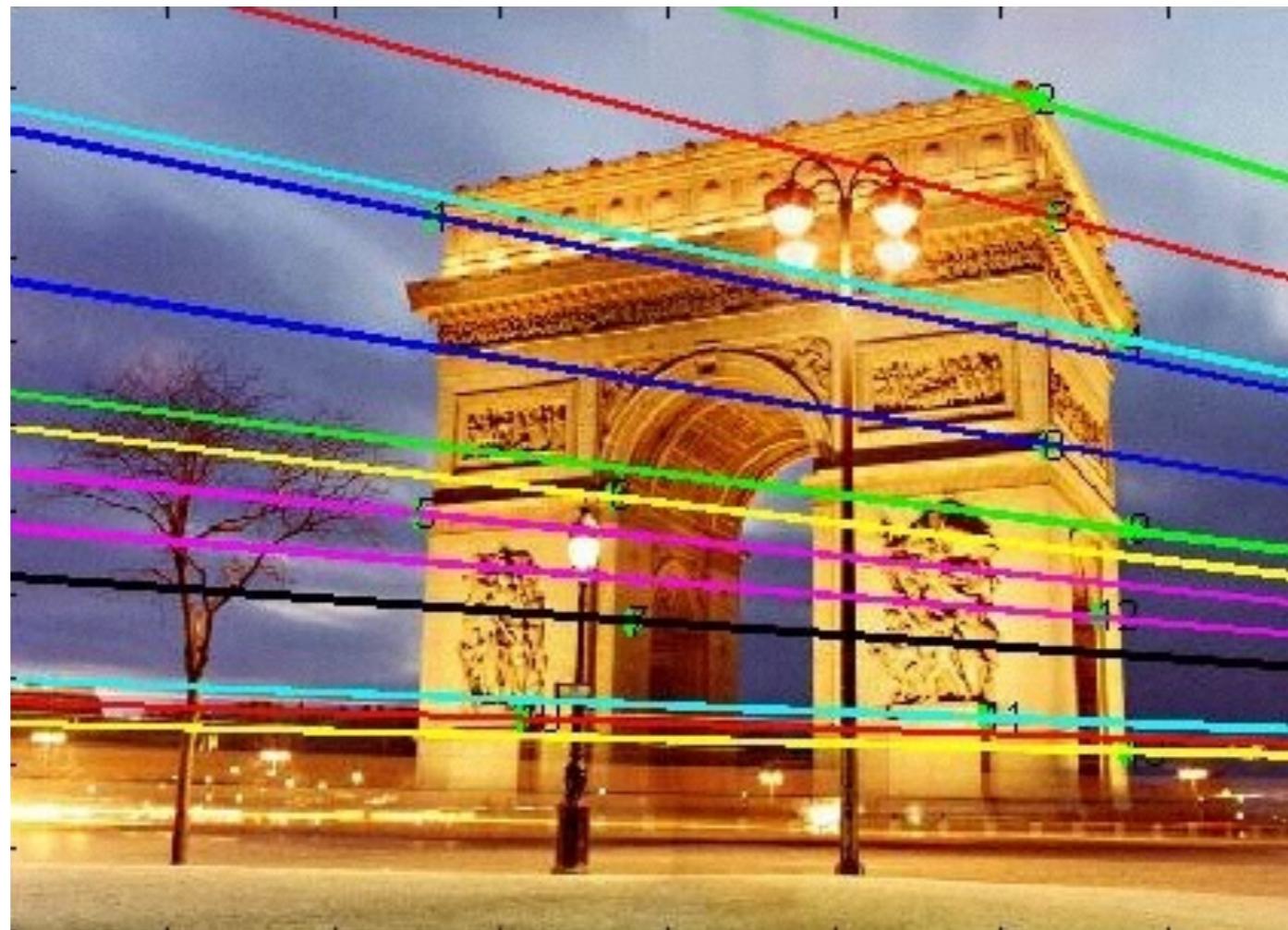
$$= \begin{bmatrix} 0.0295 \\ 0.9996 \\ -265.1531 \end{bmatrix}$$

$$l' = \mathbf{F}x$$

$$= \begin{bmatrix} 0.0295 \\ 0.9996 \\ -265.1531 \end{bmatrix}$$



Where is the epipole?



How would you compute it?

$$\mathbf{F}e = 0$$

The epipole is in the right null space of \mathbf{F}

How would you solve for the epipole?

(hint: this is a homogeneous linear system)

$$\mathbf{F}e = 0$$

The epipole is in the right null space of \mathbf{F}

How would you solve for the epipole?

(hint: this is a homogeneous linear system)

S

$$\mathbf{F}e = 0$$

The epipole is in the right null space of \mathbf{F}

How would you solve for the epipole?

(hint: this is a homogeneous linear system)

SV

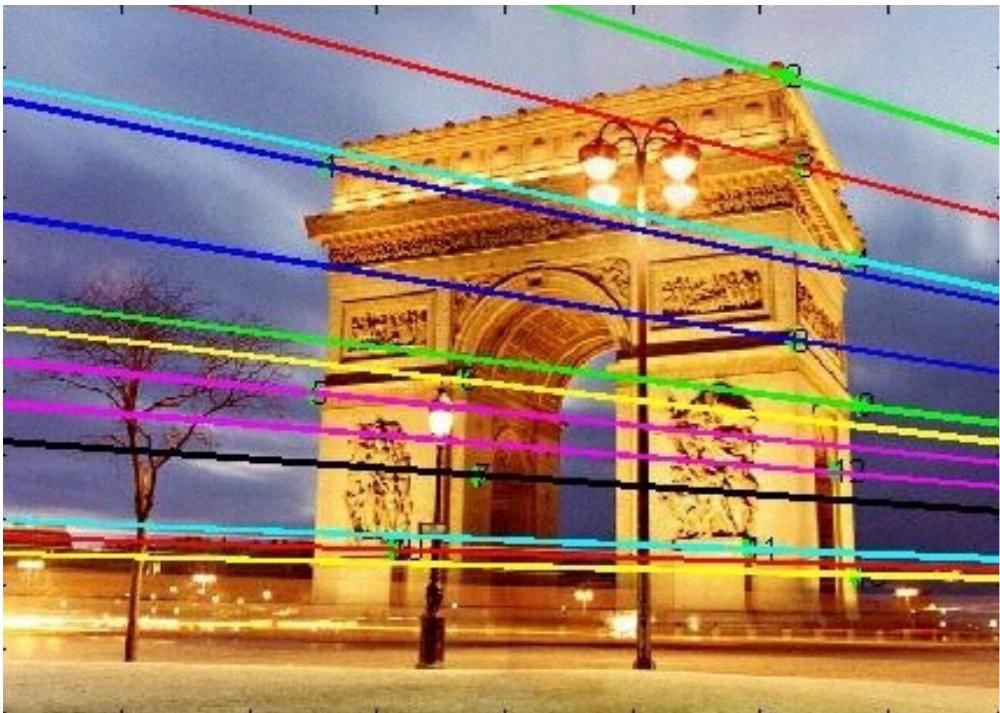
$$\mathbf{F}e = 0$$

The epipole is in the right null space of \mathbf{F}

How would you solve for the epipole?

(hint: this is a homogeneous linear system)

SVD!



```
>> [u,d] = eigs(F' * F)  
eigenvectors  
u =  
-0.0013 0.2586 -0.9660  
0.0029 -0.9660 -0.2586  
1.0000 0.0032 -0.0005  
  
eigenvalue  
d = 1.0e8*  
-1.0000 0 0  
0 -0.0000 0  
0 0 -0.0000
```



```
>> [u,d] = eigs(F' * F)
```

eigenvectors

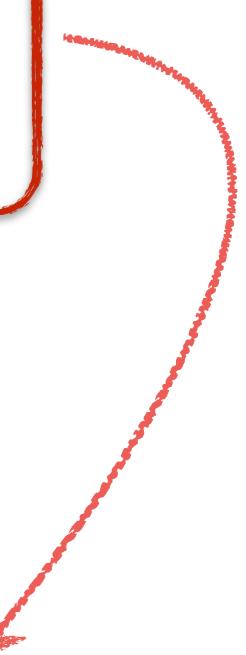
u =

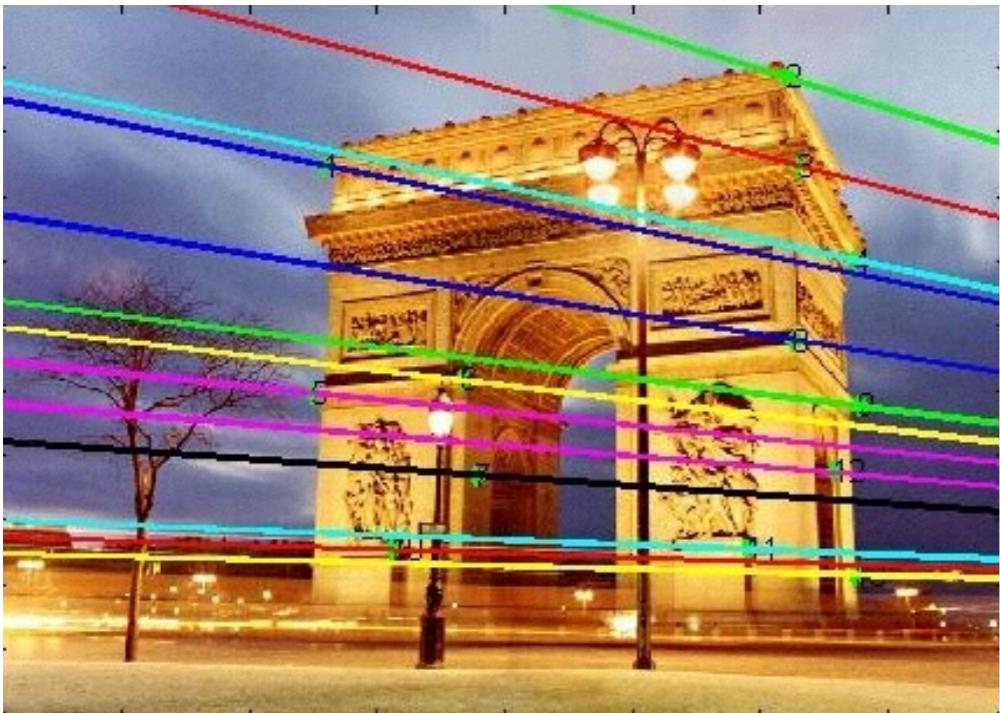
-0.0013	0.2586	-0.9660
0.0029	-0.9660	-0.2586
1.0000	0.0032	-0.0005

eigenvalue

d = 1.0e8*

-1.0000	0	0
0	-0.0000	0
0	0	-0.0000





```
>> [u,d] = eigs(F' * F)
```

eigenvectors

u =

-0.0013	0.2586	-0.9660
0.0029	-0.9660	-0.2586
1.0000	0.0032	-0.0005

-0.9660
-0.2586
-0.0005

eigenvalue

d = 1.0e8*

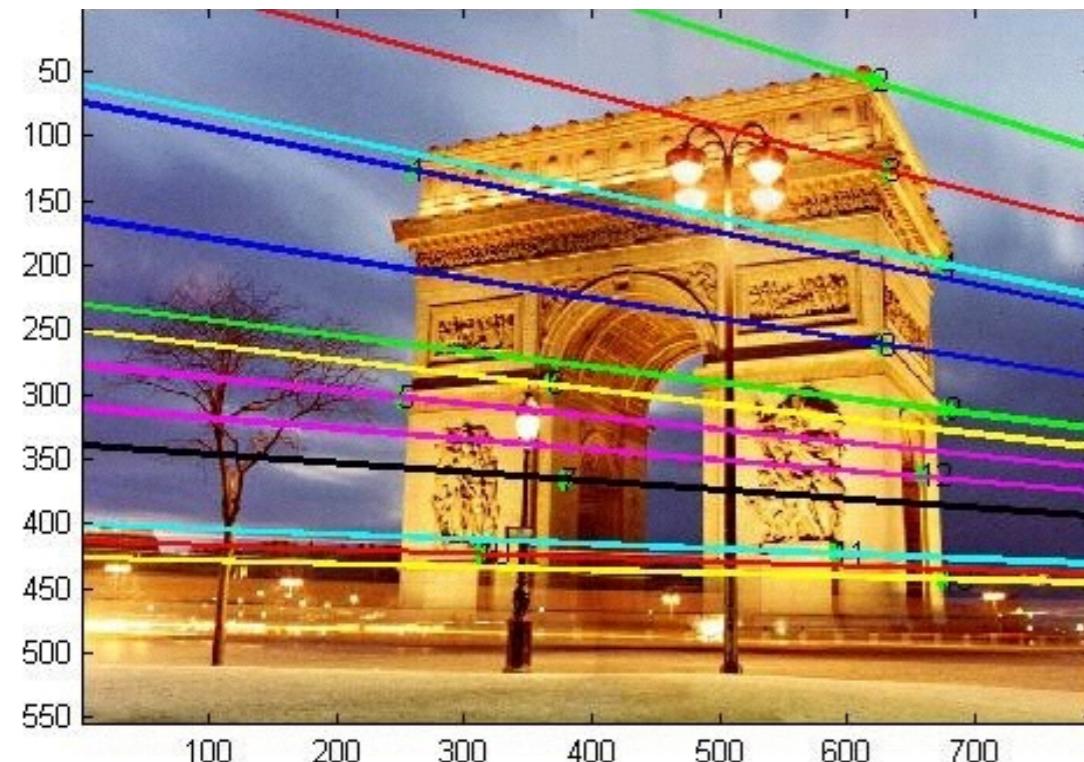
-1.0000	0	0
0	-0.0000	0
0	0	-0.0000

0
0
0

Eigenvector associated with
smallest eigenvalue

```
>> uu = u(:,3)
```

```
( -0.9660 -0.2586 -0.0005 )
```



Eigenvector associated with
smallest eigenvalue

Epipole projected to image
coordinates

```
>> [u,d] = eigs(F' * F)
```

eigenvectors

u =

-0.0013	0.2586	-0.9660
0.0029	-0.9660	-0.2586
1.0000	0.0032	-0.0005

eigenvalue

d = 1.0e8*

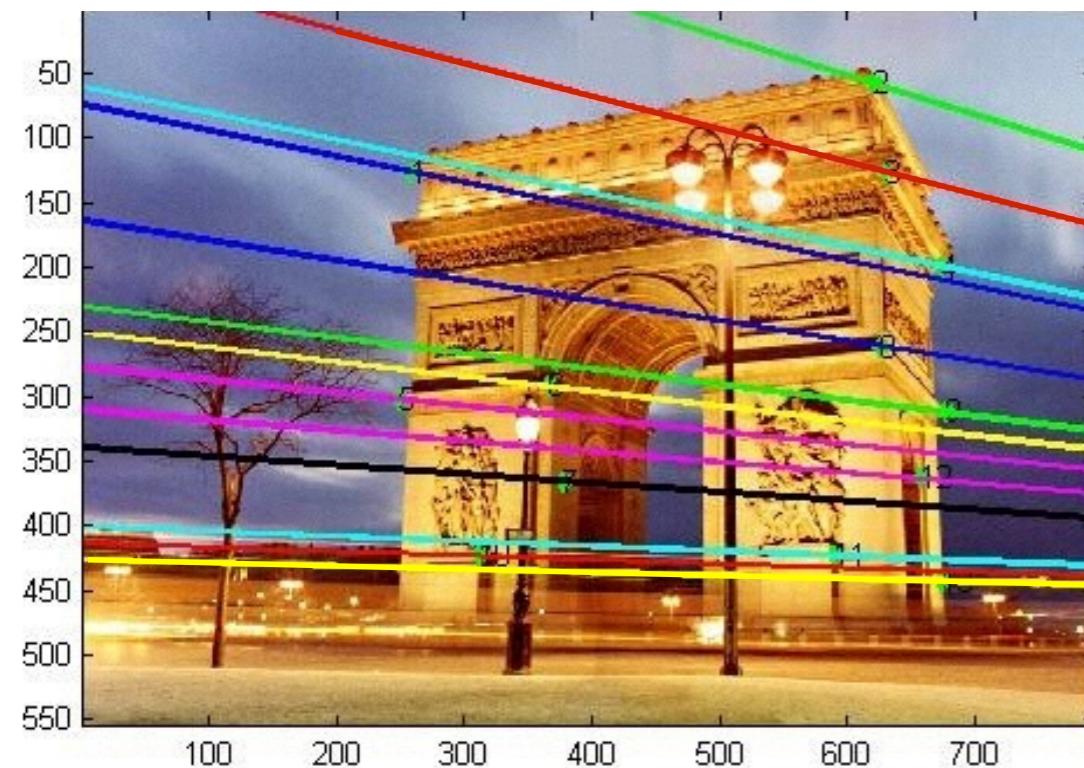
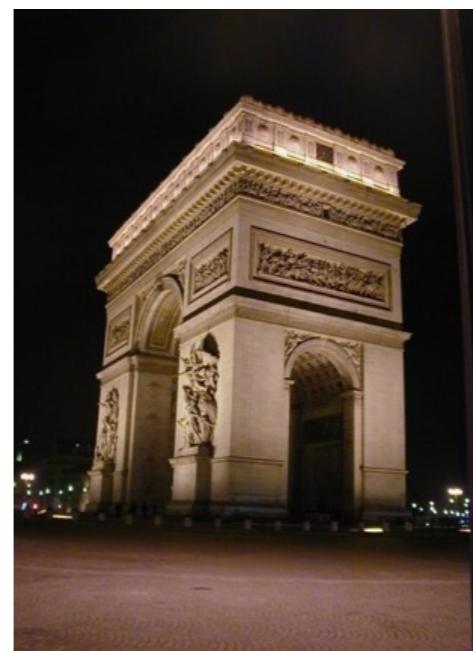
-1.0000	0	0
0	-0.0000	0
0	0	-0.0000

```
>> uu = u(:,3)
```

```
( -0.9660      -0.2586      -0.0005 )
```

```
>> uu / uu(3)
```

```
( 1861.02      498.21      1.0 )
```



this is where the
other picture is
being taken

>> uu / uu(3)
(1861.02 498.21 1.0)

