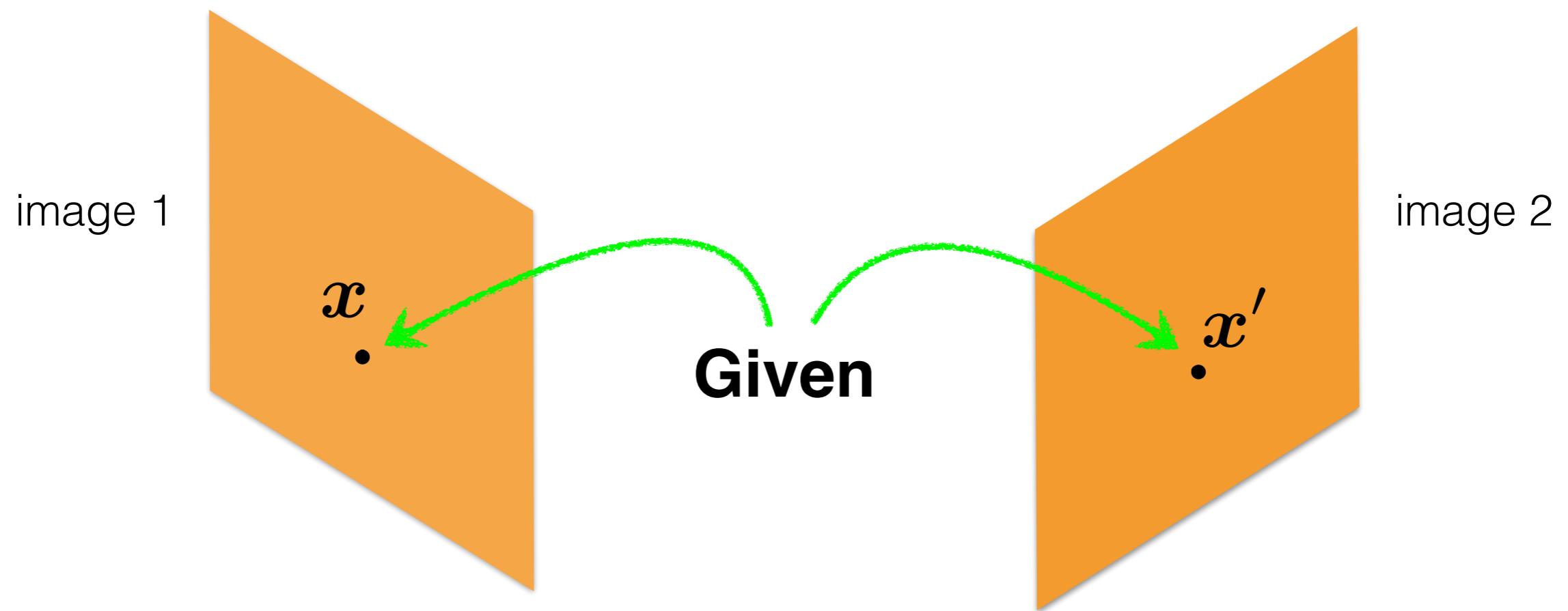


Triangulation

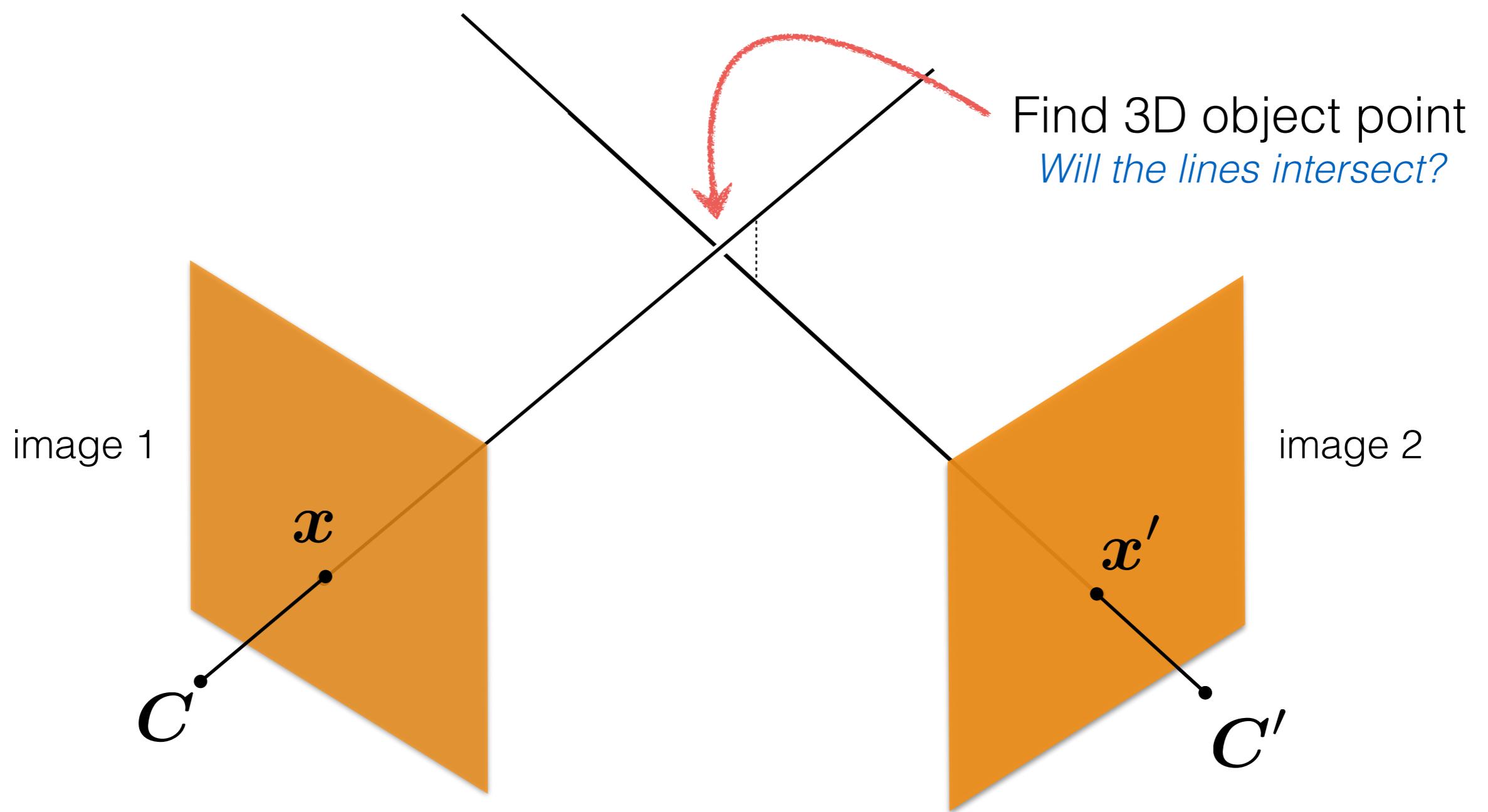
16-385 Computer Vision (Kris Kitani)
Carnegie Mellon University

	Structure (scene geometry)	Motion (camera geometry)	Measurements
Pose Estimation	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences

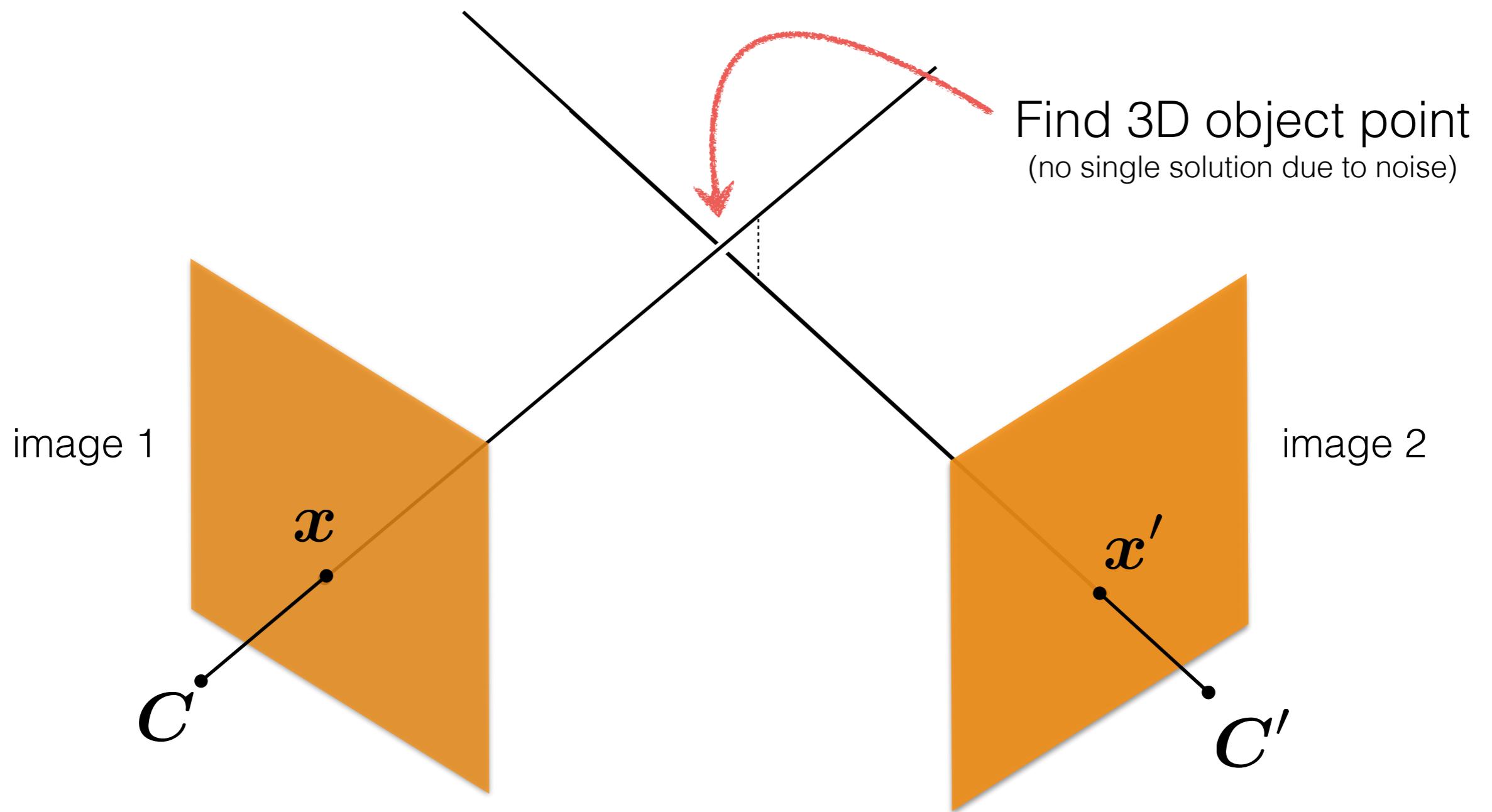
Triangulation



Triangulation



Triangulation



Triangulation

Given a set of (noisy) matched points

$$\{\mathbf{x}_i, \mathbf{x}'_i\}$$

and camera matrices

$$\mathbf{P}, \mathbf{P}'$$

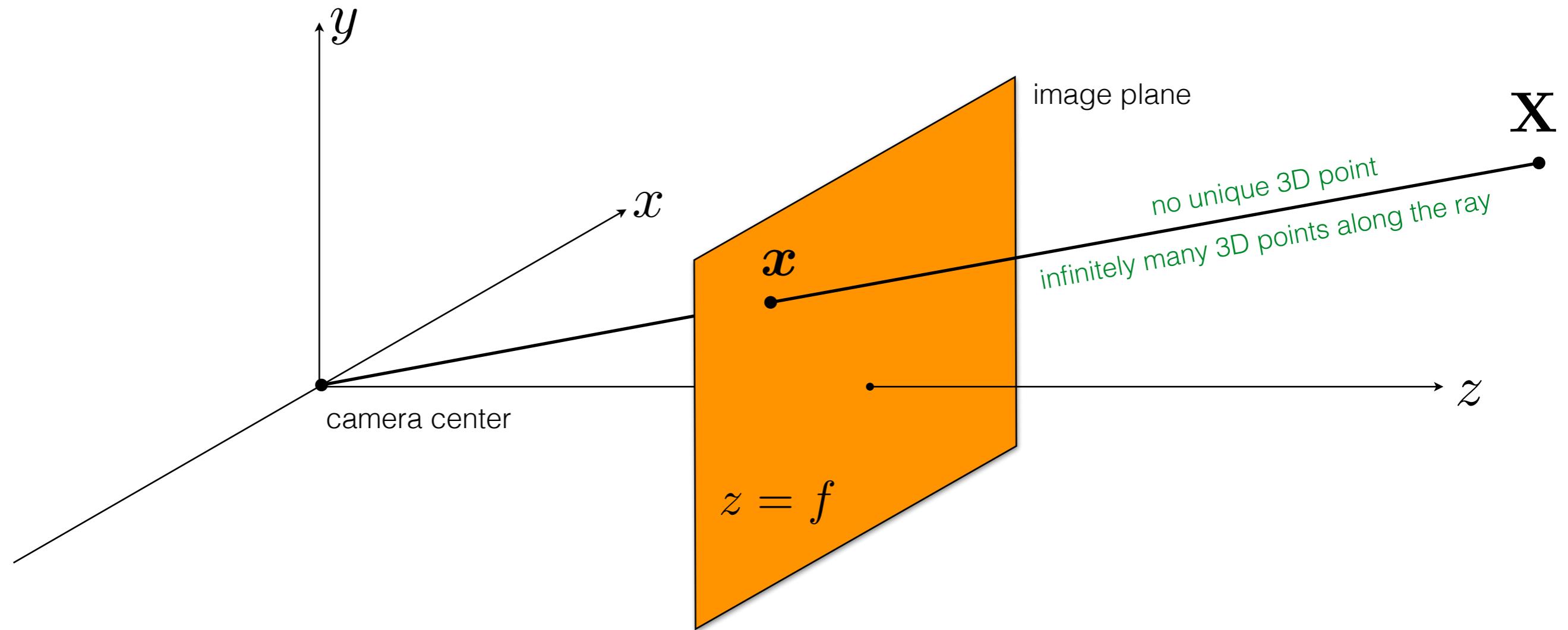
Estimate the 3D point

$$\mathbf{X}$$

$$\mathbf{x} = \mathbf{p}_X$$

known known

Can we compute \mathbf{X} from a single correspondence \mathbf{x} ?



$$\mathbf{x} = \mathbf{P}X$$

known known

Can we compute \mathbf{X} from two correspondences \mathbf{x} and \mathbf{x}' ?

$$\mathbf{x} = \mathbf{P} \mathbf{X}$$

known known

Can we compute \mathbf{X} from two correspondences \mathbf{x} and \mathbf{x}' ?

yes if perfect measurements

$$\mathbf{x} = \mathbf{P}X$$

known known

Can we compute \mathbf{X} from two correspondences \mathbf{x} and \mathbf{x}' ?

yes if perfect measurements

There will not be a point that satisfies both constraints because the measurements are usually noisy

$$\mathbf{x}' = \mathbf{P}'\mathbf{X} \quad \quad \mathbf{x} = \mathbf{P}\mathbf{X}$$

Need to find the **best fit**

$$\mathbf{x} = \mathbf{P} \mathbf{X}$$

(homogeneous
coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$$

(inhomogeneous
coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

$$\mathbf{x} = \mathbf{P} \mathbf{X}$$

(homogeneous
coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$$

(inhomogeneous
coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

Direct Linear Transform

Remove scale factor, convert to linear system and solve with

$$\mathbf{x} = \mathbf{P} \mathbf{X}$$

(homogeneous
coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$$

(inhomogeneous
coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

Direct Linear Transform

Remove scale factor, convert to linear system and solve with SVD.

$$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$$

Same direction but differs by a scale factor

$$\mathbf{x} \times \mathbf{P} \mathbf{X} = 0$$

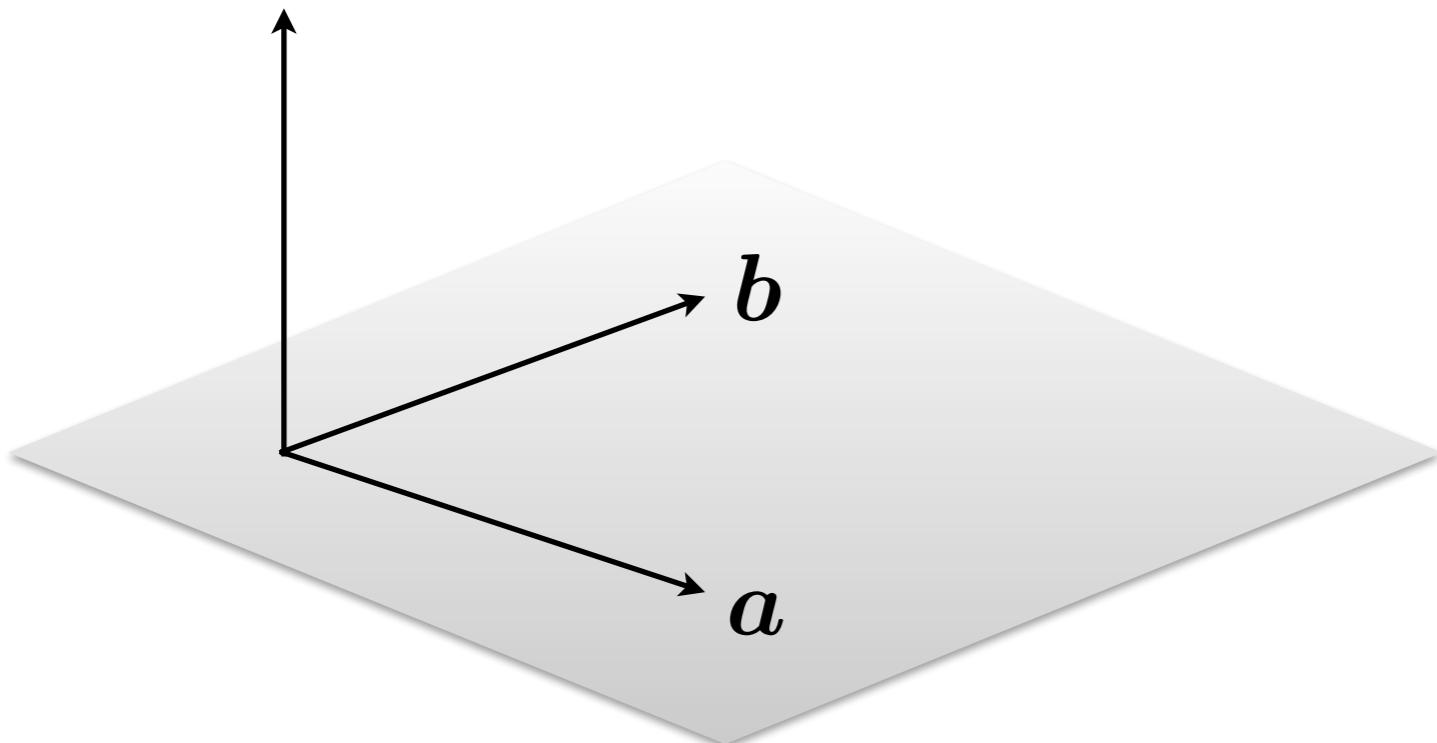
Cross product of two vectors of same direction is zero
(this equality removes the scale factor)

Recall: Cross Product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both

$$c = a \times b$$



$$a \times b = \begin{bmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{bmatrix}$$

cross product of two vectors in the same direction is zero

$$a \times a = 0$$

remember this!!!

$$c \cdot a = 0$$

$$c \cdot b = 0$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} \text{---} & \mathbf{p}_1^\top \text{---} \\ \text{---} & \mathbf{p}_2^\top \text{---} \\ \text{---} & \mathbf{p}_3^\top \text{---} \end{bmatrix} \begin{bmatrix} | \\ \mathbf{X} \\ | \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} \mathbf{p}_1^\top \mathbf{X} \\ \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_3^\top \mathbf{X} \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} \text{---} & \mathbf{p}_1^\top \text{---} \\ \text{---} & \mathbf{p}_2^\top \text{---} \\ \text{---} & \mathbf{p}_3^\top \text{---} \end{bmatrix} \begin{bmatrix} \text{---} \\ \mathbf{X} \\ \text{---} \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} \mathbf{p}_1^\top \mathbf{X} \\ \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_3^\top \mathbf{X} \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \mathbf{p}_1^\top \mathbf{X} \\ \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_3^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} y\mathbf{p}_3^\top \mathbf{X} - \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_1^\top \mathbf{X} - x\mathbf{p}_3^\top \mathbf{X} \\ x\mathbf{p}_2^\top \mathbf{X} - y\mathbf{p}_1^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Using the fact that the cross product should be zero

$$\mathbf{x} \times \mathbf{P}X = 0$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \mathbf{p}_1^\top X \\ \mathbf{p}_2^\top X \\ \mathbf{p}_3^\top X \end{bmatrix} = \begin{bmatrix} y\mathbf{p}_3^\top X - \mathbf{p}_2^\top X \\ \mathbf{p}_1^\top X - x\mathbf{p}_3^\top X \\ x\mathbf{p}_2^\top X - y\mathbf{p}_1^\top X \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Third line is a linear combination of the first and second lines.
(x times the first line plus y times the second line)

One 2D to 3D point correspondence give you equations

Using the fact that the cross product should be zero

$$\mathbf{x} \times \mathbf{P}X = 0$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \mathbf{p}_1^\top \mathbf{X} \\ \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_3^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} y\mathbf{p}_3^\top \mathbf{X} - \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_1^\top \mathbf{X} - x\mathbf{p}_3^\top \mathbf{X} \\ x\mathbf{p}_2^\top \mathbf{X} - y\mathbf{p}_1^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Third line is a linear combination of the first and second lines.
(x times the first line plus y times the second line)

One 2D to 3D point correspondence give you 2 equations

$$\begin{bmatrix} y\mathbf{p}_3^\top \mathbf{X} - \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_1^\top \mathbf{X} - x\mathbf{p}_3^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} y\mathbf{p}_3^\top - \mathbf{p}_2^\top \\ \mathbf{p}_1^\top - x\mathbf{p}_3^\top \end{bmatrix} \mathbf{X} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}_i \mathbf{X} = 0$$

Now we can make a system of linear equations
(two lines for each 2D point correspondence)

Concatenate the 2D points from both images

$$\begin{bmatrix} yp_3^\top - p_2^\top \\ p_1^\top - xp_3^\top \\ y'p_3'^\top - p_2'^\top \\ p_1'^\top - x'p_3'^\top \end{bmatrix} X = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

sanity check! dimensions?

$$\mathbf{A}X = 0$$

How do we solve homogeneous linear system?

Concatenate the 2D points from both images

$$\begin{bmatrix} yp_3^\top - p_2^\top \\ p_1^\top - xp_3^\top \\ y'p_3'^\top - p_2'^\top \\ p_1'^\top - x'p_3'^\top \end{bmatrix} X = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}X = 0$$

How do we solve homogeneous linear system?

S

Concatenate the 2D points from both images

$$\begin{bmatrix} yp_3^\top - p_2^\top \\ p_1^\top - xp_3^\top \\ y'p_3'^\top - p_2'^\top \\ p_1'^\top - x'p_3'^\top \end{bmatrix} X = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}X = 0$$

How do we solve homogeneous linear system?

S V

Concatenate the 2D points from both images

$$\begin{bmatrix} yp_3^\top - p_2^\top \\ p_1^\top - xp_3^\top \\ y'p_3'^\top - p_2'^\top \\ p_1'^\top - x'p_3'^\top \end{bmatrix} X = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}X = 0$$

How do we solve homogeneous linear system?

S V D

Concatenate the 2D points from both images

$$\begin{bmatrix} y\mathbf{p}_3^\top - \mathbf{p}_2^\top \\ \mathbf{p}_1^\top - x\mathbf{p}_3^\top \\ y'\mathbf{p}'_3^\top - \mathbf{p}'_2^\top \\ \mathbf{p}'_1^\top - x'\mathbf{p}'_3^\top \end{bmatrix} X = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}\mathbf{X} = \mathbf{0}$$

How do we solve homogeneous linear system?

S V D !

Recall: Total least squares

(Warning: change of notation. \mathbf{x} is a vector of parameters!)

$$\begin{aligned} E_{\text{TLS}} &= \sum_i (a_i \mathbf{x})^2 \\ &= \|\mathbf{A}\mathbf{x}\|^2 \quad (\text{matrix form}) \end{aligned}$$

$$\|\mathbf{x}\|^2 = 1 \quad \text{constraint}$$

$$\begin{aligned} \text{minimize} \quad & \|\mathbf{A}\mathbf{x}\|^2 \\ \text{subject to} \quad & \|\mathbf{x}\|^2 = 1 \end{aligned}$$

$$\text{minimize} \quad \frac{\|\mathbf{A}\mathbf{x}\|^2}{\|\mathbf{x}\|^2} \quad (\text{Rayleigh quotient})$$

Solution is the eigenvector
corresponding to smallest eigenvalue of

$$\mathbf{A}^\top \mathbf{A}$$

	Structure (scene geometry)	Motion (camera geometry)	Measurements
Pose Estimation	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences