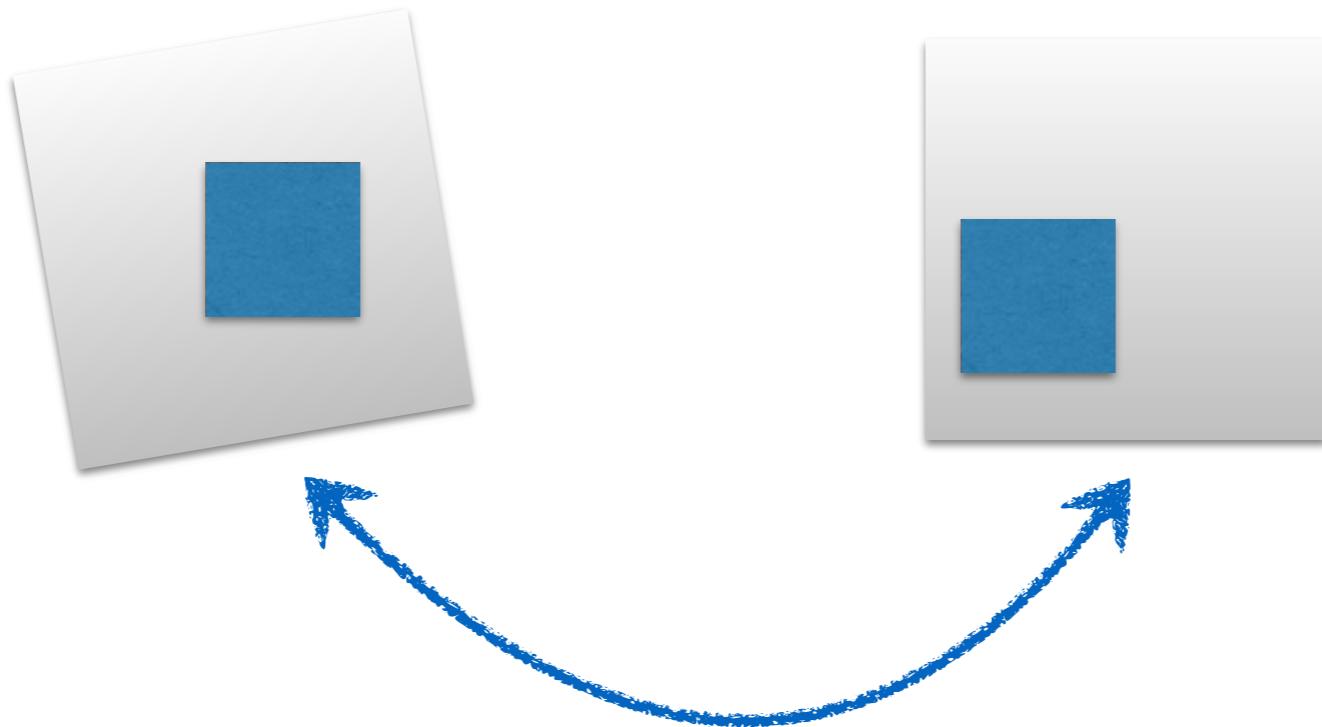
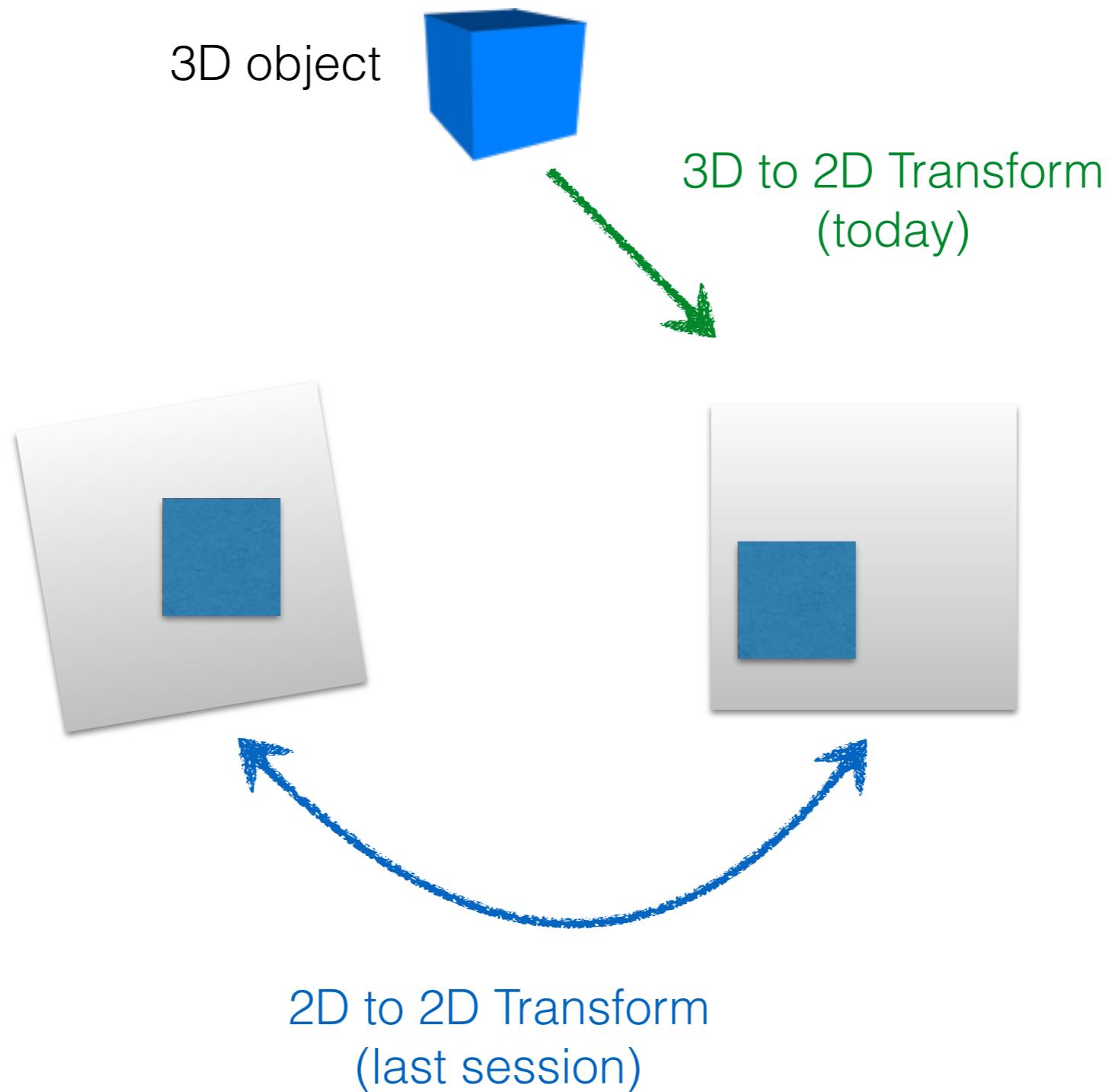


Camera Matrix

16-385 Computer Vision (Kris Kitani)
Carnegie Mellon University



2D to 2D Transform
(last session)



A camera is a mapping between

the **3D world**

and

a **2D image**

A camera is a mapping between
the 3D world and a 2D image

$$\mathbf{x} = \mathbf{P}\mathbf{X}$$

2D image
point

camera
matrix

3D world
point

What do you think the dimensions are?

$$\mathbf{x} = \mathbf{P}\mathbf{X}$$

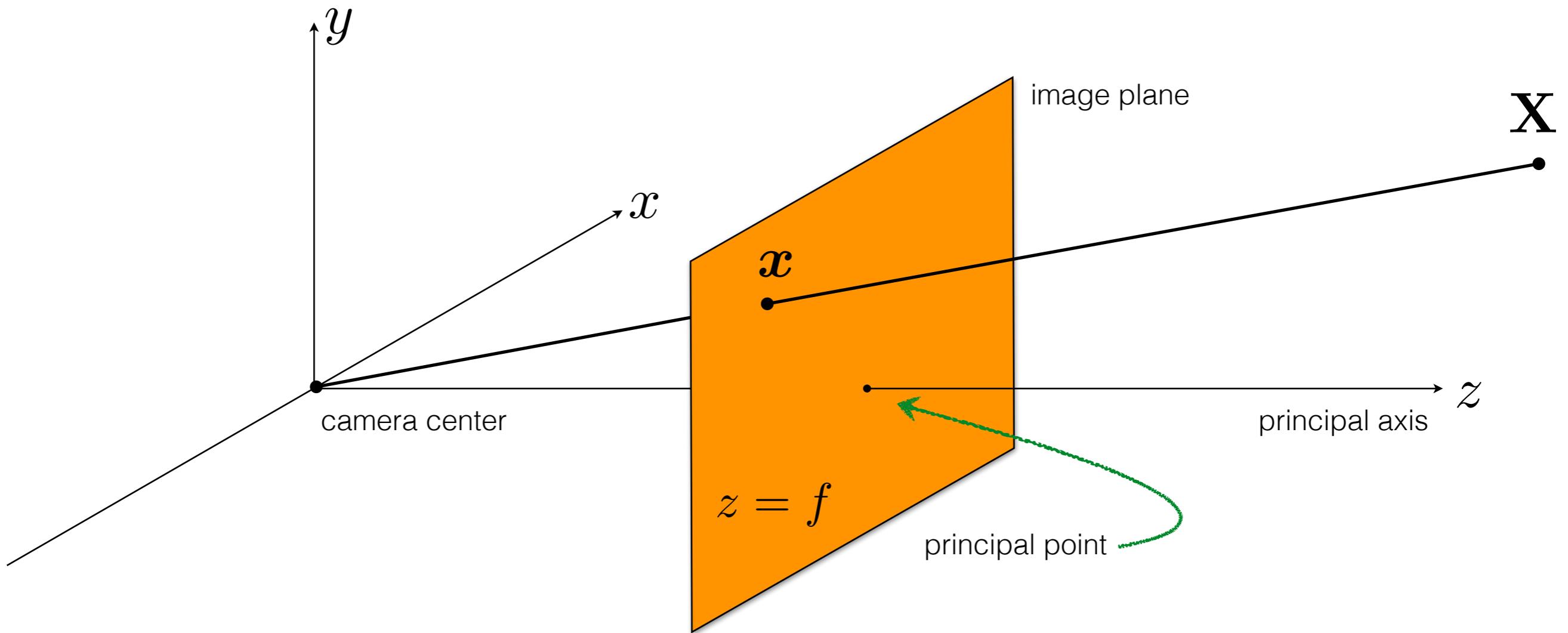
$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

homogeneous
image
 3×1

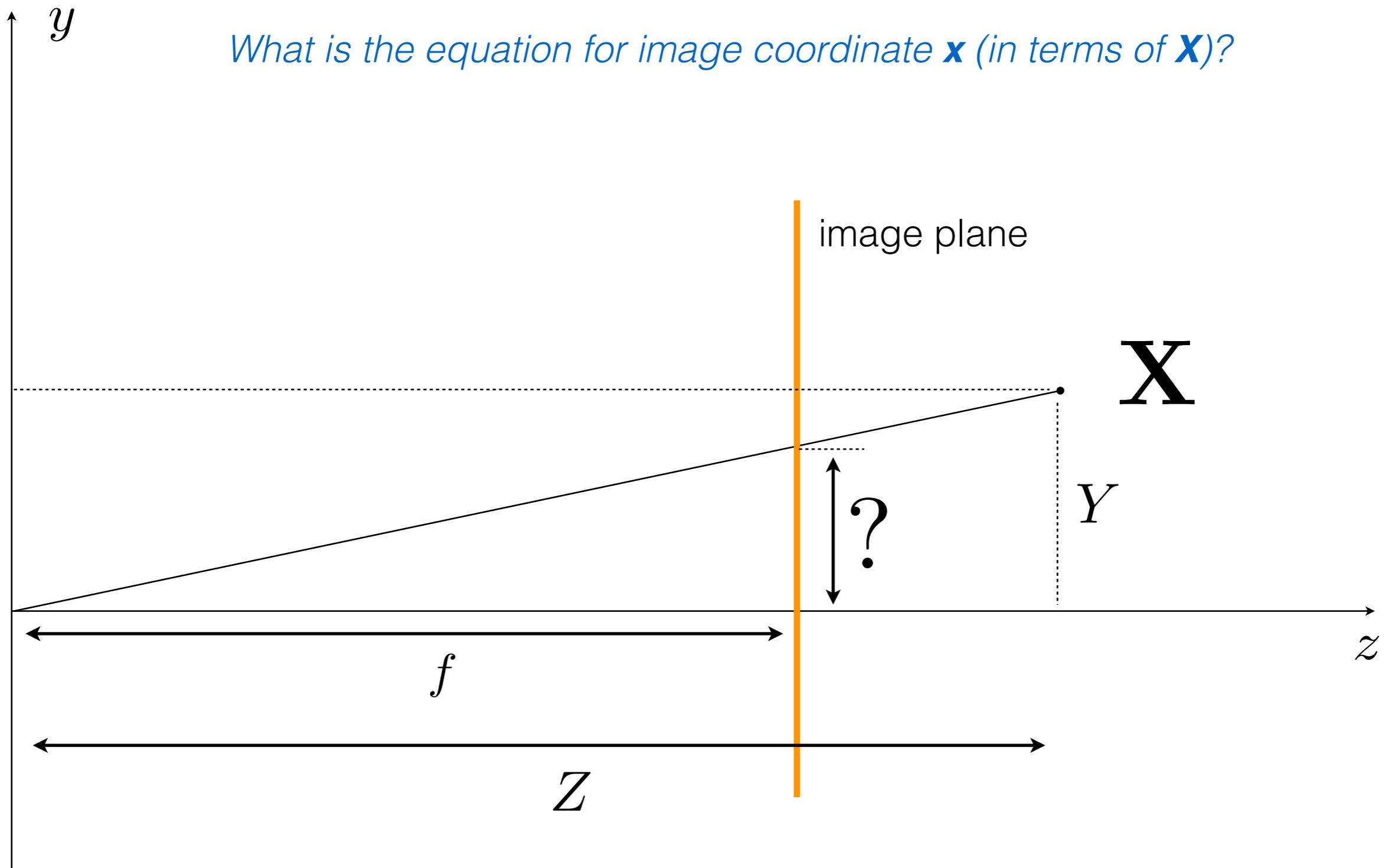
Camera
matrix
 3×4

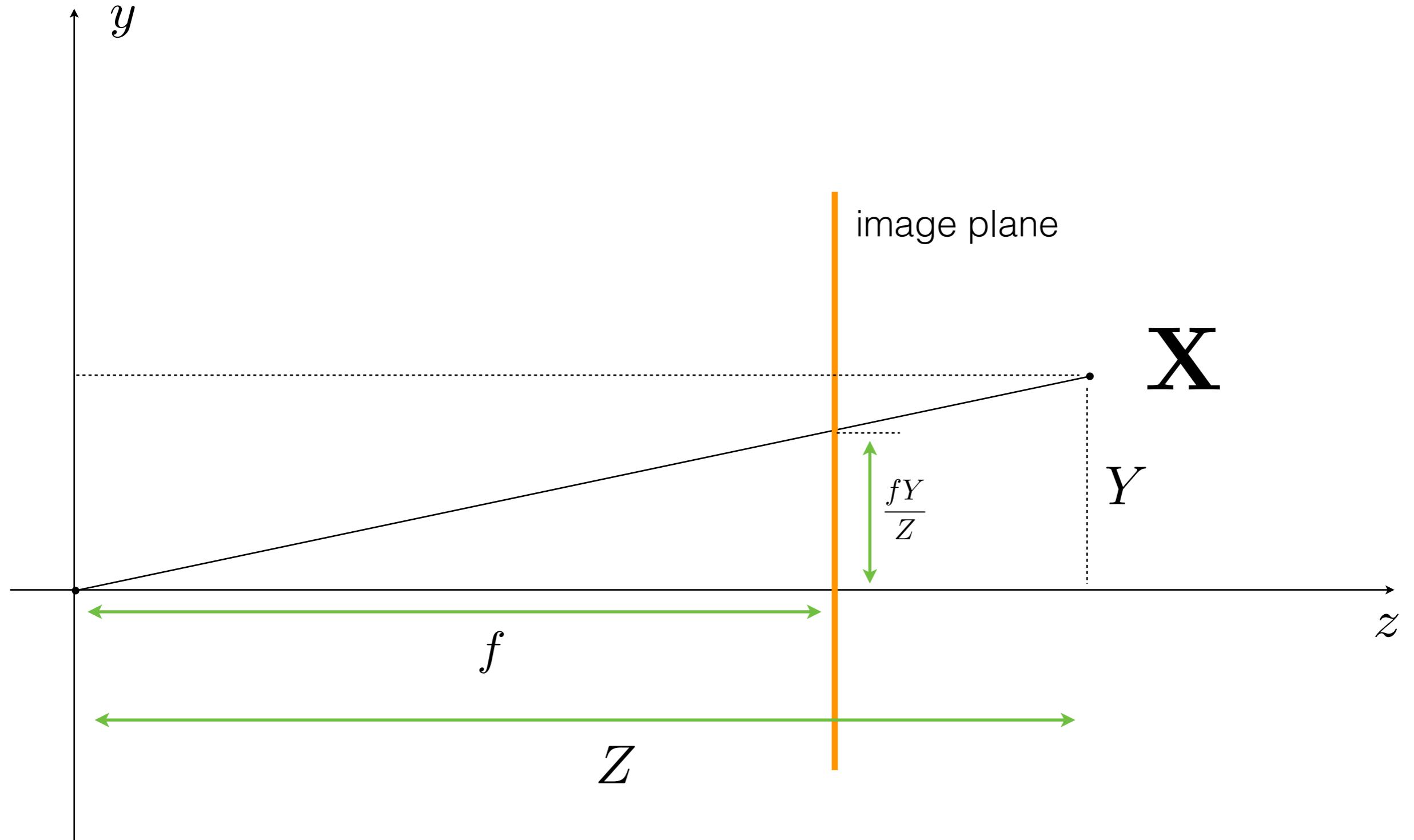
homogeneous
world point
 4×1

The pinhole camera



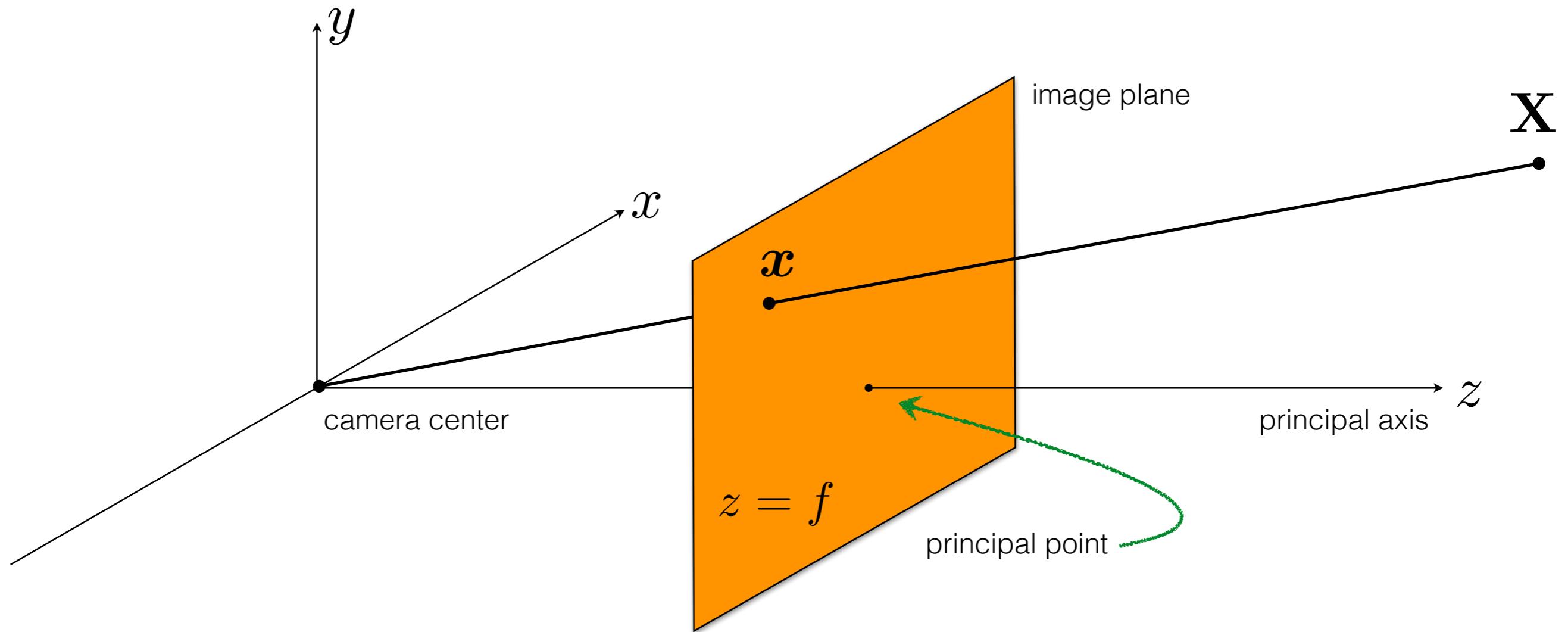
What is the equation for image coordinate \mathbf{x} (in terms of \mathbf{X})?





$$[X \ Y \ Z]^\top \mapsto [fX/Z \ fY/Z]^\top$$

Pinhole camera geometry



What is the camera matrix \mathbf{P} for a pinhole camera model?

$$\mathbf{x} = \mathbf{P}\mathbf{X}$$

Relationship from similar triangles...

$$[X \quad Y \quad Z]^\top \mapsto [fX/Z \quad fY/Z]^\top$$

generic camera model

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

What does the pinhole camera model look like?

$$\mathbf{P} = \begin{bmatrix} ? & ? & ? & ? \\ ? & ? & ? & ? \\ ? & ? & ? & ? \end{bmatrix}$$

Relationship from similar triangles...

$$[X \quad Y \quad Z]^\top \mapsto [fX/Z \quad fY/Z]^\top$$

generic camera model

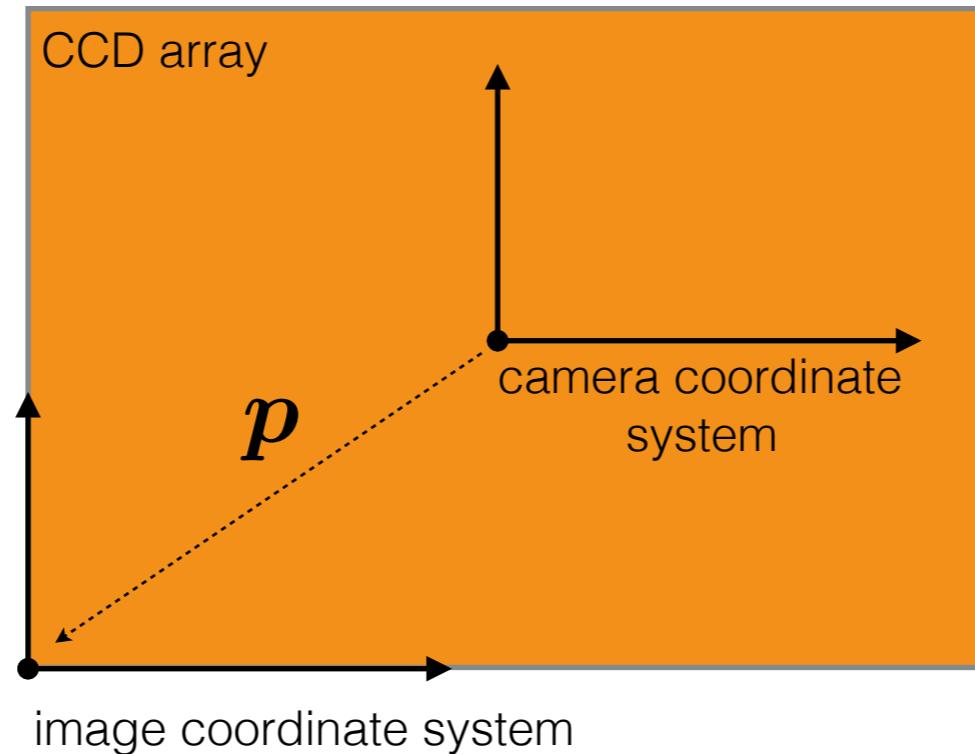
$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

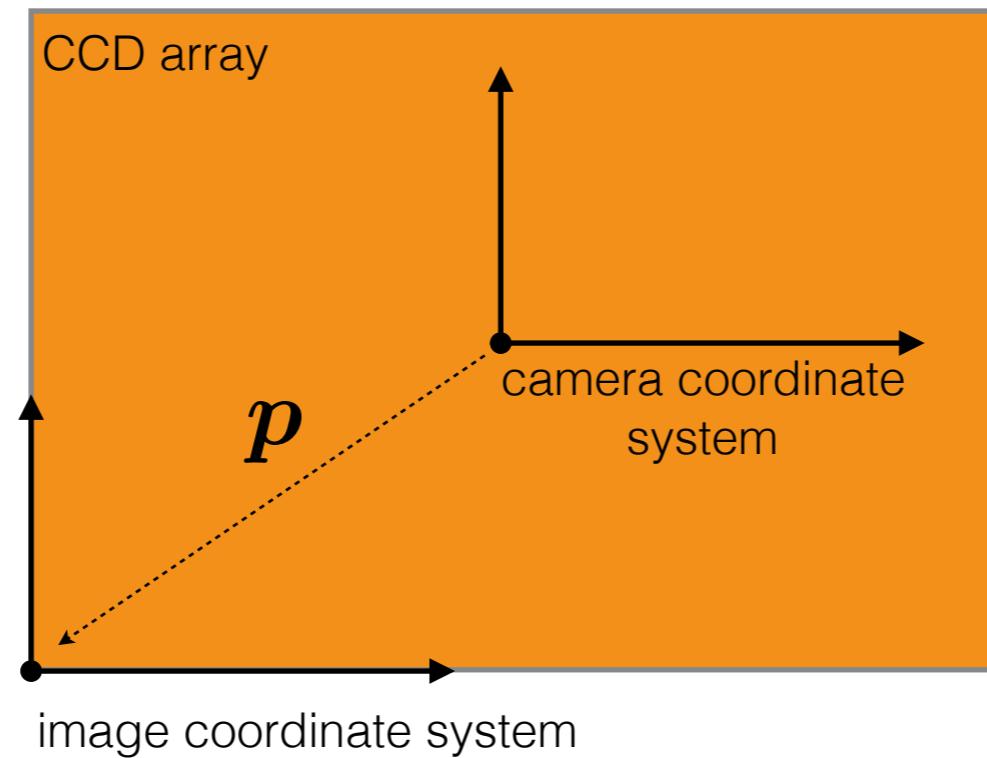
What does the pinhole camera model look like?

$$\mathbf{P} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Camera origin and image origin might be different

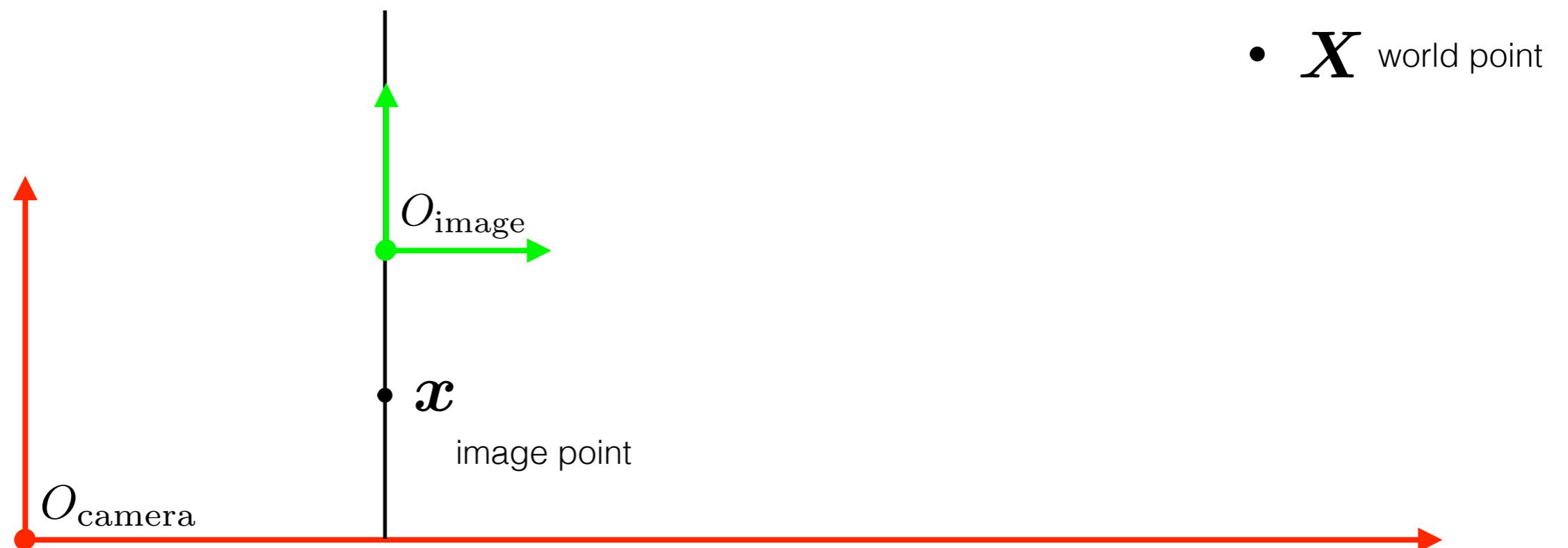




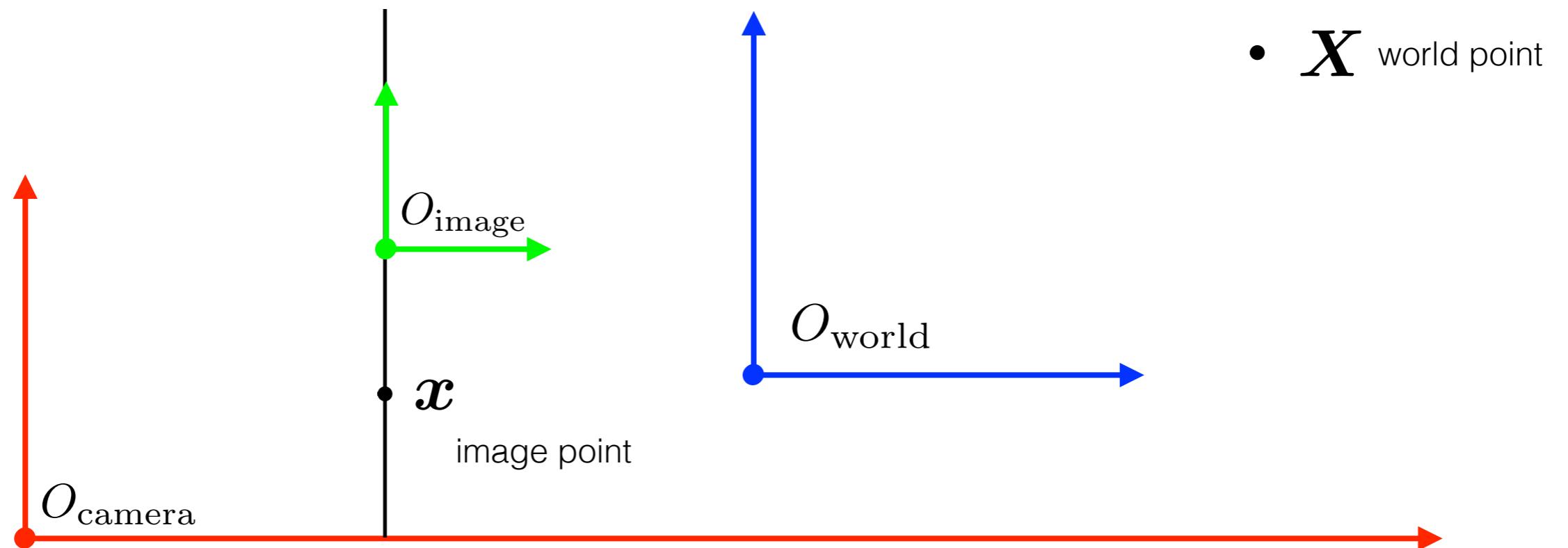
$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x & 0 \\ 0 & f & p_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Accounts for different origins

In general, the camera and image sensor have **different** coordinate systems



In general, there are **three different** coordinate systems...



so you need to know the transformations between them

Can be decomposed into two matrices

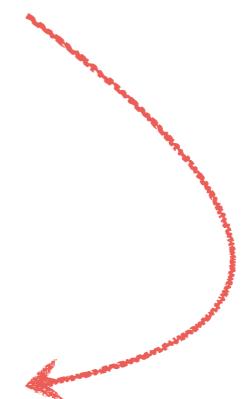
$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$P = K[I|0]$$

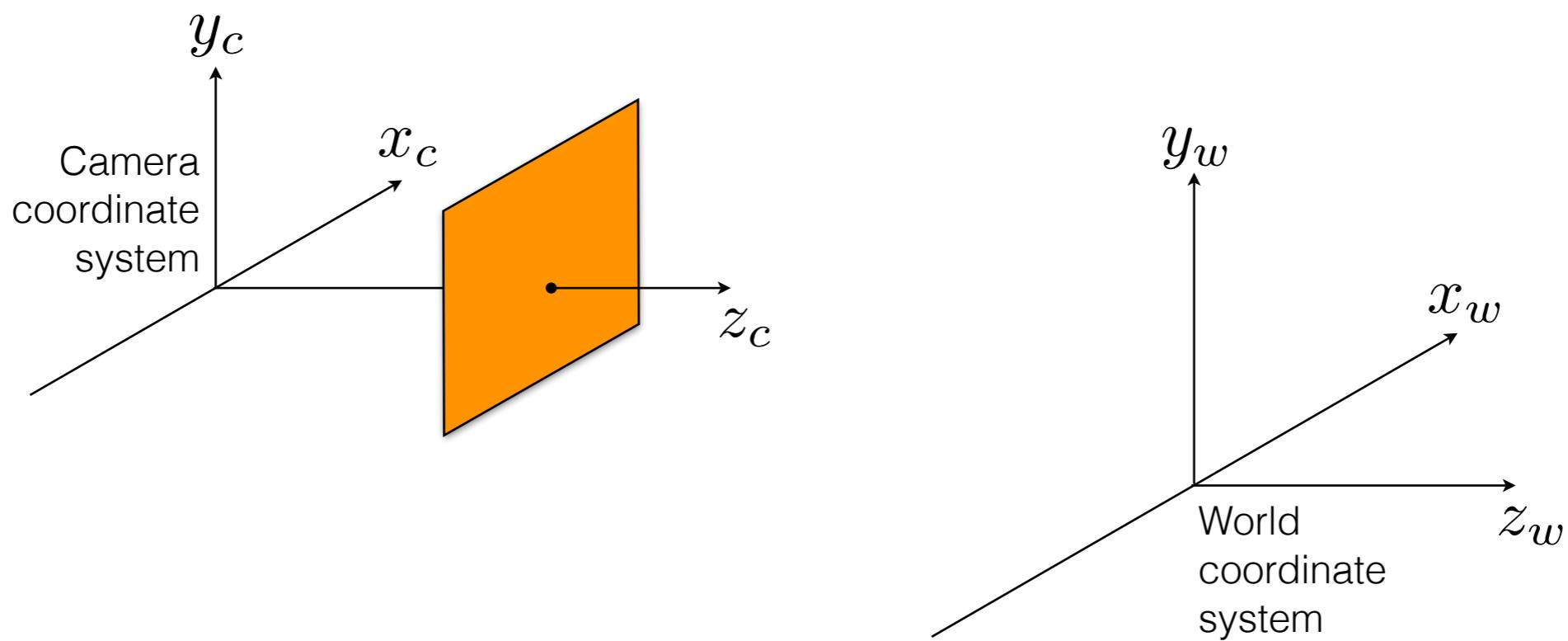
$$\mathbf{K} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \quad \text{calibration matrix}$$

Assumes that the **camera** and **world** share the same coordinate system

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

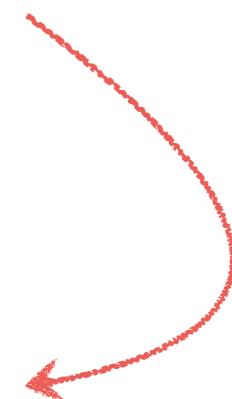


*What if they are different?
How do we align them?*

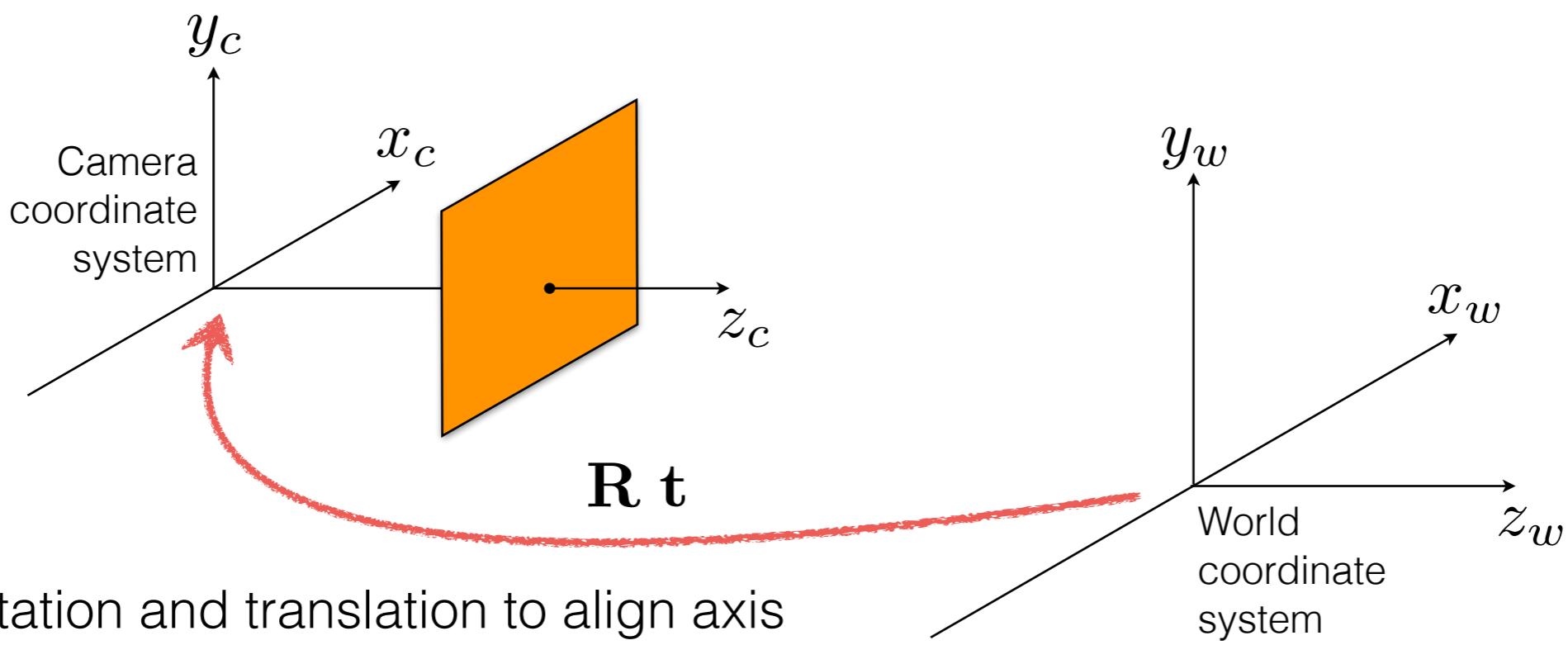


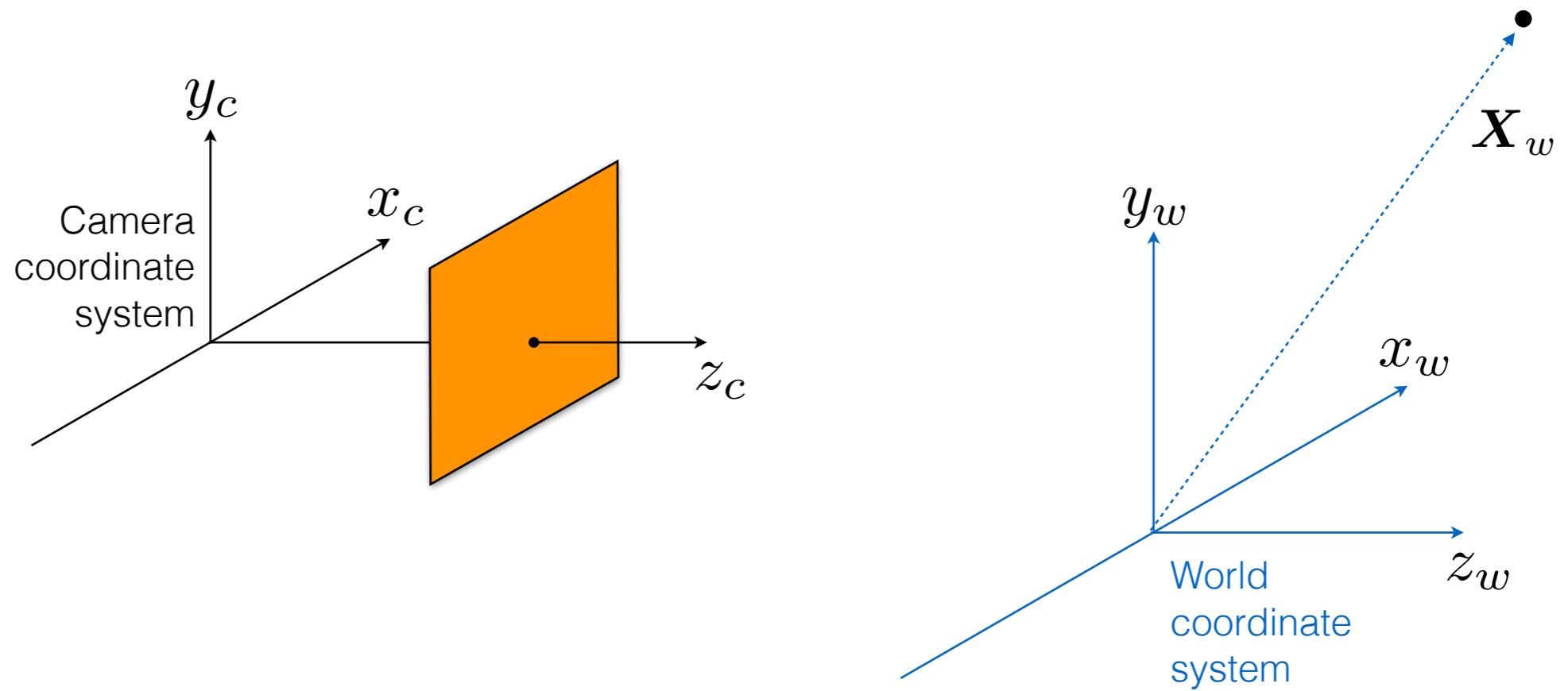
Assumes that the camera and world share the same coordinate system

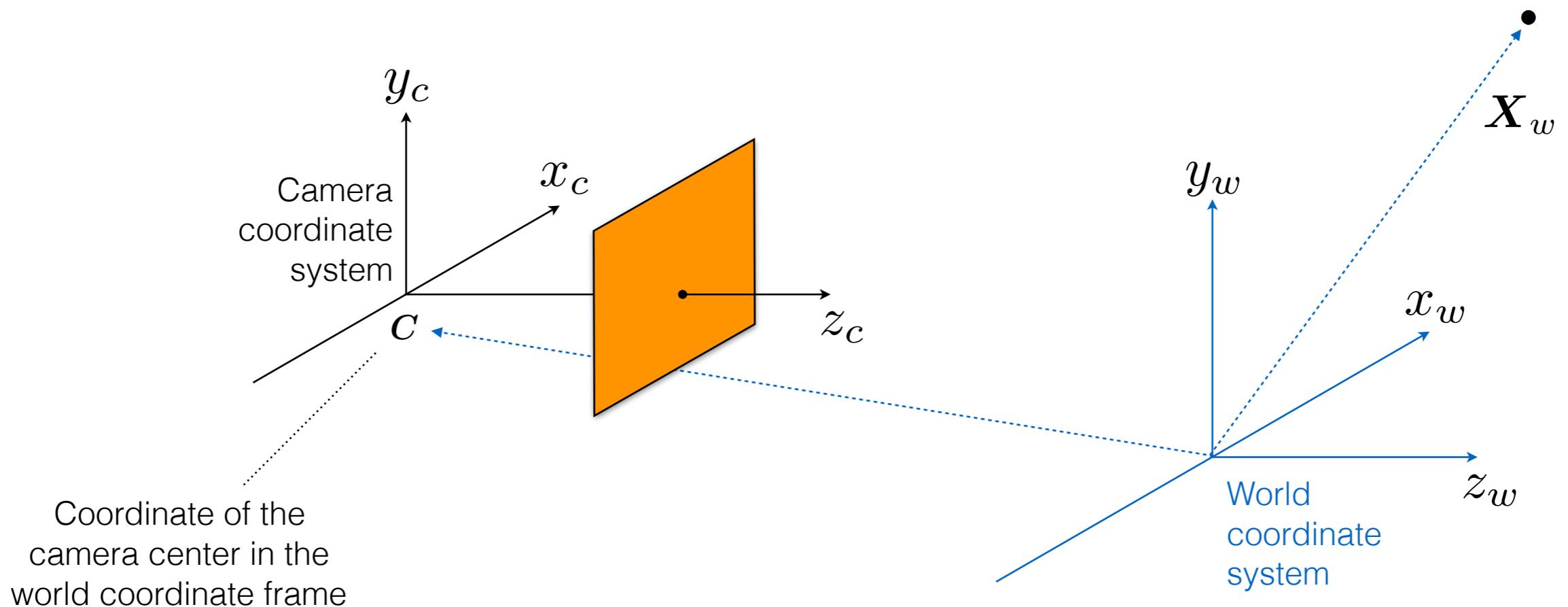
$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

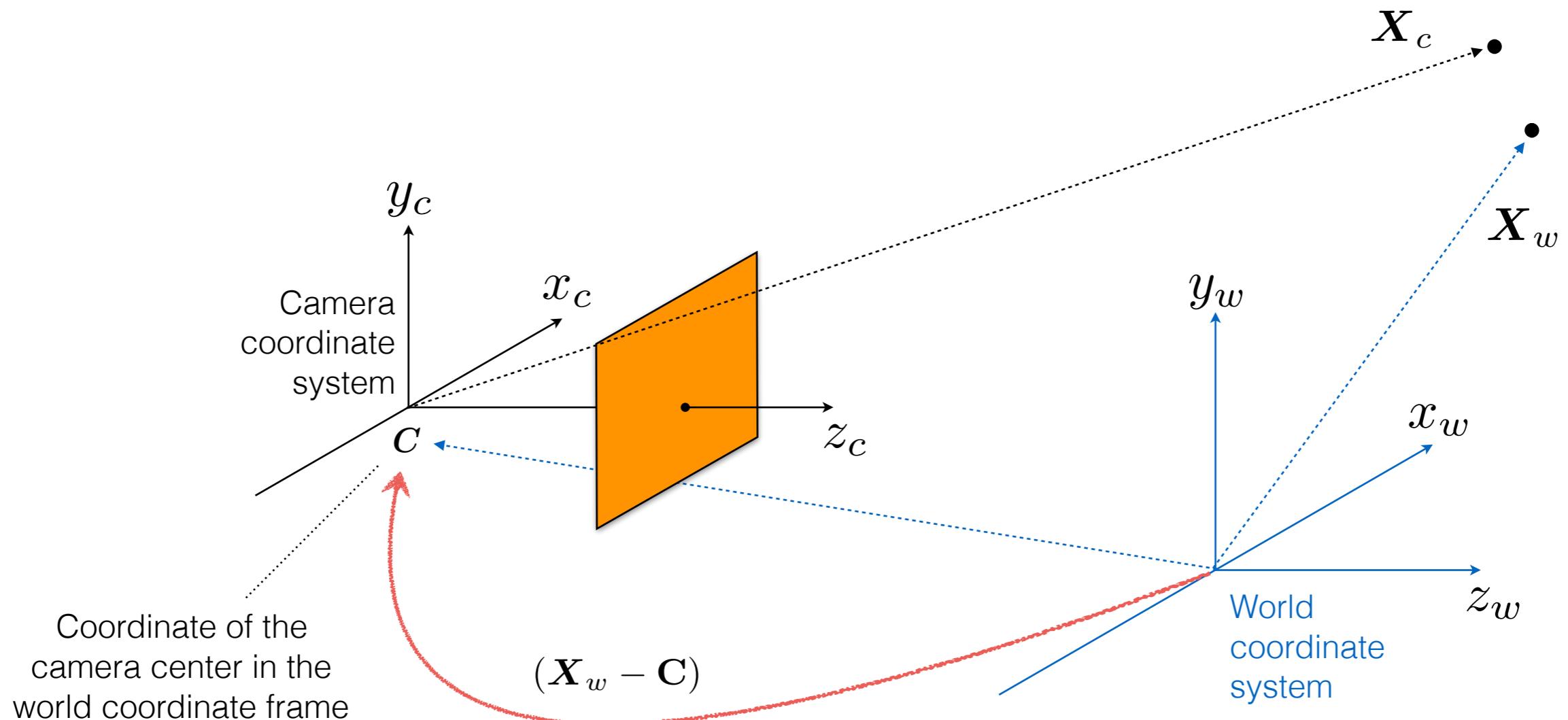


*What if they are different?
How do we align them?*

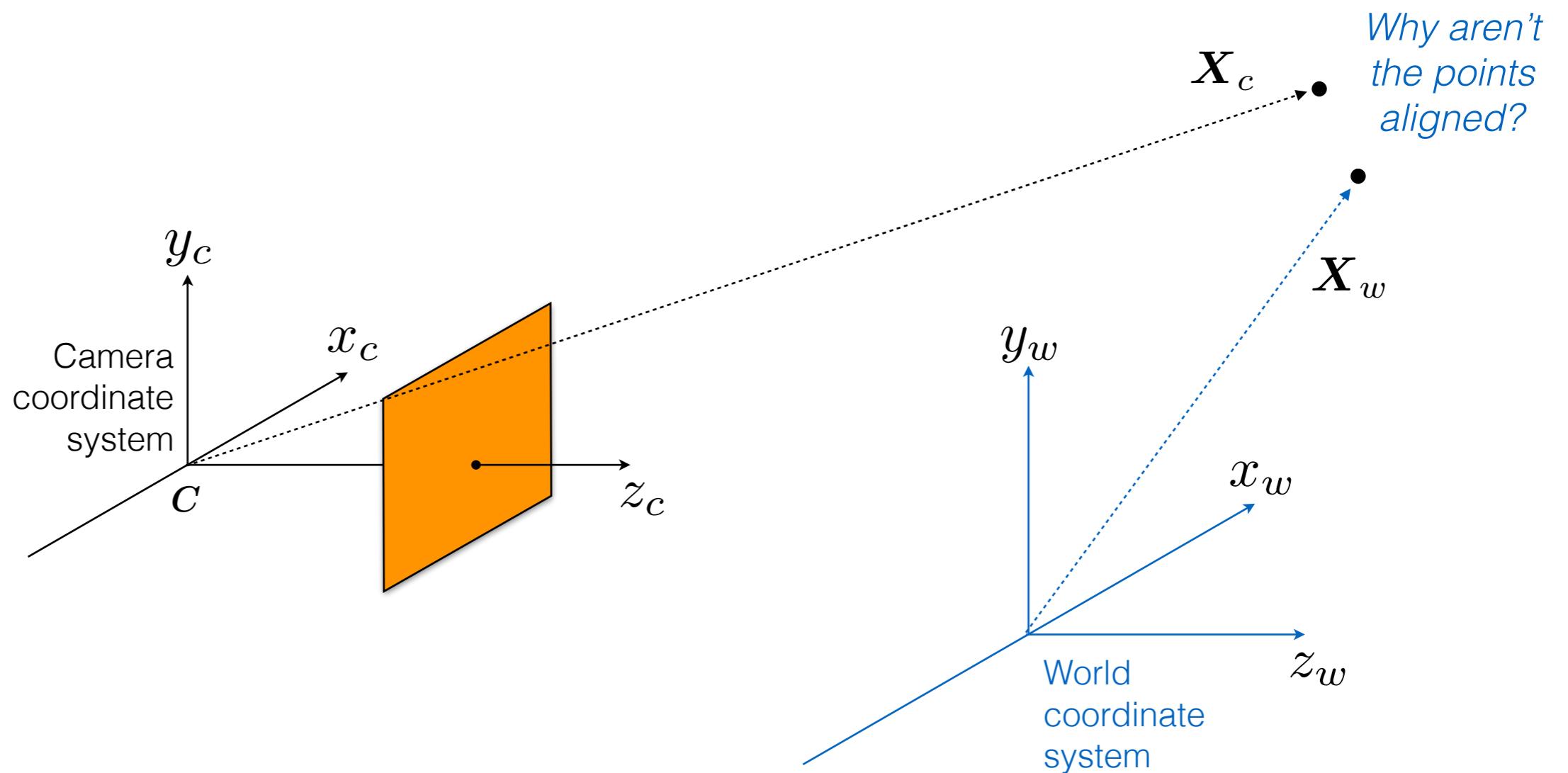








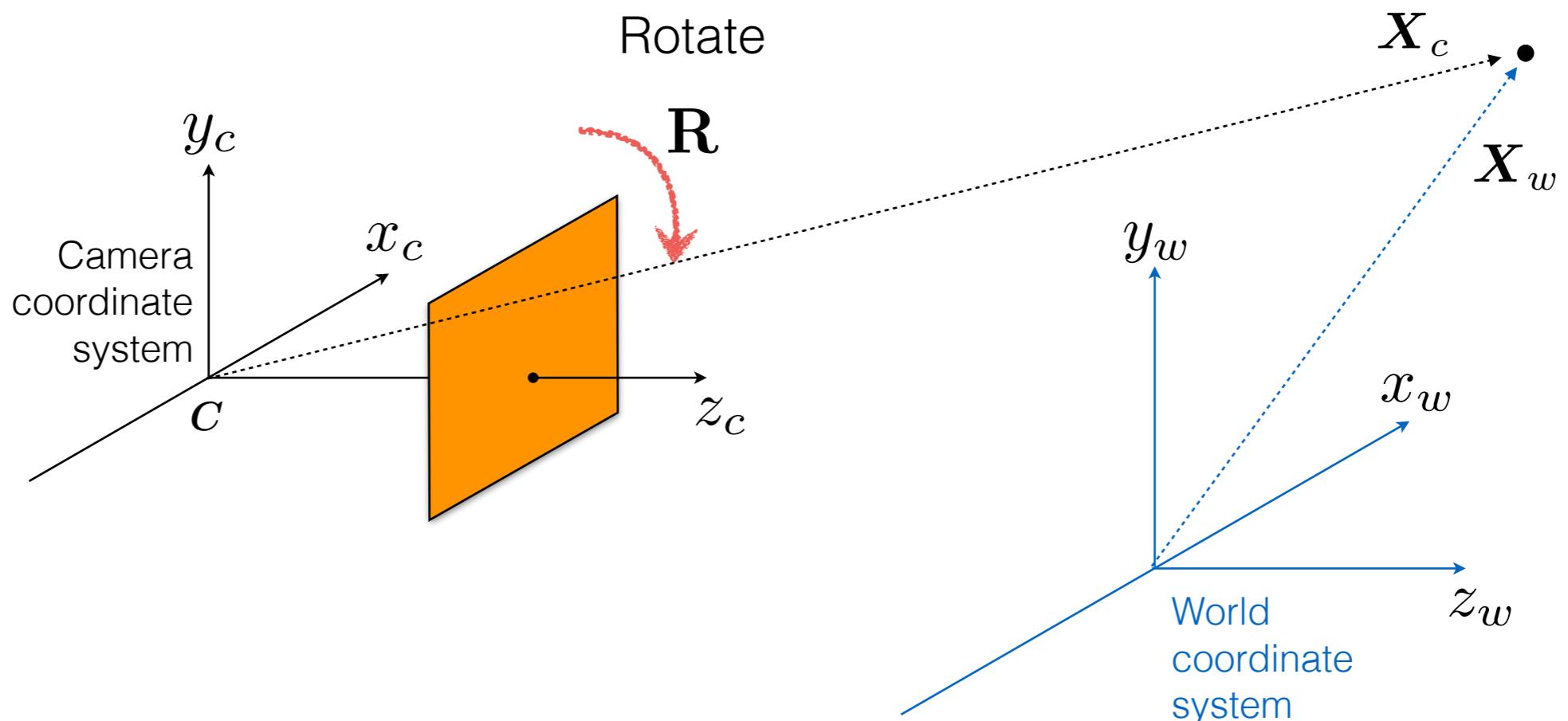
$(\mathbf{X}_w - \mathbf{C})$
Translate



$$(\mathbf{X}_w - \mathbf{C})$$

Translate

What happens to points after alignment?



$$\mathbf{R}(\mathbf{X}_w - \mathbf{C})$$

Rotate Translate

In inhomogeneous coordinates:

$$\mathbf{X}_c = \mathbf{R}(\mathbf{X}_w - \mathbf{C})$$

Optionally in homogeneous coordinates:

$$\begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{R}\mathbf{C} \\ \mathbf{0} & 1 \end{bmatrix}_{(4 \times 4)} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$

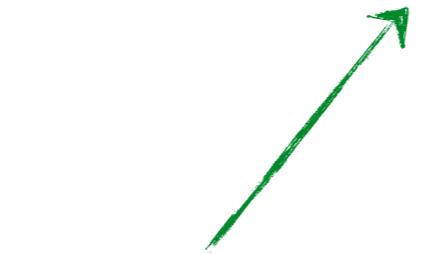
General mapping of a pinhole camera

$$\mathbf{P} = \mathbf{K}\mathbf{R}[\mathbf{I}] - \mathbf{C}$$

Quiz

What is the meaning of each matrix of the camera matrix decomposition?

$$\mathbf{P} = \mathbf{K}\mathbf{R}[\mathbf{I}] - \mathbf{C}$$

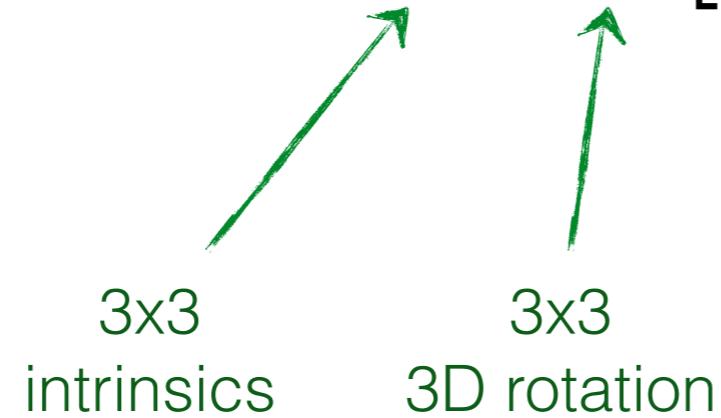


3x3
intrinsics

Quiz

What is the meaning of each matrix of the camera matrix decomposition?

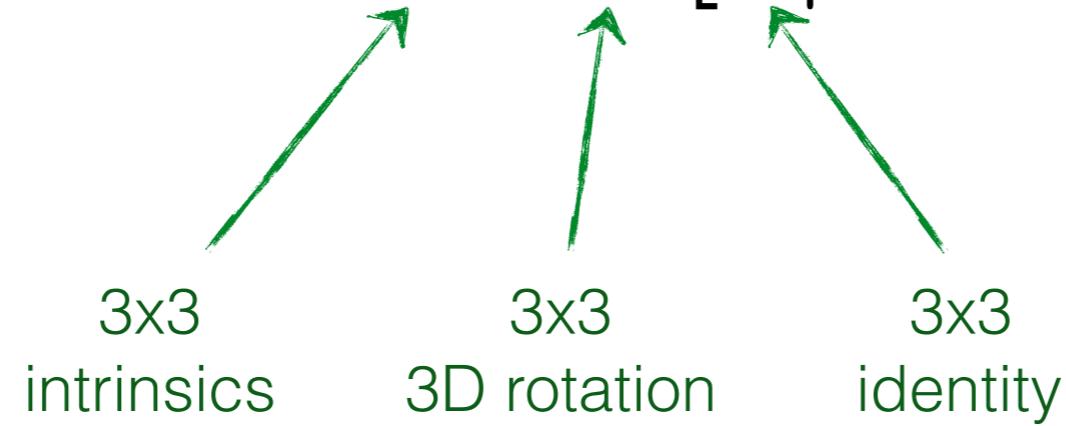
$$\mathbf{P} = \mathbf{K}\mathbf{R}[\mathbf{I}] - \mathbf{C}$$



Quiz

What is the meaning of each matrix of the camera matrix decomposition?

$$\mathbf{P} = \mathbf{K}\mathbf{R}[\mathbf{I}] - \mathbf{C}$$



Quiz

What is the meaning of each matrix of the camera matrix decomposition?

$$P = K R [I] - C$$

3x3 intrinsics 3x3 3D rotation 3x3 identity 3x1 3D translation

General mapping of a pinhole camera

$$\mathbf{P} = \mathbf{K}\mathbf{R}[\mathbf{I}] - \mathbf{C}$$

(translate first then rotate)

Another way to write the mapping

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

where

$$\mathbf{t} = -\mathbf{R}\mathbf{C}$$

(rotate first then translate)

Quiz

The camera matrix relates what two quantities?

Quiz

The camera matrix relates what two quantities?

$$\mathbf{x} = \mathbf{P}\mathbf{X}$$

Quiz

The camera matrix relates what two quantities?

$$\mathbf{x} = \mathbf{P}\mathbf{X}$$

3D points to 2D image points

Quiz

The camera matrix relates what two quantities?

$$\mathbf{x} = \mathbf{P}\mathbf{X}$$

3D points to 2D image points

The camera matrix can be decomposed into?

Quiz

The camera matrix relates what two quantities?

$$\mathbf{x} = \mathbf{P}\mathbf{X}$$

3D points to 2D image points

The camera matrix can be decomposed into?

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

Quiz

The camera matrix relates what two quantities?

$$\mathbf{x} = \mathbf{P}\mathbf{X}$$

3D points to 2D image points

The camera matrix can be decomposed into?

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

intrinsic and extrinsic parameters

Generalized pinhole camera model

$$P = K[R|t]$$

Why do we need P ?

to properly relate **world points** to **image points**
(by taking into account different coordinate systems)