
Dataflow Architecture:
Pure, Hybrid, and Spatial
15-740 FALL’19

NATHAN BECKMANN



Today
Historical tour of dataflow

Concepts & early architectures

“Hybrid dataflow” architectures
◦ Academic machines that outperform best from industry!

Modern “spatial dataflow” architectures



“Pure” Dataflow



Dataflow: The “Big Idea”
Program  Dataflow graph

Execution limited only by true dependences!

Implications:
◦ Massive parallelism ➔ Scales great!

◦ Massive storage➔ Scales badly!

◦ No program counter ➔ Hard to program ?



Example 
Dataflow 
Program

“A Preliminary Architecture for a 
Dataflow Processor” – J. Dennis 
(1975)



Dataflow building blocks



Example 
Dataflow 
Program
w/ Control

[Dennis, ‘75]



Implementing dataflow
“Spatial” dataflow

◦ Directly implement DFG in hardware

◦ Instructions map onto an array of Pes

◦ Each PE has links to other Pes

◦ Problem?

“Pure” dataflow
◦ Multiplex instructions onto small number of Pes

◦ PEs communicate through memory

Limited scalability!



Dennis’s proposed architecture



Limitations of Dennis’s dataflow
processor
Communication through memory ➔ High power, high latency

How do you program it?

Instructions unique memory location➔ No recursion!



“Executing a Program on the MIT Tagged-
Token Dataflow Architecture” – Arvind & 
Nikhil (1990)
Id programming language

◦ Functional (seen as major disadvantage)

◦ Compiles to dynamic dataflow graphs

◦ Adds “I-structures” to deal with arrays

Tagged-Token Dataflow Architecture (TTDA) hardware
◦ Tokens (data values) are “tagged” with the instruction that generated them

◦ Allows recursion, parallelism across loops, etc



Id example
Adding vectors:

Abundant parallelism:
◦ Across loop iterations

◦ Between array allocation, the return statement and function execution (!!!)

◦ E.g., one valid execution of vsum: Execute half the sums, then allocate the array, then return it, then 
finish the loop execution

Calling vsum: vsum e1 e2
◦ This function can return before its inputs are ready!



I-structure
What does it mean to return an array before its full?

Array is an I-structure, a “tagged array”
◦ Each array element is written at most once

◦ Reads are delayed until the value is ready

Two new operators:



I-structure 
example



Dynamic dataflow graphs & tagged 
tokens
All tokens are tagged with a context specifying which function invocation they represent

Tokens:
◦ c – context

◦ s – destination instruction

◦ v – value

Output inherits its input context



Dynamic dataflow graphs & tagged 
tokens – function linkage
Special operators required to manipulate tags when calling a function

◦ Construct return continuation

◦ Change a token’s tag

◦ Allocate a new context for callee



Dynamic dataflow graphs & 
tagged tokens – conditionals 
Similar approach to Dennis

“switch” operator controls what fires

Tags let many loop iterations execute in parallel!
◦ “D” operator allocates a new context for each iteration

◦ “D_reset” resets to original context for final result

◦ Simpler & faster than “get_context” implementation

They add loop throttling to limit parallelism (!!!)
◦ This is not trivial (deadlock if done naively, lowers perf)



TTDA
“Except in special signal processing architectures, one 

should never think of the dataflow graph as representing 
physical wiring between function modules.”

There be dragons!



Pure Dataflow Recap
ADVANTAGES

Elegance

Naturally parallel
◦ Avoids ILP limits of von Neumann designs

DISADVANTAGES

Hard to implement
◦ Too much parallelism!

◦ Tons of state to buffer

◦ Frequent associative lookups

Hard to program
◦ Unfamiliar functional programming languages

◦ No program counter – debugging & exceptions 
are challenging



Hybrid Dataflow



“Monsoon: an Explicit Token-Store 
Architecture” – Papadopoulos & Culler (1990)
Token store does not scale

Causes deadlock when it runs out of space

But most tokens are sent locally within a single function

Big Idea: Exploit this locality to improve scalability!
◦ Each function has its activation frame for token storage (storage + presence bits)

◦ Compiler instruction outputs onto static offsets within this frame

Programs consist of a tree (not stack) of activation frames

Significant conceptual bridge between dataflow + conventional architecture



Monsoon example
Instructions are shared across invocations

Specify operations and destinations

Frame is unique to each invocation

Contains only values + presence bits



Monsoon hardware
(Read paper for details)

Built in collaboration with 
Motorola

Performed very well + was 
actually used by scientists 
for years afterward



“WaveScalar” – Swanson et al (2003)
Began as an attempt to scale OOO processors

Similar to Monsoon, identifies dataflow locality as a major feature
◦ Most values soon after + nearby producing instruction

◦ Observation: OOO processors destroy dataflow locality (why?)

Dataflow machine with load-store architecture + sensible memory ordering
◦ No icky functional languages!

Tags tokens with a “wave number” & “WAVE-ADVANCE” operator
◦ ≈ contexts in TTDA



Memory ordering in WaveScalar
Compiler tags memory operations with a sequence number

Loads & stores form a chain representing control flow
◦ Notation: <prev, this, next>

◦ “?” means control flow makes prev/next ambiguous

Memory system then enforces ordering
◦ Only applies memory operation when there is no gap

◦ No “?”→”?” links allowed
◦ “Memory-Nops” added to sequence legit operations (<3% ops)



“WaveCache”
Instruction cache == processor

Instructions output is another instruction

Arrange instructions in an array of PEs 

Cache instructions somewhere in the array

Route tokens to destination instruction in array



WaveScalar example



Spatial Dataflow



Spatial Network of Processing Elements
Idea: Directly wire operations together

◦ No buffering ➔ higher perf & efficiency

Reconfigure network & PEs to program device

Granularity is a major design choice
◦ How big is each PE

◦ How many PEs to have

◦ What are the tradeoffs?



Reconfigurable Logic
FPGA: Field programmable gate array

◦ Very fine-grain, bit-level reconfiguration (too configurable?)

◦ FUs are lookup tables (LUTs)

◦ Memory distributed in blocks (BRAMs)

◦ Originally used for fast ASIC prototyping, now a “general-purpose accelerator”

◦ FPGAs have been largely their own community for decades

CGRA: Coarse-grain reconfigurable array
◦ Sacrifice some configurability for efficiency

◦ Lots of recent architecture research

◦ Even FPGAs now have coarse-logic for efficiency (e.g., “DSP cores”)



TRIPS: “Scaling to the End of Silicon with EDGE 
Architectures” – Burger et al (2004)
(I highly recommend this magazine article … very approachable)

Intellectual background:
◦ Similar time as WaveScalar

◦ Sequential scaling was at its end

◦ Polymorphism would enable processors to target ILP, DLP, or TLP as available



TRIPS + EDGE architectures
EDGE: Explicit Data Graph Execution

TRIPS is a “VLIW hybrid-dataflow architecture”
◦ Instructions communicate directly to each other, no intermediate storage

◦ Compiler statically schedules instructions across an array of PEs 

◦ Each spatial block is one “mega-instruction”, amortizing von Neumann overheads over lots of work



TRIPS 
Compilation 
Example
Each block emits exactly one branch 
(not shown) to determine next block 
to execute

“tgti” is used to predicate execution of 
dependent instructions (shown as 
dashed lines)




