Dataflow Architecture:
Pure, Hybrid, and Spatial

15-740 FALL'19
NATHAN BECKMANN

Today

Historical tour of dataflow

Concepts & early architectures

“Hybrid dataflow” architectures
o Academic machines that outperform best from industry!

Modern “spatial dataflow” architectures

“Pure” Dataflow

Dataflow: The “Big |dea”

Program < Dataflow graph

Execution limited only by true dependences!

Implications:
o Massive parallelism =2 Scales great!
o Massive storage =» Scales badly!
o No program counter =» Hard to program ?

input a, b
y := (ath)/x
x := (a*(a+b))+b

output y, x

Example
Dataflow
Program

“A Preliminary Architecture for a
Dataflow Processor” —J. Dennis
(1975)

Dataflow building blocks :

(a) operator (b) decider
(¢) T-gate (d) F-gate
(a) dato link {b) control link g i
ALV
Figure 6. Links of the bosic dota-flow longuage. é
(e) merge (f) boolean operator

Figure 7. Actors of the basic data-flow language.

Figure 8. Data-flow

represe

ntation of the basic program.

Example
Dataflow
Program
w/ Control

[Dennis, 75]

Implementing dataflow

“Spatial” dataflow
o Directly implement DFG in hardware

° |nstructions map onto an array of Pes
o Each PE has links to other Pes
o Problem? Limited scalability!

“Pure” dataflow
o Multiplex instructions onto small number of Pes
o PEs communicate through memory

Dennis’s proposed architecture

operation code

I ngrutian L_
destination destination Units |‘

| 2 Cacision 2
A A Units
T8 N) I
I 3
|
i
l Control
speciolized function Netwaork
- operation unit
.- & 8
3 F
Figure 4. Instruction formot.
Instruction
Instruction Cell b Cell 0
]
i Distribution > e | Arbitration
register A Metwork Memaory » Metwork
t instruction :I—l- -
dota register _ Instruction
] aperation * CE” =1 i
pocket —-——-{—p operond | —+—= > - packet
dot register
— Figure 9. Organization of a bosic data -flow processor
———-—I—- 0 —I——- .
packe! perand 2 J without two - level memory .

Figure 3. Operation of on Instruction Cell.

Limitations of Dennis’s dataflow
Drocessor

Communication through memory = High power, high latency

How do you program it?

Instructions unique memory location = No recursion!

“Executing a Program on the MIT Tagged-
Token Dataflow Architecture” — Arvind &
Nikhil (1990)

Id programming language
o Functional (seen as major disadvantage)

o Compiles to dynamic dataflow graphs
o Adds “I-structures” to deal with arrays

Tagged-Token Dataflow Architecture (TTDA) hardware
o Tokens (data values) are “tagged” with the instruction that generated them

o Allows recursion, parallelism across loops, etc

|d example

Adding vectors:

Def vsum A B =
{ C = array (1,n) ;
{For j From 1 To n Do

Clj] = Alj] + BLjl}
In
Ct:

Abundant parallelism:
o Across loop iterations

o Between array allocation, the return statement and function execution (!!!)

o E.g., one valid execution of vsum: Execute half the sums, then allocate the array, then return it, then
finish the loop execution

Calling vsum: vsumel e2
o This function can return before its inputs are ready!

|-structure

What does it mean to return an array before its full?

Presence Bite (Present, Absent, Waiting)

Dat
) y) Deferred Read Pointer
Array is an I-structure, a “tagged array -—-—-—--a._____.-)
. . T —— —_—
o Each array element is written at most once TT::
o Reads are delayed until the value is ready n i datam Tag Y
n+1l:
n+2: | W
Two new operators: s —
Deferred Read Requests
A# j & n+d: | A
5: | select Possible execution sequence producing this structure:
* Attempt to READ(n+2) for instruction X
n+m:| P datum * WRI n.+m£
: #Efn t to READ(n+3) for instruction 2
" __"l-u-.____‘_'___,_— .
Data Storage : E%RIE];E;]to READ{n+2) for instruction Y

Fig. 7. I-structure memory.

|-structure
example

1 ¥

select

a A] B
¢ | ‘j]
~ ¥\ /¥ - ~ ¥\ /¥ - ~ ¥\ ¥ -

— | select | — — | select | — —— - + -

‘.;'_|\-. .-!t\-\

Fig. 3. A firing sequence for “'s+.A[i] + B[i].”

Dynamic dataflow graphs & tagged
tokens

All tokens are tagged with a context specifying which function invocation they represent

. C.
Tokens: { 5, u}p <c.s,6> <c.s,6>
° C—context
a: 8: |

> s —destination instruction i f —> l :
o v—value t: n t: + <c.t,30>
Output inherits its input context l L
Fig. 5. Firing rule for “*+" operator

(c.s, v1);x{c.s, v2}, = (c.t, (v] op v2))

Dynamic dataflow graphs & tagged
tokens — function linkage

Special operators required to manipulate tags when calling a function
Caller , Callee

~+ 1 i-

extract_tag, : (c.s,) = (c.t, c.r).

o Construct return continuation 1y l argl arg®

get-context extract-tag

|
change_tag; : (c.s, ¢'.t");x (c.5, v), = (c'.(t' +J), v);. I rl’l { l
o Change a token’s tag 4

change-tag | {change- tugi change- tap‘

-7

get_context : {c.s, f) = {c.t, new_c.f). R
wi| id | sp+l: ip+E:

o Allocate a new context for callee

Graph for
body of function

r— ===
- change-ta
L | —] - - I_ :J;_ i
N I resu

Fig. 6. Dataflow graph for function call and return linkage.

DefipAB = {5 ;
j=1

Dynamic dataflow graphs & e < - b

Nextj =j+ 1;

tagged tokens — conditionals X

i

Similar approach to Dennis | ol 'l il
“switch” operator controls what fires @P Prelude: Store 4 aad B in Constant Area
4) <=n
Tags let many loop iterations execute in parallel! 7 switch e switch
o “D” operator allocates a new context for each iteration , ; , ,-
o “D_reset” resets to original context for final result T
. P) - . select A | select B D-reset D-reset
o Simpler & faster than “get_context” implementation _I—
result ln’gnﬂl
¥ ¥)
+ +1
They add loop throttling to limit parallelism (!!!) ’“’“l “‘“fl
o This is not trivial (deadlock if done naively, lowers perf) D D
1 J

Fig. 13. Dataflow graph for a loop.

TTDA

From Communication Network

Wait-Match Unit

IN PIPELINE
" There be dragons!
Except in special signal processing architectures, one e
. . ction-Fetch Unit
should never think of the dataflow graph as representing —
physical wiring between function modules.” 4 Constat
FProgram Memory
Control . £ Op | Desta 'ét"‘:l‘i‘ m““
I-S-tr'llﬂt'l.l.l.'ﬂ L - - ™ ™ . . I‘stmﬂturﬂ
Element Element ? T
|
!
n -cube Packet Network ALU » Compute Tag
—
|
FPE . . . - . . . PE Form Tokens
e |
Fig. 17. Top-level view of TTDA.

Output

To Communication Network

Fig. 18. A processing element.

Pure Dataflow Recap

ADVANTAGES DISADVANTAGES

Elegance Hard to implement
° Too much parallelism!
o Tons of state to buffer

Naturally parallel o Frequent associative lookups
o Avoids ILP limits of von Neumann designs

Hard to program
o Unfamiliar functional programming languages

> No program counter — debugging & exceptions
are challenging

Hybrid Dataflow

“Monsoon: an Explicit Token-Store
Architecture” — Papadopoulos & Culler (1990)

Token store does not scale

Causes deadlock when it runs out of space

But most tokens are sent locally within a single function

Big Idea: Exploit this locality to improve scalability!
o Each function has its activation frame for token storage (storage + presence bits)
o Compiler instruction outputs onto static offsets within this frame

Programs consist of a tree (not stack) of activation frames

Significant conceptual bridge between dataflow + conventional architecture

Monsoon example

Instructions are shared across invocations Code-Block Activation Insiruction. Memory
5 5 B S Sl n Opc.o_ﬁif“_ r dests
. . . . S D I T il 1
Specify operations and destinations Y Y Y T T T
v L SUR 3 11 2R
[Neq - fsa |
ADD 4 +1
. . . . <FPIP, 314> !
Frame is unique to each invocation i B sl -
Contains only values + presence bits Frame Memory
PP+ 3: [
i p
Presence Bits \j’

Sharable, Relocatable
Instruction Text for
Code-Block

Runtime-Allocated

1 Activation Frame

For Code Block

Host & 110 100 Mbytes/seciport

(4-bit serial 200Mhz ECL) I-Structure

q Memory Interleaves Monsoon Processing Element
VME I s Pt :
LAN 10 PE X H
@00 - - e H
o o N 44 ® <PE:(FP.IP), V> :
| P Interprocessor I8 : Y :
Network H o P /_ :
n n - - : Instruction 2¢ " ¥ Instruction |}
O S O O a r Wa re 1o PE | IS Fetch Memory |1
- -+ A \ !
| H 32 | 5
: <PE:(FP.IP), V> <Opcode, 1, 5> E
Y Y :
(Read paper for details) — s Eflctive ;
B Address :
<PE:(FP.IP), V> FP+r |Opcode, s
L A 5
oo’ \ FP+r E

27+) Presence

. . . . o Presence e s i
Builtin collaboration with > s [T wemer
Motorola |

Y

Interprocessor J From N
f'“
Network 14

: <PE{FP.IP), V> FP+r |Opcode, s :
: y \
: » FPer /'_
: FrameStore | 2¢ f Frame |
: Operation [FP+1) Store :
' A Yirss 7 Y
H PE:(FP.IP

Performed very well + was | = Lvﬂ‘—*—n o

i ; i { r

actually used by scientists] I — s I =
: System User r Compute Tag | roo%® ALU :
: ys :

for years afterward : Systom | | Wser [£| | ComputeTag | A U :
: Queue Queve | I (3 Stages) (3 Stages) i
H B Pes |IP41 - vy
: & ;
(oL ";/';%3" g PE:FP % Y 7
§ A ' = Form Token -
: Multiplexer '
s 144 E

Figure 2: Monsoon Processing Element Pipeline

“WaveScalar” — Swanson et al (2003)

Began as an attempt to scale OOO processors

Similar to Monsoon, identifies dataflow locality as a major feature
o Most values soon after + nearby producing instruction
o Observation: OO0 processors destroy dataflow locality (why?)

Dataflow machine with load-store architecture + sensible memory ordering
o No icky functional languages!

Tags tokens with a “wave number” & “WAVE-ADVANCE” operator
o =~ contexts in TTDA

Memory ordering in WaveScalar

Compiler tags memory operations with a sequence number Id <?,1,7>
Loads & stores form a chain representing control flow \
o Notation: <prey, this, next> d<1.2.7>
o “?” means control flow makes prev/next ambiguous /\
st<1,3,7> ld<2,4,5> nop<2,6,7>
Memory system then enforces ordering ld<4,5,7>

o Only applies memory operation when there is no gap
o No “?”->”?” links allowed

° “Memory-Nops” added to sequence legit operations (<3% ops) st<?. 7.7>

Figure 2: Annotating memory operations. A simple
wave’s control flow graph showing the memory opera-
tions 1n each basic block and their links.

“WaveCache”

Instruction cache == processor L i i

| co |

Input Control i
Instructions output is another instruction Input Queues| BN

L1
IOl
]

S .
., ALU e

=

A . . . Output g /‘/fj E m] E)
rrange instructions in an array of PEs Queve | 5
Output|| ©
Cache instructions somewhere in the array e g \ -
Processing Element Data caches Cluster

Route tokens to destination instruction in array and store buffers

Figure 3: A Simple WaveCache. A simple architec-
ture to execute the WaveScalar ISA. The WaveCache
combines clusters of processing elements (left) with
small data caches and store buffers to form a comput-

1ng substrate (right).

ri

r2
ri
rd

mE mE R RmE WmE

loop:
add
1d
bne
add
st
addi

Ll:
addi
subi
blt

ré,
r4,
rd,
r6,
r4,
rl,

ro,
ri,
ri,

(a)

in
out

r2, rl
r6(0)

L1 _.,.5

ri, rl
re(0)
rl, #1

ro, #1
ro, #10
loop

 ——

Add #1)| [Add I' :;&
Sub #10 K- Then h{mhefStoreru/tér
3 B
—_— ,,.--'"“;F -~] %
775 o
T] F Ld = ﬂ. \\‘ E
Mnop _ h TN ;ﬁ{:
«<1,3,0= g h)
vy A o
== 8|
NN \/ out

(b)

&

g

I

#10

<€

| A

(c)

Figure 5: WaveScalar example. The RISC assembly (left) for the program fragment in Figure 4, the WaveScalar version
(center), and the WaveScalar version mapped onto a small WaveCache (right). To clarify the discussion in the text, the
numbers in the column label rows of instruction, and the vertical, dashed line divides the graph into two parts.

Spatial Dataflow

Spatial Network of Processing Elements

Idea: Directly wire operations together
> No buffering =» higher perf & efficiency

Reconfigure network & PEs to program device

Granularity is a major design choice
° How big is each PE
> How many PEs to have

o What are the tradeoffs?

Reconfigurable Logic

FPGA: Field programmable gate array
o Very fine-grain, bit-level reconfiguration (too configurable?)
FUs are lookup tables (LUTs)
Memory distributed in blocks (BRAMS)
Originally used for fast ASIC prototyping, now a “general-purpose accelerator”
FPGAs have been largely their own community for decades

o

o

o

o

CGRA: Coarse-grain reconfigurable array
o Sacrifice some configurability for efficiency
o Lots of recent architecture research
o Even FPGAs now have coarse-logic for efficiency (e.g., “DSP cores”)

TRIPS: “Scaling to the End of Silicon with EDGE
Architectures” — Burger et al (2004)

(I highly recommend this magazine article ... very approachable)

Intellectual background:
o Similar time as WaveScalar

o Sequential scaling was at its end

o Polymorphism would enable processors to target ILP, DLP, or TLP as available

TRIPS + EDGE architectures

EDGE: Explicit Data Graph Execution

TRIPS is a “VLIW hybrid-dataflow architecture”
o Instructions communicate directly to each other, no intermediate storage
o Compiler statically schedules instructions across an array of PEs

o Each spatial block is one “mega-instruction”, amortizing von Neumann overheads over lots of work

-
/Ea} C code snippet) /_“]] RISC assembly h read 13 [y] (c) Dataflow graph
/l'y, z in registers // RO contains 0
// R1 contains y
X=Yy*2; // R4 contains z
of (x > 7){ // R3 contains 7
TRlPS y+=T; read r4 [z]
Z=29; muli R2, R1, 2 fIx=y *2
. . } ble R2, R3, L1 /if (x>7)
Compllat|0ﬂ X+=Yy addi R1, R1, #7 Ny+=T
addi R4, RO, #5 /lz=5
Exa m | e /I , z are live registers L1:add R5, R2, R1 //x+=Yy
P \ AN J
Each block emits exactly one branch ~N
(not shown) to determine next block (d) TRIPS instruction placement

to execute

read r4
write r4

read r3 - /
vrite 15
WIITE r ‘ /

() TRIPS instruction block (2 x 2 x 2)

“tgti” is used to predicate execution of
dependent instructions (shown as
dashed lines)

Block header

read r4, [1,0,0] read r3, [0,1,1] [1,0,1]
wO: write r4 w: write r5

addi #7

e

Instruction block

o . N add wi muli #2 [0,0,1] [0,1,0]
Corresponding instruction positions: addi #7 [0,0,1] tgti #7 [1,0,0] [0,0,0] [1,1,0] [1,1,1]
[0,0,1] [0,1,1]
NOP
[0,0,0] [0,1,0] L mov [0,0,1])
[1,0.1]

_ [1,0,0] Y,

(a) TRIPS execution node (b) TRIPS processor core (c) TRIPS prototype chip

125 MHz 125 MHz
DDR 250 MHz DDR
- Inpliljtpmg N Too Ti2o ’Iﬁw 4%143 T120
N
N | CkaTst|
Operand N
b T bl -
CPU 0 o H
A0 500 Mz |
Al = ol < -
. : 55 e
"\ integer H5 EE a
i 1} - Um
H7 25 CPUT | o L L &
Houter 64 instruction ’ e .“.".!;.'
L &
5 butters - -
Output ports |_| Interrupts
Global control: D-cache banks: 8L 4L 1200 143&143&12% 40
G Protocols: fill, flush, commit 16KB 2-way, 1-port, cache-line interleaved banks A A 1 _1 YGMI
Contains |-cache tags, TLB, 8 MSHRs, LSQ, dependence pred. per bank Total signal pin =— 250_""1“3 —
block header state, r/w instructions Supports load speculation and distributed commit ~ count: ~1,144 125 MHz (2:1) 125 MHz
branch predictor I-cache banks: DDR DDR
Register banks: || 16KB 2-way, 1-port L1 instruction cache banks Chip-to-chip: .
32 registers per bank x 4 threads Each bank delivers four insts/cycle ¢ | Protocol: OCN extension
64 static rename registers per bank Banks are slaves to global control unit tag store 64b data path each direction
Dynamically forwards interblock values Memory: 4 channels: N/S/E/W
Execution nodes: g | DDR SDRAM, PC2100 DiMMs likely 2 GB/s each direction on each channel
g | Single-issue ALU tile 4 channels w/ page interleave Control processor interface: _
Full-integer and floating-point units (no FDIV) Synopsis memory controller MacroCell p Slave side of generic memory interface
Buffers 64 instructions (8 insts x 8 blocks) per tile 2 GB/s each channel Source interrupts to get attention

Runs like asynchronous memory
Includes CP command handler
JTAG:

Protocol: IEEE 1149

4 channels w/ page interleave

Includes scan intercept TAP controller
Used for test and early low-level debug

