
Concurrency Control and Recovery�Michael J. FranklinDepartment of Computer Science and UMIACSUniversity of MarylandCollege Park, MD1 IntroductionMany service-oriented businesses and organizations, such as banks, airlines, catalog retailers, hos-pitals, etc. have grown to depend on fast, reliable, and correct access to their \mission-critical"data on a constant basis. In many cases, particularly for global enterprises, 7x24 access is required;that is, the data must be available seven days a week, twenty-four hours a day. Data Base Manage-ment Systems (DBMS) are often employed to meet these stringent performance, availability, andreliability demands. As a result, two of the core functions of a DBMS are: 1) to protect the datastored in the database and 2) to provide correct and highly available access to that data in thepresence of concurrent access by large and diverse user populations, and despite various softwareand hardware failures. The responsibility for these functions resides in the concurrency controland recovery components of the DBMS software. Concurrency control ensures that individualusers see consistent states of the database even though operations on behalf of many users maybe interleaved by the database system. Recovery ensures that the database is fault tolerant; thatis, that the database state is not corrupted as the result of a software, system, or media failure.The existence of this functionality in the DBMS allows applications to be written without explicitconcern for concurrency and fault tolerance. This freedom provides a tremendous increase in pro-�Portions of this chapter are reprinted with permission from: M. Franklin, M. Zwilling, C. Tan, M. Carey, andD. DeWitt, \Crash Recovery in Client-Server EXODUS", Proc. ACM International Conference on Management ofData (SIGMOD'92), San Diego, June, 1992,(c) 1992 by the Association for Computing Machinery, Inc. (ACM).1

grammer productivity and allows new applications to be added more easily and safely to an existingsystem.For database systems, correctness in the presence of concurrent access and/or failures is tied tothe notion of a transaction. A transaction is a unit of work, possibly consisting of multiple dataaccesses and updates, that must commit or abort as a single atomic unit. When a transactioncommits, all updates it performed on the database are made permanent and visible to other trans-actions. In contrast, when a transaction aborts, all of its updates are removed from the databaseand the database is restored (if necessary) to the state it would have been in if the aborting trans-action had never been executed. Informally, transaction executions are said to respect the ACIDproperties[Gray93]:Atomicity: This is the \all-or-nothing" aspect of transactions discussed above | either all opera-tions of a transaction complete successfully, or none of them do. Therefore, after a transactionhas completed (i.e., committed or aborted), the database will not re
ect a partial result ofthat transaction.Consistency: Transactions preserve the consistency of the data | a transaction performed on adatabase that is internally consistent will leave the database in an internally consistent state.Consistency is typically expressed as a set of declarative integrity constraints. For example,a constraint may be that the salary of an employee cannot be higher than that of his or hermanager.Isolation: A transaction's behavior is not impacted by the presence of other transactions that maybe accessing the same database concurrently. That is, a transaction sees only a state of thedatabase that could occur if that transaction were the only one running against the databaseand produces only results that it could produce if it was running alone.Durability: The e�ects of committed transactions survive failures. Once a transaction commits,its updates are guaranteed to be re
ected in the database even if the contents of volatile (e.g.,main memory) or non-volatile (e.g., disk) storage are lost or corrupted.Of these four transaction properties, the concurrency control and recovery components of a2

DBMS are primarily concerned with preserving Atomicity, Isolation, and Durability. The preser-vation of the Consistency property typically requires additional mechanisms such as compile-timeanalysis or run-time triggers in order to check adherence to integrity constraints.1 For this reason,this chapter focuses primarily on the A,I, and D, of the ACID transaction properties.Transactions are used to structure complex processing tasks which consist of multiple dataaccesses and updates. A traditional example of a transaction is a money transfer from one bankaccount (say account A) to another (say B). This transaction consists of a withdrawal from A anda deposit into B and requires four accesses to account information stored in the database: a readand write of A and a read and write of B. The data accesses of this transaction are as follows:Transfer()01 A bal := Read(A)02 A bal := A bal - $5003 Write(A,A bal)04 B bal := Read(B)05 B bal := B bal + $5006 Write(B,B bal)The value of A in the database is read and decremented by $50, then the value of B in thedatabase is read and incremented by $50. Thus, Transfer preserves the invariant that the sum ofthe balances of A and B prior to its execution must equal the sum of the balances after its execution,regardless of whether the transaction commits or aborts. Consider the importance of the atomicityproperty. At several points in during the Transfer transaction, the database is in a temporarilyinconsistent state. For example, between the time that account A is updated (statement 3) and thetime that account B is updated (statement 6) the database re
ects the decrement of A but not theincrement of B, so it appears as if $50 has disappeared from the database. If the transaction reachessuch a point and then is unable to complete, (e.g., due to a failure or an unresolvable con
ict, etc.)then the system must ensure that the e�ects of the partial results of the transaction (i.e., theupdate to A) are removed from the database | otherwise the database state will be incorrect. Thedurability property, in contrast, only comes into play in the event that the transaction successfullycommits. Once the user is noti�ed that the transfer has taken place he or she will assume that1In the case of triggers, the recovery mechanism is typically invoked to abort an o�ending transaction.3

account B contains the transferred funds and may attempt to use those funds from that point on.Therefore, the DBMS must ensure that the results of the transaction (i.e., the transfer of the $50)remain re
ected in the database state even if the system crashes.Atomicity, consistency, and durability address correctness for serial execution of transactions,where only a single transaction at a time is allowed to be in progress. In practice, however, databasemanagement systems typically support concurrent execution, in which the operations of multipletransactions can be executed in an interleaved fashion. The motivation for concurrent executionin a DBMS is similar to that for multiprogramming in operating systems, namely, to improvethe utilization of system hardware resources and to provide multiple users a degree of fairness inaccess to those resources. The isolation property of transactions comes into play when concurrentexecution is allowed.Consider a second transaction that computes the sum of the balances of accounts A and B:ReportSum()01 A bal := Read(A)02 B bal := Read(B)03 Print(A bal + B bal)Assume that initially, the balance of account A is $300 and the balance of account B is $200.If a ReportSum transaction is executed on this state of the database, it will print a result of$500. In a database system restricted to serial execution of transactions, ReportSum will alsoproduce the same result if it is executed after a Transfer transaction. The atomicity property oftransactions ensures that if the Transfer aborts, all of its e�ects are removed from the database(so ReportSum would see A = $300 and B = $200), and the durability property ensures that if itcommits then all of its e�ects remain in the database state (so ReportSum would see A = $250and B = $250).Under concurrent execution, however, a problem could arise if the isolation property is notenforced. As shown in Figure 1, if ReportSum were to execute after Transfer has updatedaccount A but before it has updated account B, then ReportSum could see an inconsistent stateof the database. In this case, the execution of ReportSum sees a state of the database in which4

$50 has been withdrawn from account A but has not yet been deposited in account B, resultingin a total of $450 | it seems that $50 has disappeared from the database. This result is not onethat could be obtained in any serial execution of Transfer and ReportSum transactions. Itoccurs because in this example, ReportSum accessed the database when it was in a temporarilyinconsistent state. This problem is sometimes referred to as the inconsistent retrieval problem.To preserve the isolation property of transactions the DBMS must prevent the occurrence of thisand other potential anomalies that could arise due to concurrent execution. The formal notionof correctness for concurrent execution in database systems is known as serializability and isdescribed in the \Basic Principles" section of this chapter.Transfer ReportSum01 A bal := Read(A)02 A bal := A bal - $5003 Write(A,A bal) 01 A bal := Read(A) /* value is $250 */02 B bal := Read(B) /* value is $200 */03 Print(A bal + B bal) /* result = $450 */04 B bal := Read(B)05 B bal := B bal + $5006 Write(B,B bal)Figure 1: An Incorrect Interleaving of Transfer and ReportSumAlthough the transaction processing literature often traces the history of transactions back toantiquity (such as Sumerian tax records) or to early contract law[Gray81, Gray93, Kort95], theroots of the transaction concept in information systems are typically traced back to the early1970's, and the work of Bjork and Davies[Bjor73, Davi73]. Early systems such as IBM's IMSaddressed related issues but a systematic treatment and understanding of ACID transactions wasdeveloped several years later by members of the IBM System R group [Gray75, Eswa76] and others(e.g., [Rose77, Lome77]). Since that time, many techniques for implementing ACID transactionshave been proposed and a fairly well accepted set of techniques has emerged. The remainder ofthis chapter contains an overview of the basic theory that has been developed as well as a survey ofthe more widely-known implementation techniques for concurrency control and recovery. A brief5

discussion of work on extending the simple transaction model is presented at the end of the chapter.It should be noted that issues related to those addressed by concurrency control and recovery indatabase systems arise in other areas of computing systems as well, such as �le systems and memorysystems. There are, however, two salient aspects of the ACID model that distinguish transactionsfrom other approaches. First is the incorporation of both isolation (concurrency control) andfault tolerance (recovery) issues. Second is the concern with treating multiple write and/or readoperations on multiple data items as an atomic, isolated unit of work. While these aspects ofthe ACID model provide powerful guarantees for the protection of data, they also can inducesigni�cant systems implementation complexity and performance overhead. For this reason, thenotion of ACID transactions and their associated implementation techniques have remained largelywithin the DBMS domain where the provision of highly-available and reliable access to \missioncritical" data is a primary concern.2 Underlying Principles2.1 Concurrency Control2.1.1 SerializabilityAs stated in the previous section, the responsibility for maintaining the isolation property of ACIDtransactions resides in the concurrency control portion of the DBMS software. The most widely ac-cepted notion of correctness for concurrent execution of transactions is serializability. Serializabilityis the property that a (possibly interleaved) execution of a group transactions has the same e�ecton the database, and produces the same output as some serial (i.e., non-interleaved) execution ofthose transactions. It is important to note that serializability does not specify any particular serialorder, but rather, only that the execution is equivalent to some serial order. This distinction makesserializability a slightly less intuitive notion of correctness compared to transaction initiation timeor commit order but it provides the DBMS with signi�cant additional
exibility in the schedulingof operations. This
exibility can translate into increased responsiveness for end users.A rich theory of database concurrency control has been developed over the years (see [Papa86,6

Bern87, Gray93]) and serializability lies at the heart of much of this theory. In this chapter wefocus on the simplest models of concurrency control, where the operations that can be performedby transactions are restricted to: read(x), write(x), commit, and abort. The operation read(x)retrieves the value of a data item from the database, write(x) modi�es the value of a data itemin the database, and commit and abort indicate successful or unsuccessful transaction completionrespectively (with the concomitant guarantees provided by the ACID properties). We also focuson a speci�c variant of serializability called con
ict serializability. Con
ict serializability is themost widely accepted notion of correctness for concurrent transactions because there are e�cient,easily implementable techniques for detecting and/or enforcing it. Another well-known variant iscalled view serializability. View serializability is less restrictive (i.e., it allows more legal schedules)than con
ict serializability, but it and other variants are primarily of theoretical interest becausethey are impractical to implement. The reader is referred to [Papa86] for a detailed treatment ofalternative serializability models.2.1.2 Transaction SchedulesCon
ict serializability is based on the notion of a schedule of transaction operations. A schedulefor a set of transaction executions is a partial ordering of the operations performed by those trans-actions, which shows how the operations are interleaved. The ordering de�ned by a schedule canbe partial in the sense that it is only required to specify two types of dependencies:� All operations of a given transaction for which an order is speci�ed by that transaction mustappear in that order in the schedule. For example, the de�nition of ReportSum abovespeci�es that account A is read before account B.� The ordering of all con
icting operations from di�erent transactions must be speci�ed.Two operations are said to con
ict if they both operate on the same data item and at leastone of them is a write().The concept of a schedule provides a mechanism to express and reason about the (possibly)concurrent execution of transactions. A serial schedule is one in which all the operations of each7

transaction appear consecutively. For example, the serial execution of Transfer followed byReportSum is represented by the following schedule:r0[A]! w0[A]! r0[B]! w0[B]! c0 ! r1[A]! r1[B]! c1 (1)In this notation, each operation is represented by its initial letter, the subscript of the operationindicates the transaction number of the transaction on whose behalf the operation was performed,and a capital letter in brackets indicates a speci�c data item from the database (for read and writeoperations). A transaction number (tn) is a unique identi�er that is assigned by the DBMS to anexecution of a transaction. In the example above, the execution of Transfer was assigned tn 0and the execution of ReportSum was assigned tn 1. A right arrow (!) between two operationsindicates that the lefthand operation is ordered before the righthand one. The ordering relationshipis transitive; the orderings implied by transitivity are not explicitly drawn.For example, the interleaved execution of Transfer and ReportSum shown in Figure 1 wouldproduce the following schedule:r0[A]! w0[A]! r1[A]! r1[B]! c1 ! r0[B]! w0[B]! c0 (2)The formal de�nition of serializability is based on the concept of equivalent schedules. Twoschedules are said to be equivalent (�) if:� They contain the same transactions and operations; and� They order all con
icting operations of non-aborting transactions in the same way.Given this notion of equivalent schedules, a schedule is said to be serializable if and only if it isequivalent to some serial schedule. For example, the following concurrent schedule is serializablebecause it is equivalent to schedule (1):r0[A]! w0[A]! r1[A]! r0[B]! w0[B]! c0 ! r1[B]! c1 (3)8

In contrast, the interleaved execution of schedule (2) is not serializable. To see why, notice that inany serial execution of Transfer and ReportSum either both writes of Transfer will precedeboth reads of ReportSum or vice versa. However, in schedule (2) w0[A]! r1[A] but r1[B]! w0[b].Schedule (2), therefore, is not equivalent to any possible serial schedule of the two transactions soit is not serializable. This result agrees with our intuitive notion of correctness, because recall thatschedule (2) resulted in the apparent loss of $50.2.1.3 Testing for SerializabilityA schedule can easily be tested for serializability through the use of a precedence graph. A prece-dence graph is a directed graph that contains a vertex for each committed transaction execution in aschedule (non-committed executions can be ignored). The graph contains an edge from transactionexecution Ti to transaction execution Tj (i 6= j) if there is an operation in Ti that is constrained toprecede an operation of Tj in the schedule. A schedule is serializable if and only if its precedencegraph is acyclic. Figure 2(a) shows the precedence graph for schedule (2). That graph has an edgeT0 ! T1 because the schedule contains w0[A]! r1[A] and an edge T1 ! T0 because the schedulecontains r1[B]! w0[b]. The cycle in the graph shows that the schedule is non-serializable. In con-trast, Figure 2(b) shows the precedence graph for schedule (1). In this case, all ordering constraintsare from T0 to T1 so the precedence graph is acyclic, indicating that the schedule is serializable.
T1T0 T0 T1

(a) (b)Figure 2: Precedence Graphs for (a) Non-Serializable and (b) Serializable SchedulesThere are a number of practical ways to implement con
ict serializability. These and otherimplementation issues are addressed in the \Best Practices" section of this chapter. Before dis-cussing implementation issues, however, we �rst survey the the basic principles underlying databaserecovery. 9

2.2 Recovery2.2.1 Coping With FailuresRecall that the responsibility for the atomicity and durability properties of ACID transactionslies in the recovery component of the DBMS. For recovery purposes it is necessary to distinguishbetween two types of storage: 1) volatile storage, such as main memory, whose state is lost in theevent of a system crash or power outage, and 2) non-volatile storage, such as magnetic disks ortapes, whose contents persist across such events. The recovery subsystem is relied upon to ensurecorrect operation in the presence of three di�erent types of failures (listed in order of likelihood):� Transaction Failure - When a transaction that is in-progress reaches a state from which itcannot successfully commit, all updates that it made must be removed from the database inorder to preserve the atomicity property. This is known as transaction rollback.� System Failure - If the system fails in a way that causes the loss of volatile memory contents,recovery must ensure that: 1) the updates of all transactions that had committed prior to thecrash are re
ected in the database and 2) that all updates of other transactions (aborted orin-progress at the time of the crash) are removed from the database.� Media Failure - In the event that data is lost or corrupted on the non-volatile storage (e.g., dueto a disk-head crash) then the on-line version of data is lost. In this case, the database mustbe restored from an archival version of the database and brought up to date using operationlogs.In this chapter we focus on the issues of rollback and crash recovery, the most frequent usesof the DBMS recovery subsystem. Recovery from media crashes requires substantial additionalmechanisms and complexity beyond what is covered here. Media recovery is addressed in therecovery-related references listed at the end of this chapter.2.2.2 Bu�er Management IssuesThe process of removing the e�ects of an incomplete or aborted transaction for preserving atomicityis known as UNDO. The process of re-instating the e�ects of a committed transaction for durability10

is known as REDO. The amount of work that a recovery subsystem must perform for either ofthese functions depends on how the DBMS bu�er manager handles data that is updated by in-progress and/or committing transactions [Haer83, Bern87]. Recall that the bu�er manager is theDBMS component that is responsible for coordinating the transfer of data between main memory(i.e., volatile storage) and disk (i.e., non-volatile storage). The unit of storage that can be writtenatomically to non-volatile storage is called a page. Updates are made to copies of pages in the(volatile) bu�er pool and those copies are written out to non-volatile storage at a later time. Ifthe bu�er manager allows an update made by an uncommitted transaction to overwrite the mostrecent committed value of a data item on non-volatile storage, it is said to support a STEAL policy(the opposite is called NO-STEAL). If the bu�er manager ensures that all updates made by atransaction are re
ected on non-volatile storage before the transaction is allowed to commit, thenit is said to support a FORCE policy (the opposite is NO-FORCE).Support for the STEAL policy implies that in the event that a transaction needs to be rolled-back (due to transaction failure or system crash), UNDOing the transaction will involve restoringthe values of any non-volatile copies of data that were updated by that transaction back to theirprevious committed state. In contrast, a NO-STEAL policy guarantees that the data values onnon-volatile storage are valid, so they do not need to be restored. A NO-FORCE policy raises thepossibility that some committed data values may be lost during a system crash because there is noguarantee that they have been placed on non-volatile storage. This means that substantial REDOwork may be required to preserve the durability of committed updates. In contrast, a FORCEpolicy ensures that the committed updates are placed on non-volatile storage, so that in the eventof a system crash, the updates will still be re
ected in the copy of the database on non-volatilestorage.From the above discussion, it should be apparent that a bu�er manager that supports thecombination of NO-STEAL and FORCE would place the fewest demands on UNDO and REDOrecovery. However, these policies may negatively impact the performance of the DBMS duringnormal operation (i.e., when there are no crashes or rollbacks) because they restrict the
exibilityof the bu�er manager. NO-STEAL obligates the bu�er manager to retain updated data in memory11

until a transaction commits or to write that data to a temporary location on non-volatile storage(e.g., a swap area). The problem with a FORCE policy is that it can impose signi�cant disk writeoverhead during the critical path of a committing transaction. For these reasons, many bu�ermanagers support the STEAL and NO-FORCE (STEAL/NO-FORCE) policies.2.2.3 LoggingIn order to deal with the UNDO and REDO requirements imposed by the STEAL and NO-FORCEpolicies respectively, database systems typically rely on the use of a log. A log is a sequential �le thatstores information about transactions and the state of the system at certain instances. Each entryin the log is called a log record. One or more log records are written for each update performed bya transaction. When a log record is created, it is assigned a Log Sequence Number (LSN) whichserves to uniquely identify that record in the log. LSNs are typically assigned in a monotonicallyincreasing fashion so that they provide an indication of relative position in the log. When an updateis made to a data item in the bu�er, a log record is created for that update. Many systems writethe LSN of this new log record into the page containing the updated data item. Recording LSNsin this fashion allows the recovery system to relate the state of a data page to logged updates inorder to tell if a given log record is re
ected in a given state of a page.Log records are also written for transaction management activities such as the commit or abortof a transaction. In addition, log records are sometimes written to describe the state of the systemat certain periods of time. For example, such log records are written as part of the checkpointingprocess. Checkpoints are taken periodically during normal operation to help bound the amount ofrecovery work that would be required in the event of a crash. Part of the checkpointing processinvolves the writing of one or more checkpoint records. These records can include informationabout the contents of the bu�er pool and the transactions that are currently active, etc. Theparticular contents of these records depends on the method of checkpointing that is used. Manydi�erent checkpointing methods have been developed, some of which involve quiescing the system toa consistent state, while others are less intrusive. A particularly non-intrusive type of checkpointingis used by the ARIES recovery method [Moha92b] that is described in the \Best Practices" section12

of this chapter.For transaction update operations there are two basic types of logging: physical and logical [Gray93].Physical log records typically indicate location (e.g., position on a particular page) of modi�ed datain the database. If support for UNDO is provided (i.e., a STEAL policy is used) then the valueof the item prior to the update is recorded in the log record. This is known as the before imageof the item. Similarly the after image, (i.e., the new value of the item after the update), is loggedif REDO support is provided. Thus, physical log records in a DBMS with STEAL/NO-FORCEbu�er management contain both the old and new data values of items. Recovery using physical logrecords has the property that recovery actions (i.e., UNDOs or REDOs) are idempotent, meaningthat they have the same e�ect no matter how many times they are applied. This property is im-portant if recovery is invoked multiple times as will occur if a system fails repeatedly (e.g., due toa power problem or a faulty device).Logical logging (sometimes referred to as operational logging) records only high-level informa-tion about operations that are performed, rather than recording the actual changes to items (orstorage locations) in the database. For example, the insert of a new tuple into a relation mightrequire many physical changes to the database such as space allocation, index updates, and reor-ganization, etc. Physical logging would require log records to be written for all of these changes.In contrast, logical logging would simply log the fact that the insertion had taken place, along withthe value of the inserted tuple. The REDO process for a logical logging system must determinethe set of actions that are required to fully reinstate the insert. Likewise, the UNDO logic mustdetermine the set of actions that make up the inverse of the logged operation.Logical logging has the advantage that it minimizes the amount of data that must be written tothe log. Furthermore, it is inherently appealing because it allows many of the implementation detailsof complex operations to be hidden in the UNDO/REDO logic. In practice however, recovery basedon logical logging is di�cult to implement because the actions that make up the logged operationare not performed atomically. That is, when a system is restarted after a crash, the database maynot be in an action consistent state with respect to a complex operation | it is possible that onlya subset of the updates made by the action had been placed on non-volatile storage prior to the13

crash. As a result, it is di�cult for the recovery system to determine which portions of a logicalupdate are re
ected in the database state upon recovery from a system crash. In contrast, physicallogging does not su�er from this problem but it can require substantially higher logging activity.In practice, systems often implement a compromise between physical and logical approaches thathas been referred to as physiological logging [Gray93]. In this approach log records are constrainedto refer to a single page, but may re
ect logical operations on that page. For example, a physiologicallog record for an insert on a page would specify the value of the new tuple that is added to thepage, but would not specify any free-space manipulation or reorganization of data on the pageresulting from the insertion; the REDO and UNDO logic for insert would be required to inferthe necessary operations. If a tuple insert required updates to multiple pages (e.g., data pagesplus multiple index pages), then a separate physiological log record would be written for eachpage updated. Physiological logging avoids the action consistency problem of logical logging, whilereducing, to some extent, the amount of logging that would be incurred by physical logging. TheARIES recovery method is one example of a recovery method that uses physiological logging.2.2.4 Write Ahead Logging (WAL)A �nal recovery principle to be addressed in this section is the Write Ahead Logging (WAL)protocol. Recall that the contents of volatile storage are lost in the event of a system crash. Asa result, any log records that are not re
ected on non-volatile storage will also be lost during acrash. WAL is a protocol that ensures that in the event of a system crash, the recovery log containssu�cient information to perform the necessary UNDO and REDO work when a STEAL/NO-FORCE bu�er management policy is used. The WAL protocol ensures that:1. All log records pertaining to an updated page are written to non-volatile storage before thepage itself is allowed to be over-written in non-volatile storage.2. A transaction is not considered to be committed until all of its log records (including itscommit record) have been written to stable storage.The �rst point ensures that UNDO information required due to the STEAL policy will be presentin the log in the event of a crash. Similarly, the second point ensures that any REDO information14

required to due to the NO-FORCE policy will be present in the non-volatile log. The WAL protocolis typically enforced with special support provided by the DBMS bu�er manager.3 Best Practices3.1 Concurrency Control3.1.1 Two-phase lockingThe most prevalent implementation technique for concurrency control is locking. Typically, twotypes of locks are supported, shared (S) locks and exclusive (X) locks. The compatibility of theselocks is de�ned by the compatibility matrix shown in Table 1. The compatibility matrix shows thattwo di�erent transactions are allowed to hold S locks simultaneously on the same data item, butthat X locks cannot be held on an item simultaneously with any other locks (by other transactions)on that item. S locks are used for protecting read access to data (i.e., multiple concurrent readersare allowed) and X locks are used for protecting write access to data. As long as a transaction isholding a lock, no other transaction is allowed to obtain a con
icting lock. If a transaction requestsa lock that cannot be granted (due to a lock con
ict), that transaction is blocked (i.e., prohibitedfrom proceeding) until all the con
icting locks held by other transactions are released.S XS y nX n nTable 1: Compatibility Matrix for S and X LocksS and X locks as de�ned in Table 1 directly model the semantics of con
icts used in thede�nition of con
ict serializability. Therefore, locking can be used to enforce serializability. Ratherthan testing for serializability after a schedule has been produced (as was done in the previoussection), the blocking of transactions due to lock con
icts can be used to prevent non-serializableschedules from ever being produced.A transaction is said to be well-formed with respect to reads if it always holds an S or an Xlock on an item while reading it, and well-formed with respect to writes if it always holds an Xlock on an item while writing it. Unfortunately, restricting all transactions to be well-formed is15

not su�cient to guarantee serializability. For example, a non-serializable execution such as that ofschedule (2) is still possible using well-formed transactions. Serializability can be enforced, however,through the use of two-phase locking (2PL). Two phase locking requires that all transactions bewell-formed and that they respect the following rule:Once a transaction has released a lock, it is not allowed to obtain any additional locks.This rule results in transactions that have two phases:1. A growing phase in which the transaction is acquiring locks; and2. A shrinking phase in which locks are released.The two-phase rule dictates that the transaction shifts from the growing phase to the shrink-ing phase at the instant it �rst releases a lock. To see how 2PL enforces serializability, consideragain schedule (2). Recall that the problem arises in this schedule because w0[A]! r1[A] butr1[B]! w0[b]. This schedule could not be produced under 2PL, because transaction 1 (Report-Sum) would be blocked when it attempted to read the value of A because transaction 0 would beholding an X lock on it. Transaction 0 would not be allowed to release this X lock before obtainingits X lock on B, and thus it would either abort or perform its update of B before transaction 1 isallowed to progress. In contrast, note that schedule (1) (the serial schedule) would be allowed in2PL. 2PL would also allow the following (serializable) interleaved schedule:r1[A]! r0[A]! r1[B]! c1 ! w0[A]! r0[B]! w0[B]! c0 (4)It is important to note, however, that two-phase locking is su�cient but not necessary forimplementing serializability. In other words, there are schedules that are serializable but would notbe allowed by two-phase locking. Schedule (3) is an example of such a schedule.In order to implement 2PL, the DBMS contains a component called a lock manager. The lockmanager is responsible for granting or blocking lock requests, for managing queues of blocked trans-actions, and for un-blocking transactions when locks are released. In addition, the lock manager isalso responsible for dealing with deadlock situations. A deadlock arises when a set of transactions16

is blocked, each waiting for another member of the set to release a lock. In a deadlock situation,none of the transactions involved can make progress. Database systems deal with deadlocks us-ing one of two general techniques: avoidance or detection. Deadlock avoidance can be achievedby imposing an order in which locks can be obtained on data items, by requiring transactions topre-declare their locking needs, or by aborting transactions rather than blocking them in certainsituations.Deadlock detection, on the other hand, can be implemented using timeouts or explicit checking.Timeouts are the simplest technique; if a transaction is blocked beyond a certain amount of time,it is assumed that a deadlock has occurred. The choice of a timeout interval can be problematic,however. If it is too short, then the system may infer the presence of a deadlock that does not trulyexist. If it is too long, then deadlocks may go undetected for too long a time. Alternatively thesystem can explicitly check for deadlocks using a structure called a waits-for graph. A waits-forgraph is a directed graph with a vertex for each active transaction. The lock manager constructs thegraph by placing an edge from a transaction Ti to a transaction Tj (i 6= j) if Ti is blocked waitingfor a lock held by Tj . If the waits-for graph contains a cycle, all of the transactions involved in thecycle are waiting for each other, and thus, they are deadlocked. When a deadlock is detected, oneor more of the transactions involved is rolled-back. When a transaction is rolled-back its locks areautomatically released, so the deadlock will be broken.3.1.2 Isolation LevelsAs should be apparent from the previous discussion, transaction isolation comes at a cost in po-tential concurrency. Transaction blocking can add signi�cantly to transaction response time.2 Asstated previously, serializability is typically implemented using two-phase locking, which requireslocks to be held at least until all necessary locks have been obtained. Prolonging the holding-timeof locks increases the likelihood of blocking due to data contention.In some applications, however, serializability is not strictly necessary. For example, a dataanalysis program that computes aggregates over large numbers of tuples may be able to tolerate2Note that other non-blocking approaches discussed later in this section also su�er from similar problems.17

some inconsistent access to the database in exchange for improved performance. The concept ofdegrees of isolation or isolation levels has been developed to allow transactions to trade concurrencyfor consistency in a controlled manner [Gray75, Gray93, Bere95]. In their 1975 paper, Gray et al.de�ned four degrees of consistency using characterizations based on locking, dependencies, andanomalies (i.e., results that could not arise in a serial schedule). The degrees were named degree0-3, with degree 0 being the least consistent, and degree 3 intended to be equivalent to serializableexecution.The original presentation has served as the basis for understanding relaxed consistency in manycurrent systems but it has become apparent over time that the di�erent characterizations in thatpaper were not speci�ed to an equal degree of detail. As pointed out in a recent paper by Berensonet al. [Bere95], the SQL-92 standard su�ers from a similar lack of speci�city. Berenson et al. haveattempted to clarify the issue, but it is too early to determine if they have been successful. Inthis section we focus on the locking-based de�nitions of the isolation levels, as they are generallyacknowledged to have \stood the test of time" [Bere95]. However, the de�nition of the degreesof consistency requires an extension to the previous description of locking in order to address thephantom problem.An example of the phantom problem is the following: assume a transaction Ti reads a set oftuples that satisfy a query predicate. A second transaction Tj inserts a new tuple that satis�es thepredicate. If Ti then executes the query again, it will see the new item, so that its second answerdi�ers from the �rst. This behavior could never occur in a serial schedule as a \phantom" tupleappears in the midst of a transaction, thus, this execution is anomalous. The phantom problem isan artifact of the transaction model consisting of reads and writes to individual data items thatwe have used so far. In practice, transactions include queries that dynamically de�ne sets of itemsbased on predicates. When a query is executed, all of the tuples that satisfy the predicate at thattime can be locked as they are accessed. Such individual locks, however, do not protect against thelater addition of further tuples that satisfy the predicate.One obvious solution to the phantom problem is to lock predicates instead of (or in additionto) individual items [Eswa76]. This solution is impractical to implement, however, due to the18

complexity of detecting the overlap of a set of arbitrary predicates. Predicate locking can beapproximated using techniques based on locking clusters of data or ranges of index values. Suchtechniques, however, are beyond the scope of this chapter. In this discussion we will assume thatpredicates can be locked without specifying the technical details of how this can be accomplished(see [Gray93, Moha92a] for detailed treatments of this topic).The locking-oriented de�nitions of the isolation levels are based on whether or not read and/orwrite operations are well-formed (i.e., protected by the appropriate lock), and if so, whether thoselocks are long duration or short duration. Long duration locks are held until the end of a transaction(EOT) (i.e., when it commits or aborts); short duration locks can be released earlier. Long durationwrite locks on data items have important bene�ts for recovery, namely, they allow recovery to beperformed using before images. If long duration write locks are not used, then the following scenariocould arise: w0[A]! w1[A]! a0 (5)In this case restoring A with T0's before image of it will be incorrect because it would overwrite T1'supdate. Simply ignoring the abort of T0 is also incorrect. In that case, if T1 were to subsequentlyabort, installing its before image would reinstate the value written by T0. For this reason and forsimplicity, locking systems typically hold long duration locks on data items. This is sometimesreferred to as strict locking [Bern87].Given these notions of locks, the degrees of isolation presented in the SQL-92 standard can beobtained using di�erent lock protocols. In the following, all levels are assumed to be well-formedwith respect to writes and to hold long duration write (i.e., exclusive) locks on updated data items.Four levels are de�ned (from weakest to strongest) 3:READ UNCOMMITTED - This level, which provides the weakest consistency guarantees, allowstransactions to read data that has been written by other transactions that have not committed.In a locking implementation this level is achieved by being ill-formed with respect to reads3It should be noted that two-phase locks can be substituted for the long-duration locks in these de�nitions withoutimpacting the consistency provided. Long-duration locks are typically used, however, to avoid the recovery-relatedproblems described previously. 19

(i.e., not obtaining read locks). The risks of operating at this level include (in addition tothe risks incurred at the more restrictive levels) the possibility of seeing updates that willeventually be rolled-back and the possibility of seeing some of the updates made by anothertransaction but missing others made by that transaction.READ COMMITTED - This level ensures that transactions only see updates that have been madeby transactions that have committed. This level is achieved by being well-formed with respectto reads on individual data items, but holding the read locks only as short duration locks.Transactions operating at this level run the risk of seeing non-repeatable reads (in additionto the risks of the more restrictive levels). That is, a transaction T0 could read a data itemtwice and see two di�erent values. This anomaly could occur if a second transaction were toupdate the item and commit in between the two reads by T0.REPEATABLE READ - This level ensures that reads to individual data items are repeatable, butdoes not protect against the phantom problem described previously. This level is achieved bybeing well-formed with respect to reads on individual data items, and holding those locks forlong duration.SERIALIZABLE - This level protects against all of the problems of the less restrictive levels,including the phantom problem. It is achieved by being well-formed with respect to reads onpredicates as well as on individual data items and holding all locks for long duration.A key aspect of this de�nition of degrees of isolation is that as long as all transactions executeat the READ UNCOMMITTED level or higher, they are able to obtain at least the degree ofisolation they desire without interference from any transactions running at lower degrees. Thus,these degrees of isolation provide a powerful tool that allows application writers or users to tradeo� consistency for improved concurrency. As stated earlier, the de�nition of these isolation levelsfor concurrency control methods that are not based on locking has been problematic. This issue isaddressed in depth in [Bere95].It should be noted, that the discussion of locking so far has ignored an important class of datathat is typically present in databases, namely, indexes. Because indexes are auxiliary information,20

they can be accessed in a non-two-phase manner without sacri�cing serializability. Furthermore, thehierarchical structure of many indexes (e.g., B-trees) makes them potential concurrency bottlenecksdue to high contention at the upper levels of the structure. For this reason, signi�cant e�ort hasgone into developing methods for providing highly-concurrent access to indexes. Pointers to someof this work can be found in the \For Further Information" section at the end of this chapter.3.1.3 Hierarchical LockingThe examples in the preceeding discussions of concurrency control primarily dealt with operationson a single granularity of data items (e.g., tuples). In practice, however, the notions of con
icts andlocks can be applied at many di�erent granularities. For example, it is possible to perform locking atthe granularity of a page, relation, or even an entire database. In choosing the proper granularityat which to perform locking there is a fundamental tradeo� between potential concurrency andlocking overhead. Locking at a �ne granularity, such as an individual tuple, allows for maximumconcurrency as only transactions that are truly accessing the same tuple have the potential tocon
ict. The downside of such �ne-grained locking, however, is that a transaction that accesses alarge number of tuples will have to acquire a large number of locks. Each lock request requires acall to the lock manager. This overhead can be reduced by locking at a coarser granularity butcoarse granularity raises the potential for false con
icts. For example, two transactions that updatedi�erent tuples residing on the same page would con
ict under page-level locking but not undertuple-level locking.The notion of hierarchical or multi-granular locking was introduced to allow concurrent transac-tions to obtain locks at di�erent granularities in order to optimize the above trade-o� [Gray75]. Inhierarchical locking, a lock on a granule at a particular level of the granularity hierarchy implicitlylocks all items included in that granule. For example, an S lock on a relation implicitly locks allpages and tuples in that relation. Thus a transaction with such a lock can read any tuple in therelation without requesting additional locks. Hierarchical locking introduces additional lock modesbeyond S and X. These additional modes allow transactions to declare their intention to performan operation on objects at lower levels of the granularity hierarchy. The new modes are IS, IX, and21

SIX for Intention Shared, Intention Exclusive and Shared with Intention Exclusive. An IS (or IX)lock on a granule provides no privileges on that granule, but indicates that the holder intends toobtain S (or X) locks on one or more �ner granules. An SIX lock combines an S lock on the entiregranule with an IX lock. SIX locks support the common access pattern of scanning the items in agranule (e.g., tuples in a relation) and choosing to update a fraction of them based on their values.Similarly to S and X locks, these lock modes can be described using a compatibility matrix.The compatibility matrix for these modes is shown in Table 2. In order for transactions locking atdi�erent granularities to coexist, all transactions must follow the same hierarchical locking protocolstarting from the root of the granularity hierarchy. This protocol is shown in Table 3. ForIS IX S SIX XIS y y y y nIX y y n n nS y n y n nSIX y n n n nX n n n n nTable 2: Compatibility Matrix for Regular and Intention LocksTo Get Must Have on all AncestorsIS or S IS or IXIX,SIX, or X IX or SIXTable 3: Hierarchical Locking Rulesexample, to read a single record, a transaction would obtain IS locks on the database, relation, andpage, followed by an S lock on the speci�c tuple. If a transaction wanted to read all or most tupleson a page, then it could obtain IS locks on the database and relation, followed by an S lock onthe entire page. By following this uniform protocol, potential con
icts between transactions thatultimately obtain S and/or X locks at di�erent granularities can be detected. A useful extension tohierarchical locking is known as lock escalation. Lock escalation allows the DBMS to automaticallyadjust the granularity at which transactions obtain locks based on their behavior. If the systemdetects that a transaction is obtaining locks on a large percentage of the granules that make upa larger granule, it can attempt to grant the transaction a lock on the larger granule so that noadditional locks will be required for subsequent accesses to other objects in that granule. Automatic22

escalation is useful because the access pattern that a transaction will produce is often not knownuntil runtime.3.1.4 Other Concurrency Control MethodsAs stated previously, two-phase locking is the most generally accepted technique for ensuring serial-izability. Locking is considered to be a pessimistic technique because it is based on the assumptionthat transactions are likely to interfere with each other and takes measures (e.g., blocking) to ensurethat such interference does not occur. An important alternative to locking is optimistic concur-rency control. Optimistic methods (e.g., [Kung81]) allow transactions to perform their operationswithout obtaining any locks. To ensure that concurrent executions do not violate serializability,transactions must perform a validation phase before they are allowed to commit. Many optimisticprotocols have been proposed. In the algorithm of [Kung81], the validation process ensures that thereads and writes performed by a validating transaction did not con
ict with any other transactionswith which it ran concurrently. If during validation it is determined a con
ict had occurred, thevalidating transaction is aborted and restarted.Unlike locking, which depends on blocking transactions to ensure isolation, optimistic policiesdepend on transaction restart. As a result, although they don't perform any blocking, the per-formance of optimistic policies can be negatively impacted by data contention (as are pessimisticschemes) | a high degree of data contention will result in a large number of unsuccessful transac-tion executions. The performance tradeo�s between optimistic and pessimistic have been addressedin numerous studies (see [Agra87]). In general, locking is likely to be superior in resource-limitedenvironments because blocking does not consume cpu or disk resources. In contrast, optimistictechniques may have performance advantages in situations where resources are abundant, becausethey allow more executions to proceed concurrently. If resources are abundant, then the resourceconsumption of restarted transactions will not signi�cantly hurt performance. In practice, howeverresources are typically limited and thus, concurrency control in virtually all commercial databasesystems is based on locking.Another class of concurrency control techniques is known asmultiversion concurrency con-23

trol (e.g., [Reed83]). As updating transactions modify data items, these techniques retain theprevious versions of the items on-line. Read-only transactions (i.e., transactions that perform noupdates) can then be provided with access to these older versions, allowing them to see a con-sistent (although possibly somewhat out-of-date) snapshot of the database. Optimistic, multiver-sion, and other concurrency control techniques (e.g., timestamping) are addressed in further detailin [Bern87].3.2 RecoveryThe recovery subsystem is generally considered to be one of the more di�cult parts of a DBMSto design for two reasons: First, recovery is required to function in failure situations and mustcorrectly cope with a huge number of possible system and database states. Second the recoverysystem depends on the behavior of many other components of the DBMS, such as concurrencycontrol, bu�er management, disk management, and query processing. As a result, few recoverymethods have been described in the literature in detail. One exception is the ARIES recoverysystem developed at IBM [Moha92b]. Many details about the ARIES method have been published,and the method has been included in a number of DBMSs. Furthermore, the ARIES methodinvolves only a small number of basic concepts. For these reasons, we focus on the ARIES methodin the remainder of this section. The ARIES method is related to many other recovery methods suchas those described in [Bern87, Gray93]. A comparison with other techniques appears in [Moha92b].3.2.1 Overview of ARIESARIES is a fairly recent re�nement of the Write-Ahead-Logging (WAL) protocol. Recall that theWAL protocol enables the use of a STEAL/NO FORCE bu�er management policy, which meansthat pages on stable storage can be overwritten at any time and that data pages do not need to beforced to disk in order to commit a transaction. As with other WAL implementations, each pagein the database contains a Log Sequence Number (LSN) which uniquely identi�es the log recordfor the latest update that was applied to the page. This LSN (referred to as the pageLSN) is usedduring recovery to determine whether or not an update for a page must be redone. LSN information24

is also used to determine the point in the log from which the Redo pass must commence duringrestart from a system crash. LSNs are often implemented using the physical address of the logrecord in the log to enable the e�cient location of a log record given its LSN.Much of the power and relative simplicity of the ARIES algorithm is due to its REDO paradigmof repeating history, in which it redoes updates for all transactions | including those that will even-tually be undone. Repeating history enables ARIES to employ a variant of the physiological loggingtechnique described earlier: it uses page-oriented REDO and a form of logical UNDO. Page-oriented REDO means that REDO operations involve only a single page and that the a�ectedpage is speci�ed in the log record. This is part of physiological logging. In the context of ARIES,logical UNDO means that the operations performed to undo an update do not need to be the exactinverses of the operations of the original update.In ARIES, logical UNDO is used to support �ne-grained (i.e., tuple-level) locking and high-concurrency index management. For an example of the latter issue, consider a case in whicha transaction T1 updates an index entry on a given page P1. Before T1 completes, a secondtransaction T2 could split P1, causing the index entry to be moved to a new page (P2). If T1 mustbe undone, a physical, page-oriented approach would fail because it would erroneously attemptto perform the UNDO operation on P1. Logical UNDO solves this problem by using the indexstructure to �nd the index entry, and then applying the UNDO operation to it in its new location.In contrast to UNDO, page-oriented REDO can be used because the repeating history paradigmensures that REDO operations will always �nd the index entry on the page referenced in the logrecord | any operations that had a�ected the location of the index operation at the time the logrecord was created will be replayed before that log record is redone.ARIES uses a three pass algorithm for restart recovery. The �rst pass is the Analysis pass, whichprocesses the log forward from the most recent checkpoint. This pass determines information aboutdirty pages and active transactions that is used in the subsequent passes. The second pass is theREDO pass, in which history is repeated by processing the log forward from the earliest log recordthat could require redo, thus insuring that all logged operations have been applied. The third passis the UNDO pass. This pass proceeds backwards from the end of the log, removing from the25

database the e�ects of all transactions that had not committed at the time of the crash. Thesepasses are shown in Figure 3. (Note that the relative ordering of the starting point for the REDOpass, the endpoint for the UNDO pass, and the checkpoint can be di�erent than that shown in the�gure.) The three passes are described in more detail below.
Log (time)

End of LogCheckpoint
Start of oldest
in−progress
transaction

Analysis
Redo
Undo

First update
potentially
lost during crashFigure 3: The Three Passes of ARIES RestartARIES maintains two important data structures during normal operation. The �rst is theTransaction Table, which contains status information for each transaction that is currently running.This information includes a �eld called the lastLSN, which is the LSN of the most recent log recordwritten by the transaction. The second data structure, called the Dirty Page Table, contains anentry for each "dirty" page. A page is considered to be dirty if it contains updates that arenot re
ected on stable storage. Each entry in the Dirty Page Table includes a �eld called therecoveryLSN, which is the LSN of the log record that caused the associated page to become dirty.Therefore, the recoveryLSN is the LSN of the earliest log record that might need to be redone forthe page during restart. Log records belonging to the same transaction are linked backwards intime using a �eld in each log record called the prevLSN �eld. When a new log record is written fora transaction, the value of the lastLSN �eld in the Transaction Table entry is placed in the prevLSN�eld of the new record and the new record's LSN is entered as the lastLSN in the Transaction Tableentry.During normal operation, checkpoints are taken periodically. ARIES uses a form of fuzzycheckpoints which are extremely inexpensive. When a checkpoint is taken, a checkpoint recordis constructed which includes the contents of the Transaction Table and the Dirty Page Table.Checkpoints are e�cient since no operations need be quiesced and no database pages are
ushedto perform a checkpoint. However, the e�ectiveness of checkpoints in reducing the amount of thelog that must be maintained is limited in part by the earliest recoveryLSN of the dirty pages atcheckpoint time. Therefore, it is helpful to have a background process that periodically writes dirty26

pages to non-volatile storage.3.2.2 AnalysisThe job of the Analysis pass of restart recovery is threefold: 1) It determines the point in the logat which to start the REDO pass, 2) It determines which pages could have been dirty at the timeof the crash in order to avoid unnecessary I/O during the REDO pass, and 3) It determines whichtransactions had not committed at the time of the crash and will therefore need to be undone.The Analysis pass begins at the most recent checkpoint and scans forward to the end of thelog. It reconstructs the Transaction Table and Dirty Page Table to determine the state of thesystem as of the time of the crash. It begins with the copies of those structures that were logged inthe checkpoint record. Then, the contents of the tables are modi�ed according to the log recordsthat are encountered during the forward scan. When a log record for a transaction that does notappear in the Transaction Table is encountered, that transaction is added to the table. When a logrecord for the commit or the abort of a transaction is encountered, the corresponding transaction isremoved from the Transaction Table. When a log record for an update to a page that is not in theDirty Page Table is encountered, that page is added to the Dirty Page Table, and the LSN of therecord which caused the page to be entered into the table is recorded as the recoveryLSN for thatpage. At the end of the Analysis pass, the Dirty Page Table is a conservative (since some pagesmay have been
ushed to non-volatile storage) list of all database pages that could have been dirtyat the time of the crash, and the Transaction Table contains entries for those transactions thatwill actually require undo processing during the UNDO phase. The earliest recoveryLSN of all theentries in the Dirty Page Table, called the �rstLSN, is used as the spot in the log from which tobegin the REDO phase.3.2.3 REDOAs stated earlier, ARIES employs a redo paradigm called repeating history. That is, it redoesupdates for all transactions, committed or otherwise. The e�ect of repeating history is that at theend of the REDO pass, the database is in the same state with respect to the logged updates that it27

was in at the time that the crash occurred. The REDO pass begins at the log record whose LSN isthe �rstLSN determined by Analysis and scans forward from there. To redo an update, the loggedaction is re-applied and the pageLSN on the page is set to the LSN of the redone log record. Nologging is performed as the result of a redo. For each log record the following algorithm is used todetermine if the logged update must be redone:� If the a�ected page is not in the Dirty Page Table then the update does NOT require redo.� If the a�ected page is in the Dirty Page Table, then if the recoveryLSN in the page's tableentry is greater than the LSN of the record being checked, the update does NOT require redo.� Otherwise, the LSN stored on the page (the pageLSN) must be checked. This may requirethat the page be read in from disk. If the pageLSN is greater than or equal to the LSN of therecord being checked, then the update does NOT require redo. Otherwise, the update MUSTbe redone.3.2.4 UNDOThe UNDO pass scans backwards from the end of the log. During the UNDO pass, all transac-tions that had not committed by the time of the crash must be undone. In ARIES, undo is anunconditional operation. That is, the pageLSN of an a�ected page is not checked because it is al-ways the case that the undo must be performed. This is due to the fact that the repeating of historyin the REDO pass insures that all logged updates have been applied to the page.When an update is undone, the undo operation is applied to the page and is logged usinga special type of log record called a Compensation Log Record (CLR). In addition to the undoinformation, a CLR contains a �eld called the UndoNxtLSN. The UndoNxtLSN is the LSN of thenext log record that must be undone for the transaction. It is set to the value of the prevLSN �eldof the log record being undone. The logging of CLRs in this fashion enables ARIES to avoid everhaving to undo the e�ects of an undo (e.g., as the result of a system crash during an abort) therebylimiting the amount of work that must be undone and bounding the amount of logging done in theevent of multiple crashes. When a CLR is encountered during the backwards scan, no operation28

is performed on the page, and the backwards scan continues at the log record referenced by theUndoNxtLSN �eld of the CLR, thereby jumping over the undone update and all other updates forthe transaction that have already been undone (the case of multiple transactions will be discussedshortly). An example execution is shown in Figure 4.
Log (time)

Write
page 1

LSN: 10 20 30

Write
page 1

Write
page 1

Restart

CLR FOR
LSN 30

U
ndo

CLR FOR

U
ndo

LSN 20

Restart

CLR FOR

U
ndo

LSN 10

40 50 60Figure 4: The Use of CLRs for UNDOIn Figure 4, a transaction logged three updates (LSNs 10, 20, and 30) before the system crashedfor the �rst time. During REDO, the database was brought up to date with respect to the log (i.e.,10, 20, and/or 30 were redone if they weren't on non-volatile storage), but since the transactionwas in progress at the time of the crash, they must be undone. During the UNDO pass, update30 was undone, resulting in the writing of a CLR with LSN 40, which contains an UndoNxtLSNvalue that points to 20. Then, 20 was undone, resulting in the writing of a CLR (LSN 50) withan UndoNxtLSN value that points to 10. However, the system then crashed for a second timebefore 10 was undone. Once again, history is repeated during REDO which brings the databaseback to the state it was in after the application of LSN 50 (the CLR for 20). When UNDO beginsduring this second restart, it will �rst examine the log record 50. Since the record is a CLR, nomodi�cation will be performed on the page, and UNDO will skip to the record whose LSN is storedin the UndoNxtLSN �eld of the CLR (i.e., LSN 10). Therefore, it will continue by undoing theupdate whose log record has LSN 10. This is where the UNDO pass was interrupted at the timeof the second crash. Note that no extra logging was performed as a result of the second crash.In order to undo multiple transactions, restart UNDO keeps a list containing the next LSN tobe undone for each transaction being undone. When a log record is processed during UNDO, theprevLSN (or UndoNxtLSN, in the case of a CLR) is entered as the next LSN to be undone for thattransaction. Then the UNDO pass moves on to the log record whose LSN is the most recent of thenext LSNs to be redone. UNDO continues backward in the log until all of the transactions in thelist have been undone up to and including their �rst log record. UNDO for transaction rollback29

works similarly to the UNDO pass of the restart algorithm as described above. The only di�erenceis that during transaction rollback, only a single transaction (or part of a transaction) must beundone. Therefore, rather than keeping a list of LSNs to be undone for multiple transactions,rollback can simply follow the backward chain of log records for the transaction to be rolled back.4 Research Issues and SummaryThe model of ACID transactions that has been described in this chapter has proven to be quitedurable in its own right, and serves as the underpinnings for the current generation of database andtransaction processing systems. This chapter has focused on the issues of concurrency control andrecovery in a centralized environment. It is important to note, however, that the basic model isused in many types of distributed and parallel DBMS environments and the mechanisms describedhere have been successfully adapted for use in more complex systems. Additional techniques,however, are needed in such environments. One important technique is two-phase commit, whichis a protocol for ensuring that all participants in a distributed transaction agree on the decision tocommit or abort that transaction.While the basic transaction model has been a clear success, it's limitations have also beenapparent for quite some time (e.g., [Gray81]). Much of the ongoing research related to concurrencycontrol and recovery is aimed at addressing some of these limitations. This research includes thedevelopment of new implementation techniques, as well as the investigation of new and extendedtransaction models.The ACID transaction model su�ers from a lack of
exibility and the inability to model manytypes of interactions that arise in complex systems and organizations. For example, in collabo-rative work environments, strict isolation is not possible nor even desirable [Kort95]. Work
owmanagement systems are another example where the ACID model, which works best for relativelysimple and short transactions, is not directly appropriate. For these types of applications, a richer,multi-level notion of transactions is required.In addition to the problems raised by complex application environments, there are also manycomputing environments for which the ACID model is not fully appropriate. These include envi-30

ronments such as mobile wireless networks, where large periods of disconnection are expected, andloosely-coupled wide-area networks (the Internet is an extreme example) in which the availabilityof systems is relatively low. The techniques that have been developed for supporting ACID trans-actions must be adjusted to cope with such highly-variable situations. New techniques must alsobe developed to provide concurrency control and recovery in non-traditional environments such asheterogeneous systems, dissemination-oriented environments, and others.A �nal limitation of ACID transactions in their simplest form is that they are a general mech-anism, and hence, do not exploit the semantics of data and/or applications. Such knowledge couldbe used to signi�cantly improve system performance. Therefore, the development of concurrencycontrol and recovery techniques that can exploit application-speci�c properties is another area ofactive research.As should be obvious from the preceding discussion, there is still a signi�cant amount of workthat remains to be done in the areas of concurrency control and recovery for database systems.The basic concepts, however, such as serializability theory, two-phase locking, write ahead logging,etc. will continue to be a fundamental technology, both in their own right, and as building blocksfor the development of more sophisticated and
exible information systems.De�ning TermsACID properties: The transaction properties of Atomicity, Consistency, Isolation, and Dura-bility that are upheld by the DBMS.abort: The process of rolling back an uncommitted transaction. All changes to the databasestate made by that transaction are removed.checkpointing: An action taken during normal system operation that can help limit the amountof recovery work required in the event of a system crash.commit: The process of successfully completing a transaction. Upon commit, all changes to thedatabase state made by a transaction are made permanent and visible to other transactions.31

concurrency control: The mechanism that ensures that individual users see consistent statesof the database even though operations on behalf of many users may be interleaved by thedatabase system.concurrent execution: The (possibly) interleaved execution of multiple transactions simultane-ously.con
icting operations: Two operations are said to con
ict if they both operate on the samedata item and at least one of them is a write().deadlock: A situation in which a set of transactions is blocked, each waiting for another memberof the set to release a lock. In such a case none of the transactions involved can make progress.log: A sequential �le that stores information about transactions and the state of the system atcertain instances.log record: An entry in the log. One or more log records are written for each update performedby a transaction.Log Sequence Number (LSN): A number assigned to a log record, which serves to uniquelyidentify that record in the log. LSNs are typically assigned in a monotonically increasingfashion so that they provide an indication of relative position.multiversion concurrency control: A concurrency control technique that provides read-onlytransactions with con
ict-free access to previous versions of data items.non-volatile storage: Storage, such as magnetic disks or tapes, whose contents persist acrosspower failures and system crashes.optimistic concurrency control: A concurrency control technique that allows transactions toproceed without obtaining locks and ensures correctness by validating transactions upon theircompletion.recovery: The mechanism that ensures that the database is fault tolerant; that is, that thedatabase state is not corrupted as the result of a software, system, or media failure.32

schedule: A schedule for a set of transaction executions is a partial ordering of the operationsperformed by those transactions, which shows how the operations are interleaved.serial execution: The execution of a single transaction at-a-time.serializability: The property that a (possibly interleaved) execution of a group transactions hasthe same e�ect on the database, and produces the same output as some serial (i.e., non-interleaved) execution of those transactions.STEAL/NO-FORCE: A bu�er management policy that allows committed data values to beoverwritten on non-volatile storage and does not require committed values to be written tonon-volatile storage. This policy provides
exibility for the bu�er manager at the cost ofincreased demands on the recovery sub-system.transaction: A unit of work, possibly consisting of multiple data accesses and updates, that mustcommit or abort as a single atomic unit. Transactions have the ACID properties of Atomicity,Consistency, Isolation, and Durability.two-phase locking (2PL): A locking protocol that is a su�cient but not a necessary conditionfor serializability. Two phase locking requires that all transactions be well-formed and thatonce a transaction has released a lock, it is not allowed to obtain any additional locks.volatile storage: Storage, such as main memory, whose state is lost in the event of a systemcrash or power outage.well-formed: A transaction is said to be well-formed with respect to reads if it always holds ashared or an exclusive lock on an item while reading it, and well-formed with respect to writesif it always holds an exclusive lock on an item while writing it.Write Ahead Logging: A protocol that ensures all log records required to correctly performrecovery in the event of a crash a placed on non-volatile storage.33

References[Agra87] Agrawal, R., Carey, M., Livny, M., \Concurrency Control Performance Modeling: Alter-natives and Implications", ACM Transactions on Database Systems, 12(4), December,1987.[Bere95] Berenson, H., Bernstein, P., Gray, J., Melton, J., Oneil, B., Oneil, P., \A Critique ofANSI SQL Isolation Levels", Proc. of the ACM SIGMOD International Conference onthe Management of Data, San Jose, CA., June, 1995.[Bern87] Bernstein, P., Hadzilacos, V., Goodman, N., Concurrency Control and Recovery inDatabase Systems, Addison-Wesley, 1987.[Bjor73] Bjork, L., \Recovery Scenario for a DB/DC System", Proc. of the ACM Annual Con-ference, Atlanta, 1973.[Davi73] Davies, C., \Recovery Semantics for a DB/DC System", Proc. of the ACM AnnualConference, Atlanta, 1973.[Eswa76] Eswaran, L, Gray, J., Lorie, R., Traiger, I., \The Notion of Consistency and PredicateLocks in a Database System", Communications of the ACM, 19(11), November, 1976.[Gray75] Gray, J., Lorie, R., Putzolu, G., Traiger, I., \Granularity of Locks and Degrees ofConsistency in a Shared Database", IFIP Working Conference on Modelling of DatabaseManagement Systems, 1975.[Gray81] Gray, J., \The Transaction Concept: Virtues and Limitations", Proc. of the SeventhInternational Conference on Very Large Databases, Cannes, 1981.[Gray93] Gray, J., Reuter, A., Transaction Processing: Concepts and Techniques, Morgan Kauf-mann, San Mateo, CA, 1993.[Haer83] Haerder, T., Reuter, A., \Principles of Transaction-Oriented Database Recovery" ACMComputing Surveys, 15(4), 1983. 34

[Kort95] Korth, H., \The Double Life of the Transaction Abstraction: Fundamental Principleand Evolving System Concept", Proc. of the Twenty-First International Conference onVery Large Databases, Zurich, 1995.[Kung81] Kung, H, and Robinson, J., \On Optimistic Methods for Concurrency Control", ACMTransactions on Database Systems, 6(2), 1981.[Lome77] Lomet, D., \Process Structuring, Synchronization and Recovery Using Atomic Actions"SIGPLAN Notices 12(3), March, 1977.[Moha92a] Mohan, C., \ARIES/KVL: A Key-Value Locking Method for Concurrency Control ofMultiaction Transactions Operating on B-Tree Indexes", , Proc. of the 16th Interna-tional Conference on Very Large Data Bases, Brisbane, August, 1990.[Moha92b] Mohan, C., Haderle, D. Lindsay, B., Pirahesh, H., Schwarz, P., \ARIES: A TransactionMethod Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-AheadLogging", ACM Transactions on Database Systems, 17(1), March, 1992.[Papa86] Papdimitriou, C., The Theory of Database Concurrency Control, Computer SciencePress, Rockville, MD, 1986.[Reed83] Reed, D., \Implementing Atomic Actions on Decentralized Data" ACM Transactionson Computer Systems 1(1) February, 1983.[Rose77] Rosenkrantz, D., Sterns, R., Lewis, P., \System Level Concurrency Control for Dis-tributed Database Systems", ACM Transactions on Database Systems, 3 (2), 1977.For Further InformationFor many years, what knowledge that existed in the public domain about concurrency controland recovery was passed-on primarily though the use of multiple-generation copies of a set oflecture notes written by Jim Gray in the late seventies (\Notes on Database Operating Systems" inOperating Systems: An Advanced Course published by Springer-Verlag, Berlin, 1978). Fortunately,35

this state of a�airs has been supplanted by the publication of Transaction Processing: Conceptsand Techniques by Jim Gray and Andreas Reuter (Morgan Kaufmann, San Mateo, 1993). Thislatter book contains a detailed treatment of all of the topics covered in this chapter, plus manyothers that are crucial for implementing transaction processing systems.An excellent treatment of concurrency control and recovery theory and algorithms can be foundin Concurrency Control and Recovery in Database Systems by Phil Bernstein, Vassos Hadzilacos,and Nathan Goodman, (Addison-Wesley, Reading MA, 1987). Another source of valuable infor-mation on concurrency control and recovery implementation is the series of papers on the ARIESmethod by C. Mohan and others at IBM, some of which are referenced in this chapter. The bookThe Theory of Database Concurrency Control by Christos Papadimitriou (Computer Science Press,Rockville MD, 1986) covers a number of serializability models.The performance aspects of concurrency control and recovery techniques have been only brie
yaddressed in this chapter. More information can be found in the recent book Performance of Con-currency Control Mechanisms in Centralized Database Systems edited by Vijay Kumar (PrenticeHall, Englewood Cli�s, NJ, 1996). Also, the performance aspects of transactions are addressedin The Benchmark Handbook: For Database and Transaction Processing Systems (second edition)edited by Jim Gray (Morgan Kaufmann, San Mateo, 1993).Finally, extensions to the ACID transaction model are discussed in Database Transaction Modelsedited by Ahmed Elmagarmid (Morgan Kaufmann, San Mateo, 1993). Papers containing themost recent work on related topics appear regularly in the ACM SIGMOD Conference and theInternational Conference on Very Large DataBases (VLDB), among others.
36

