fullName: andrewlID: section:

15-112 S26 Quiz1 Version A
Time: 20 Minutes

You must write your name on this paper and hand this back in immediately after the
assessment. If we do not receive it immediately, you will receive a zero on the assessment.
Do not unstaple any pages. All pages must be handed in intact.

Do not use your own scrap paper. You should not need it, but if you must absolutely have
scrap paper, raise your hand and we will provide some. Write your andrewlID clearly on it
and hand it in with your quiz. We will not grade anything on scrap paper.

You may not ask questions during the quiz, except for English-language clarification
questions. If you are unsure about a problem, take your best guess.

Before and during the quiz, you may not view any other notes, prior work, websites or
resources, including any form of Al. You may not use calculators, phones, laptops, or any
other devices. You may not communicate with anyone else except for current 112 TAs or
faculty during the assessment. All syllabus policies apply.

You may not discuss this test with anyone else, even briefly, in any form, until we have
released grades. Failure to abide by these rules may result in an academic integrity
violation.

Do not use material we have not yet covered. Thus, do not use loops, strings, lists, tuples,
sets, dictionaries, OOP, or recursion.

Do not open this or look inside (even briefly) before you are ready to begin. Do not spend
more than the specified time noted above on this assessment.

Multiple Choice [10 pts, 2 pts each]
Indicate your answer by filling in the dot(s). Unless otherwise specified, only fillin one dot
for each question.

MC1: What happens when the following code is run?

def f(x):
if x % 2 == 0:
return 10 / X
else:
return x + 'a’

print(f(3), f(4))

O A. It crashes with a ZeroDivisionError.
O B. It crashes with a TypeError.

O C. It crashes with a SyntaxError.

O D. It does not crash but has a logical error.

O E. It does not crash and prints: aaa 2.5

MC2. Given these functions, which of the following will crash? Select all that apply.
def f(x):
return x, 2*x

def g(x, y):

return x + 2*y
OA. x = £(5)
OB. x, y = f(5)
Oc. x = g(1, 2)

Ob. x, y=g@1, 2)

MC3. Whatdoes ((3 < 5) and (0 == 1//9)) evaluate to?

O A.True

O B.False

O C. None

O D. It crashes.

O E. None of the above.

MC4. Whatdoes ((3 < 5) or (0 == 1//0)) evaluate to?

O A.True

O B.False

O C. None

O D. It crashes.

O E. None of the above.

MC5. What does (1 and (0 or 3)) evaluate to?

O A. True

O B. False

Oc. o
Ob. 1
OE. 3

Code Tracing [40 pts, 10 pts each]

CT1:[10 pts]
Indicate what the following code prints. Place your answer (and nothing else) in the box below. If a
line of code crashes, just print "crash" (without quotes) and stop the CT at that point.

def ctl(x, y):
print(x * 6)
print(y * '7")
print(x % 7)
print(7 % x)

print(ctl(11, 3))

CT2:[10 pts]
Indicate what the following code prints. Place your answer (and nothing else) in the box below. If a
line of code crashes, just print "crash" (without quotes) and stop the CT at that point.

def ct2(q, r):
print(-q//10)
print(abs(r - 5))
print(1-2**3+4*5//6)
return type(20/10) == type(20//10)

print(ct2(53, 3))

CT3:[10 pts]
Indicate what the following code prints. Place your answer (and nothing else) in the box below. If a
line of code crashes, just print "crash" (without quotes) and stop the CT at that point.

import math

def f(x):
X**=2
X += 4
return x/10 if x < 30 else x//10

def ct3(x):
y = f(x + 1)
print(y) # don't miss this!
X +=1

return f(x + math.ceil(y))

print(ct3(4))

CT4:[10 pts]
Indicate what the following code prints. Place your answer (and nothing else) in the box below. If a
line of code crashes, just print "crash" (without quotes) and stop the CT at that point.

def ctd(f):
if £ < o:

if f < o:

f += 3
z = f**2
print('z:', z)
if z > 3:

return z**2%3
elif z > o:

return 'z' * (z+1)
else:

return z

print(ct4(-4))
print(ct4(-3))
print(ct4(3))

FR: computeEncodedOperation [50 pts]

Background: this problem takes a spec which is a single non-negative integer that encodes
an operation that can be +, -, or min.

The spec is 7 digits (though it can include leading 0's). The leftmost 3 digits are x, the
middle digit is the opcode, and the rightmost 3 digits are y.

Thus, both x and y are integers between 0 and 999 (inclusive), and the opcode is an integer
between 0 and 9 (inclusive).

So if the specis 3451024, then x is 345, the opcode is 1, and y is 24.

Here are the meanings of the opcodes:

e 1 meansplus
e 2 means minus
e any other digit means min

With that, write the function computeEncodedOperation(spec) that takes a legal spec as
just described and returns the result of applying the operator associated with that opcode
tothevalues xandy.

For example, consider computeEncodedOperation(3451024):

e Here, xis 345, the opcodeis 1,andyis 24
e anopcode of 1 means plus
e sothisreturns 345 + 24, which is 369

As another example, consider computeEncodedOperation(3452024):

e Here, xis 345, the opcodeis2,andyis 24
e anopcode of 2 means minus
e so thisreturns 345 - 24, which is 321

Next, consider computeEncodedOperation(3453024):

e Here, xis 345, the opcodeis 3, andyis 24
e anopcode of 3 means min
e so thisreturns min(345, 24), which is 24

Finally, consider computeEncodedOperation(31002):

e This example includes leading 0's

e Here, xis 3,the opcodeis1,andyis 2.
e anopcode of 1 means plus

e sothisreturns 3+ 2, whichis5b

Thus:

assert(computeEncodedOperation(3451024) == 369) # 345 + 24 == 369
assert(computeEncodedOperation(3452024) == 321) # 345 - 24 == 321
assert(computeEncodedOperation(3453024) == 24) # min(345, 24) == 24
assert(computeEncodedOperation(31002) == 5) #3+2==075

Write your solution here and on the next page:

BonusCT

These CTs are optional, and intended to be very challenging. They are worth very few
points. Indicate what the following code prints. Place your answers (and nothing else) in
the boxes below. If a line of code crashes, just print "crash" (without quotes) and stop
the CT at that point.

bonusCT1: [1pt]

def bonusCtl(n):

def f(n):
return int(str(n%100) * (n%10)) + 1
def g(n):

return 100*(n%10) + 10*(n//10%10) + (n//100%10)
f,g,n = g,f,g(f(n))
return f(1 + g(1 + n))
print(bonusCt1(12345))

bonusCT2: [1pt]

import math
def bonusCt2(x, y):

if math.pow != bonusCt2:

math.pow = bonusCt2

return 42 if x > y else (math.pow(4, 2) + min(x, y) + max(x, y))
min = max # don't miss this!
max = min # or this!
print(bonusCt2(1, 3))

