Programming Basics

15-110 — Wednesday 01/14

e Over 85% of students completed Ex1-1: well done!

* If you haven't completed it yet, you still can. Exercises can be submitted late
under the revision policy.

* Checkl due next Tuesday at noon
* Tutorial: how to download & work on written assighnments
* Tutorial: how to submit files on Gradescope

* No recitation tomorrow
* First recitation will be in week 2 when we have material to review

* Recognize and use the basic data types in programs

* Interpret and react to basic error messages caused by programs

* Use variables in code and trace the different values they hold

Python and IDEs

Computers only know how to do what we tell them to do. Programs
communicate with a computer and tell it what to do.

Algorithms can be expressed as programs in many different
programming languages. Different languages use different syntax
(wording) and commands, but they all share the same set of
algorithmic concepts.

In this class, we'll use Python, a popular programming language. P

When writing programs, we use IDEs — Integrated Development
Environments. These are like text editors for programs.

In this class, we recommend that you use the Thonny IDE. It is fairly
lightweight, which makes it good for novices.

We will mostly use two parts of the Thonny IDE while writing code-
the editor and the interpreter.

The editor is just a normal text editor.
When we save text, itis saved toa .py
file, but this is still just normal text.

The interpreter (or shell) does the actual
work of converting our Python text into
instructions the computer can run. This
happens when you click Run Current
Script from the Run menu.

We can also run single lines of code in the
interpreter directly. We'll start by doing
that. In general, use the interpreter to run
short tasks and the editor for long tasks.

interpreter

editor

T Thonny - Ch\Users\river\Downloads\testpy @ 3:13

File Edit View Run Tools Help

R

test.py

Shell

>>>

>>>

R @
X =1
y =2

print(x + yﬂ

[

Python 3.7.9

/

Data Types

Most programs we write will keep track of some kind of information
and change it with actions. We call that information data.

Data have different types depending on their properties. We'll start
by going over three core categories: numbers, text, and truth values.

Data can also be combined using operations. We'll show some basic
operations for each data type.

Numbers can be represented by two types in Python:
* Integers (0, 14, -7) are whole numbers.
* Floating point numbers (3.0, 5.735, 8e10) include a decimal point.

Numbers can also be combined using math operators:
+ : addition

- : subtraction

* : multiplication

/ : division

** . power (2**3 = 8)

Python can combine multiple operations together as a whole and follows order of
operations. Use parentheses () to specify the order as needed.

An expression like 4**2 or (5-2) /3 is a piece of code that evaluates to a data value.
You tell the interpreter to evaluate a piece of code by pressing Enter.

Text values in Python are called strings. Text is recognized by Python
when it is put inside of quotes, either single quotes ('Hello ") or
double quotes ("Hello").

Strings can be concatenated together using addition.
E.g, "Hello"” + "World" produces "HelloWorld".

Strings can also be repeated using multiplication with an integer!
E.g, "Hello" * 3 produces "HelloHelloHello™

11

Finally, Python can evaluate whether certain expressions are true or false. These
types of values are called Booleans after the mathematician George Boole.

Booleans can be either True or False (no quotes, and capitals are required).
These names are built into Python directly.

To get a Boolean, we can write True or False directly, or do a comparison. The
basic comparison operators are familiar: <, >, <=, and >=.

We can also check if two values are equal (==), or not equal (!=).
E.g., "Hello" == "World" evaluatesto False

Mixing types in Python can cause error messages when the types don't go together well.

An error message is how the computer tells you it doesn't understand a command you
wrote.

For example, "Hello" + 5 results in a TypeError.

Traceback (most recent call last):
File "<pyshell>", line 1, in <module>
TypeError: can only concatenate str (not "int") to str

Similarly, "Hello" < True results in a TypeError.

On the other hand, integers and floating point numbers can be mixed freely. When this
happens, the result is usually a floating point number.

For example, 8 * 2.0 results in 16.0

13

When reading error messages, note that Python uses shortened names
for the four types we've covered.

Integers are called int

Floating point numbers are called float
Strings are called str

Booleans are called bool

Let's do a poll to see if you can identify data
types correctly! For each expression, vote for
the type you think it will evaluate to!

Hold up 1, 2, 3, or 4 fingers to indicate your
vote:

* 1: bool
e 2: float
* 3:int

* 4: string

|I1II + |I2II

15-110

"Hello" ==

3.0 * 5.0

"World"

15

Writing Code in Files

What if we want to run more than one line of code at a time? We'll need to
use the editor.

Write lines of code in the editor, save the file, then click Run current script.

Thonny will interpret the entire text file into Python code the computer will
understand. It will then run line-by-line through the entire program
sequentially, where each line is ended by the enter key.

This is different from the interpreter, which ran each line individually
(though with the context of the previous lines).

Code run from a file doesn't show the evaluated result of every line (unlike
code run from the interpreter). If we want to display a result, we need to
use the command print.

print takes an input expression between parentheses, evaluates the
expression, and displays the evaluated result in the interpreter.

For example, assume we run these lines in the editor:
print(4 - 2) displays 2 in the interpreter.
print("15-110") displays 15-110; note that the quotes aren't included.

5 > 3 does not display True; it displays nothing, and the result is thrown
away.

If you want to display multiple values in the interpreter on the same line, you have
two choices.

First, if you're printing strings, you can concatenate them together.
print("Result: " + "2")

Alternatively, you can use commas in the print command to separate the values. It
will then separate the printed values with spaces automatically. This is helpful for
printing mixed types.

print("Result:", 2)

When writing a program with multiple lines, you might want to leave notes to yourself or
another person outside of the program commands. Use comments to do this.

Any text that follows a # on a line will be ignored by the computer:
print("Hello World")

To comment out a block of code, put or ' ' ' at the beginning and end:

You can also select a block of code and click 'Toggle Comment' in Thonny to
comment/uncomment a block of code.

Error Messages

Computers aren't very clever. If you change the syntax of code even a
little bit, the computer might not understand what you mean and will
raise an error.

Print("Hello World")
print "Hello World"

When you get an error message, read it carefully. Error messages
contain useful information that will help you fix your code.

. T print(Hello World)
1. Look for the line number. This line tells you print("Hello World™)

approximately where the error occurred.

>>>
2. Look at the error type Traceback (most recent call last):
File "C:\Users\river\Downloads\test.py", line 1
i inh print (Hello World) . qe
3. If it says SyntaxError, look for the inline Y e inline arrow
arrow. The pOS|t|0n gives you more SyntaxError: invalid syntax
information about the location of the _
problem (though it isn't always right). line number
4. If it says something else, read the error
message. The error type and its message give print("Hello World")
you information about what went wrong. Print("Hello World")

>
Hello World

We'll talk more about the debugging process in Traceback (most recent call last):

File "C:\Users\river\Downloads\test.py", line 2, in <module>

future lectures. Print ("Hello World")

NameError: name 'Print' is not defined

>>> T

error type

Whitespace is Syntax, Sometimes

Be careful when using whitespace (spaces, tabs, and the return key) — it can

sometimes count as syntax too!

In general, whitesfpace at the beginning of a line has meanin
means more in a few weeks. Whitespace in the middle of to
Whitespace between tokens is okay.

print("Hello World") # IndentationError
print ("Hello World") # SyntaxError
print ("Hello World") # this is okay!

e

we'll discuss what it
NS causes errors.

24

Variables

Our last core building block is the variable. Variables let us save data so we can reuse it in
future computations.

A variable is a name that we define in the program (without quotes), like x or result. We
define a variable with an equal sign:

variable = value

Note that the variable can only go on the left side of this code, and its value (or an
expression that evaluates to a value) goes on the right. For example:

name = "Sylvi”
result = 5 + 2
42 = foo

You can think of a variable as a sticky note that is applied
to a data value.

When you want to use the data value, you can use it
directly or refer to the name on the note.

You assign a variable to a value by writing the name on
the note and putting the note on the value.

Python needs to keeﬂ track of certain pieces of data that change over time as a
program runs (like which variables exist and what their values are, what has been
printed to the screen, etc). We call this information the program state.

When you set a variable to a new value, you change the program's state. That makes
variable assignments too complex to be represented as expressions (which are more

like data values).

A statement is an action taken by the program that may change the program state. It
does not evaluate to a value; instead, it executes a change, then moves on to the

next line. Variable assignments are statements.

Variables themselves, on the other hand, actually are expressions — they evaluate to
their values!

Using and Updating Variables

Once we've defined a variable, we can use it in later expressions.

5
y = X - 2 # x evaluates to 5

X

Unlike in math, we can also change the variable to hold a new value, if needed.

This is like moving
the sticky note to

X =
5 a hew value

X =X - 1 # x evaluates to 5 on the right
then changes to 4 X
print("x:", x) # x: 4 \

—

e

29

Python is Sequential

Note that Python runs every line in order and doesn't peek ahead. If
you want to use a variable, you must define it before it is used.

print(foo) # this causes an error!
foo = 42

foo = 42
print(foo) # this is fine!

30

Activity: Trace the Variable Values

You do: Trace through the following lines of code. What values do a
and b hold at the end?

a =4
b =7
b =a - 2
a =a+1

31

Variable names can use any combination of uppercase letters,
lowercase letters, digits, and underscores. They must start with a
letter or . Starting with a lowercase letter is recommended.

Variable names are case sensitive. For example, Banana is not the

same as banana. Make sure to type your variables correctly, or you'll
get a NameError!

* Recognize and use the basic data types in programs

* Interpret and react to basic error messages caused by programs

* Use variables in code and trace the different values they hold

	Slide 1: Programming Basics
	Slide 2: Announcements
	Slide 3: Learning Objectives
	Slide 4: Python and IDEs
	Slide 5: Programs are Algorithms for Computers
	Slide 6: An IDE is a Text Editor for Programs
	Slide 7: Write in the Editor, Run in the Interpreter
	Slide 8: Data Types
	Slide 9: Data Is Information We Can Manipulate
	Slide 10: Numbers and Operations in Python
	Slide 11: Text in Python
	Slide 12: Truth Values in Python
	Slide 13: Type Mismatches Cause Errors
	Slide 14: Data Type Names
	Slide 15: Activity: Predict the Type
	Slide 16: Writing Code in Files
	Slide 17: Writing Longer Programs: Use the Editor
	Slide 18: Print Displays Data
	Slide 19: Printing Multiple Values
	Slide 20: Comments are Ignored by the Computer
	Slide 21: Error Messages
	Slide 22: Syntax Needs to be Exact
	Slide 23: Debug Errors By Reading the Message
	Slide 24: Whitespace is Syntax, Sometimes
	Slide 25: Variables
	Slide 26: Variables Let Us Store Data
	Slide 27: Variables are like Sticky Notes
	Slide 28: Expressions vs. Statements
	Slide 29: Using and Updating Variables
	Slide 30: Python is Sequential
	Slide 31: Activity: Trace the Variable Values
	Slide 32: Sidebar: Rules for Variable Names
	Slide 33: Learning Objectives

