Regression and Classification with Neural Networks

Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in of a signicant portion of these slides your own lecture, please include this message, or the following link to the source repository of Andrew's tutorials: http://www.cs.cmu.edu/~awm/tutorials Comments and corrections gratefully received.

Andrew W. Moore

Professor
School of Computer Science
Carnegie Mellon University
www.cs.cmu.edu/~awm awm@cs.cmu.edu 412-268-7599

Linear Regression

DATASET

inputs	outputs
$x_{1}=1$	$y_{1}=1$
$x_{2}=3$	$y_{2}=2.2$
$x_{3}=2$	$y_{3}=2$
$x_{4}=1.5$	$y_{4}=1.9$
$x_{5}=4$	$y_{5}=3.1$

Linear regression assumes that the expected value of the output given an input, $E[y / x]$, is linear.
Simplest case: $\operatorname{Out}(x)=w x$ for some unknown w.
Given the data, we can estimate w.

1-parameter linear regression

Assume that the data is formed by

$$
y_{i}=w x_{i}+\text { noise }_{i}
$$

where...

- the noise signals are independent
- the noise has a normal distribution with mean 0 and unknown variance σ^{2}
$\mathrm{P}(y \mid w, x)$ has a normal distribution with
- mean $w x$
- variance σ^{2}

Bayesian Linear Regression $\mathrm{P}(y \mid w, x)=\operatorname{Normal}\left(\right.$ mean $\left.w x, \operatorname{var} \sigma^{2}\right)$

We have a set of datapoints $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)$ which are EVIDENCE about w.

We want to infer w from the data.

$$
\mathrm{P}\left(w \mid x_{1}, x_{2}, x_{3}, \ldots x_{n}, y_{1}, y_{2} \ldots y_{n}\right)
$$

- You can use BAYES rule to work out a posterior distribution for w given the data.
- Or you could do Maximum Likelihood Estimation

Maximum likelihood estimation of w

Asks the question:

"For which value of w is this data most likely to have happened?"

$$
<=>
$$

For what w is

$$
\begin{aligned}
& \mathrm{P}\left(y_{1,} y_{2} \ldots y_{n} \mid x_{1}, x_{2}, x_{3}, \ldots x_{n}, w\right) \text { maximized? } \\
& <=>
\end{aligned}
$$

For what w is

$$
\prod_{i=1}^{n} P\left(y_{i} \mid w, x_{i}\right) \text { maximized }
$$

For what w is

$$
\prod_{i=1}^{n} P\left(y_{i} \mid w, x_{i}\right) \text { maximized? }
$$

For what w is

$$
\prod_{i=1}^{n} \exp \left(-\frac{1}{2}\left(\frac{y_{i}-w x_{i}}{\sigma}\right)^{2}\right) \text { maximized? }
$$

For what w is

$$
\sum_{i=1}^{n}-\frac{1}{2}\left(\frac{y_{i}-w x_{i}}{\sigma}\right)^{2} \text { maximized? }
$$

For what w is

$$
\sum_{i=1}^{n}\left(y_{i}-w x_{i}\right)^{2} \text { minimized? }
$$

Linear Regression

The maximum likelihood w is the one that minimizes sum-of-squares of residuals

$$
\begin{aligned}
& \mathrm{E}=\sum_{i}\left(y_{i}-w x_{i}\right)^{2} \\
& =\sum_{i} y_{i}^{2}-\left(2 \sum x_{i} y_{i}\right) w+\left(\sum x_{i}^{2}\right) w^{2}
\end{aligned}
$$

We want to minimize a quadratic function of w.

Linear Regression

Easy to show the sum of squares is minimized
when

$$
w=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}
$$

The maximum likelihood
model is $\operatorname{Out}(x)=w x$

We can use it for prediction

Linear Regression

Easy to show the sum of squares is minimized when

$$
w=\frac{\sum x_{i} y_{i}}{\sum x_{i}{ }^{2}}
$$

The maximum likelihood

We can use it for prediction

$$
\text { model is } \operatorname{Out}(x)=w x
$$

Note: In Bayesian stats you'd have ended up with a prob dist of

And predictions would have given a prob dist of expected output

Often useful to know your confidence.
Max likelihood can give some kinds of confidence too.

Multivariate Regression

What if the inputs are vectors?

2-d input example

Multivariate Regression

Write matrix X and Y thus:

$$
\mathbf{x}=\left[\begin{array}{c}
\ldots . . \mathbf{x}_{1} \ldots . . \\
\ldots . . \mathbf{x}_{2} \ldots . . \\
\vdots \\
\ldots . . \mathbf{x}_{R} \ldots . .
\end{array}\right]=\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 m} \\
x_{21} & x_{22} & \ldots & x_{2 m} \\
& & \vdots & \\
x_{R 1} & x_{R 2} & \ldots & x_{R m}
\end{array}\right] \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{R}
\end{array}\right]
$$

(there are R datapoints. Each input has m components)
The linear regression model assumes a vector \boldsymbol{w} such that

$$
\operatorname{Out}(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}=w_{1} x[1]+w_{2} x[2]+\ldots . w_{\mathrm{m}} x[\mathrm{D}]
$$

The max. likelihood \boldsymbol{w} is $\boldsymbol{w}=\left(X^{\top} X\right)^{-1}\left(X^{\top} Y\right)$

Multivariate Regression

Write matrix X and Y thus:

$$
\mathbf{x}=\left[\begin{array}{c}
\ldots \ldots \mathbf{x}_{1} \ldots . . \\
\ldots . \mathbf{x}_{2} \ldots . . \\
\vdots \\
\ldots . \mathbf{x}_{R} \ldots . .
\end{array}\right]=\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 m} \\
x_{21} & x_{22} & \ldots & x_{2 m} \\
& & \vdots & \\
x_{R 1} & x_{R 2} & \ldots & x_{R m}
\end{array}\right] \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{R}
\end{array}\right]
$$

(there are R datapoints. Each input

IMPORTANT EXERCISE: PROVE IT !!!!!

The linear regression model assumes a vector \boldsymbol{w} such that

$$
\operatorname{Out}(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}=w_{1} x[1]+w_{2} x[2]+\ldots . w_{\mathrm{m}} x[\mathrm{D}]
$$

The max. likelihood \boldsymbol{w} is $\boldsymbol{w}=\left(X^{\top} X\right)^{-1}\left(X^{\top} Y\right)$

Multivariate Regression (con't)

The max. likelihood \boldsymbol{w} is $\boldsymbol{w}=\left(X^{\top} X\right)^{-1}\left(X^{\top} Y\right)$
$X^{\top} X$ is an $m \times m$ matrix: i, j 'th elt is $\sum_{k=1}^{R} x_{k i} x_{k j}$
$\mathrm{X}^{\top} \mathrm{Y}$ is an m-element vector: $i^{\text {th }}$ elt $\sum_{k=1}^{R} x_{k i} y_{k}$

What about a constant term?

 not go through the origin.Statisticians and Neural Net Folks all agree on a simple obvious hack.

Can you guess??

The constant term

- The trick is to create a fake input " X_{0} " that always takes the value 1

X_{1}	X_{2}	Y
2	4	16
3	4	17
5	5	20

Before:
$Y=w_{1} X_{1}+w_{2} X_{2}$...has to be a poor model

X_{0}	X_{1}	X_{2}	Y
1	2	4	16
1	3	4	17
1	5	5	20

After:

$$
\begin{aligned}
& Y=w_{0} X_{0}+w_{1} X_{1}+w_{2} X_{2} \\
& >=w_{0}+w_{1} X_{1}+w_{2} X_{2} \\
& \text {...has a fine constant } \\
& \text { term }
\end{aligned}
$$

Regression with varying noise

- Suppose you know the variance of the noise that was added to each datapoint.

x_{i}	y_{i}	σ_{i}^{2}
$1 / 2$	$1 / 2$	4
1	1	1
2	1	$1 / 4$
2	3	4
3	2	$1 / 4$

Assume $\quad y_{i} \sim N\left(w x_{i}, \sigma_{i}^{2}\right)$

MLE estimation with varying noise

$\operatorname{argmax} \log p\left(y_{1}, y_{2}, \ldots, y_{R} \mid x_{1}, x_{2}, \ldots, x_{R}, \sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{R}^{2}, w\right)=$ w

$$
\begin{gathered}
\operatorname{argmin} \sum_{i=1}^{R} \frac{\left(y_{i}-w x_{i}\right)^{2}}{\sigma_{i}^{2}}= \\
\left(w \text { such that } \sum_{i=1}^{R} \frac{x_{i}\left(y_{i}-w x_{i}\right)}{\sigma_{i}^{2}}=0\right)=\begin{array}{l}
\begin{array}{l}
\text { Assuming i.i.d. and } \\
\text { then plugging in } \\
\text { equation for Gaussian } \\
\text { and simplifying. }
\end{array} \\
\\
\\
\left(\sum_{i=1}^{R} \frac{x_{i} y_{i}}{\sigma_{i=1}^{2}} \frac{x_{i}^{2}}{\sigma_{i}^{2}}\right)
\end{array}
\end{gathered}
$$

This is Weighted Regression

- We are asking to minimize the weighted sum of squares

$$
\underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} \frac{\left.v_{i}-w x_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

where weight for i'th datapoint is $\frac{1}{\sigma_{i}^{2}}$

Weighted Multivariate Regression

The max. likelihood \boldsymbol{w} is $\boldsymbol{w}=\left(W X^{\top} W X\right)^{-1}\left(W X^{\top} W Y\right)$
(WX'WX) is an $m \times m$ matrix: i, j 'th elt is $\quad \sum_{k=1}^{R} \frac{x_{k i} x_{k j}}{\sigma_{i}^{2}}$
$\left(W X^{\top} W Y\right)$ is an m-element vector: $i^{\text {th }}$ elt

$$
\sum_{k=1}^{R} \frac{x_{k i} y_{k}}{\sigma_{i}^{2}}
$$

Non-linear Regression

- Suppose you know that y is related to a function of x in such a way that the predicted values have a non-linear dependence on w, e.g:

x_{i}	y_{i}
$1 / 2$	$1 / 2$
1	2.5
2	3
3	2
3	3

Assume $y_{i} \sim N\left(\sqrt{w+x_{i}}, \sigma^{2}\right)$

Non-linear MLE estimation

$\operatorname{argmax} \log p\left(y_{1}, y_{2}, \ldots, y_{R} \mid x_{1}, x_{2}, \ldots, x_{R}, \sigma, w\right)=$
w
Assuming i.i.d. and
$\underset{w}{\operatorname{argmin}} \sum_{i=1}^{R}\left(y_{i}-\sqrt{w+x_{i}}\right)^{2}=$
then plugging in equation for Gaussian and simplifying.

$$
\left(w \text { such that } \sum_{i=1}^{R} \frac{y_{i}-\sqrt{w+x_{i}}}{\sqrt{w+x_{i}}}=0\right)=\begin{aligned}
& \text { Setting dLL/dw } \\
& \text { equal to zero }
\end{aligned}
$$

Non-linear MLE estimation

$$
\operatorname{argmax} \log p\left(y_{1}, y_{2}, \ldots, y_{R} \mid x_{1}, x_{2}, \ldots, x_{R}, \sigma, w\right)=
$$

aromin $\sum_{w=1}^{R}\left(y_{i}-\sqrt{w+x_{i}}\right)^{2}=\quad$| Assuming i.i.d. and |
| :--- |
| then plugging in |
| equation for Gaussian |
| and simplifying. |

$$
\left(w \text { such that } \sum_{i=1}^{R} \frac{y_{i}-\sqrt{w+x_{i}}}{\sqrt{w+x_{i}}}=0\right)=\begin{aligned}
& \text { Setting dLL/dw } \\
& \text { equal to zero }
\end{aligned}
$$

We're down the algebraic toilet

Non-linear MLE estimation

$\operatorname{argmax} \log p\left(y_{1}, y_{2}, \ldots, y_{R} \mid x_{1}, x_{2}, \ldots, x_{R}, \sigma, w\right)=$

optimization-specific tricks such as E.M. (See Gaussian Mixtures lecture for introduction)

GRADIENT DESCENT

Suppose we have a scalar function $\mathrm{f}(\mathrm{w}): \mathfrak{R} \rightarrow \mathfrak{R}$
We want to find a local minimum.
Assume our current weight is w

GRADIENT DESCENT RULE:

η is called the LEARNING RATE. A small positive number, e.g. $\eta=0.05$

GRADIENT DESCENT

Suppose we have a scalar function $\mathrm{f}(\mathrm{w}): \mathfrak{R} \rightarrow \mathfrak{R}$
We want to find a local minimum.
Assume our current weight is w
GRADIENT DESCENT RULE:

$$
w \leftarrow w-\eta \frac{\partial}{\partial w} \mathrm{f}(w)
$$

Recall Andrew's favorite default value for anything
η is called the LEARNING Kr A small pusitive number, e.g. $\eta=0.05$

QUESTION: Justify the Gradient Descent Rule

Gradient Descent in "m" Dimensions

Given $\quad \mathrm{f}(\mathbf{w}): \mathfrak{R}^{m} \rightarrow \mathfrak{R}$

$$
\nabla f(\mathrm{w})=\left(\begin{array}{c}
\frac{\partial}{\partial w_{1}} \mathrm{f}(\mathrm{w}) \\
\vdots \\
\frac{\partial}{\partial w_{m}} \mathrm{f}(\mathrm{w})
\end{array}\right) \text { points in direction of steepest ascent. }
$$

$|\nabla \mathrm{f}(\mathrm{w})|$ is the gradient in that direction
GRADIENT DESCENT RULE: $\quad \mathrm{w} \leftarrow \mathrm{w}-\eta \nabla \mathrm{f}(\mathrm{w})$
Equivalently

$$
w_{j} \leftarrow w_{j}-\eta \frac{\partial}{\partial w_{j}} \mathrm{f}(\mathrm{w}) \quad \ldots . \text { where } \mathrm{w}_{\mathrm{j}} \text { is the th weight }
$$

What's all this got to do with Neural Nets, then, eh??

For supervised learning, neural nets are also models with vectors of \mathbf{w} parameters in them. They are now called weights.
As before, we want to compute the weights to minimize sum-of-squared residuals.

Which turns out, under "Gaussian i.i.d noise" assumption to be max. likelihood.
Instead of explicitly solving for max. likelihood weights, we use GRADIENT DESCENT to SEARCH for them.
"Why?" you ask, a querulous expression in your eyes. "Aha!!" I reply: "We'll see later."

Linear Perceptrons

They are multivariate linear models:

$$
\operatorname{Out}(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}
$$

And "training" consists of minimizing sum-of-squared residuals by gradient descent.

$$
\begin{aligned}
\mathrm{E} & =\sum_{k}\left(\text { Out }\left(\mathrm{x}_{\mathrm{k}}\right)-y_{\mathrm{k}}\right)^{2} \\
& =\sum_{k}\left(\mathrm{w}^{\mathrm{T}} \mathrm{x}_{\mathrm{k}}-y_{\mathrm{k}}\right)^{2}
\end{aligned}
$$

QUESTION: Derive the perceptron training rule.

Linear Perceptron Training Rule

$E=\sum_{k=1}^{R}\left(y_{k}-\mathbf{w}^{T} \mathbf{x}_{k}\right)^{2}$
Gradient descent tells us we should update w thusly if we wish to minimize E :
$w_{j} \leftarrow w_{j}-\eta \frac{\partial E}{\partial w_{j}}$

So what's $\frac{\partial E}{\partial w_{j}}$?

Linear Perceptron Training Rule

$E=\sum_{k=1}^{R}\left(y_{k}-\mathbf{w}^{T} \mathbf{x}_{k}\right)^{2}$
Gradient descent tells us we should update w thusly if we wish to minimize E :
$w_{j} \leftarrow w_{j}-\eta \frac{\partial E}{\partial w_{j}}$

So what's $\frac{\partial E}{\partial w_{j}}$?

$$
\begin{aligned}
& \frac{\partial E}{\partial w_{j}}=\sum_{k=1}^{R} \frac{\partial}{\partial w_{j}}\left(y_{k}-\mathbf{w}^{T} \mathbf{x}_{k}\right)^{2} \\
&= \sum_{k=1}^{R} 2\left(y_{k}-\mathbf{w}^{T} \mathbf{x}_{k}\right) \frac{\partial}{\partial w_{j}}\left(y_{k}-\mathbf{w}^{T} \mathbf{x}_{k}\right) \\
&=-2 \sum_{k=1}^{R} \delta_{k} \frac{\partial}{\partial w_{j}} \mathbf{w}^{T} \mathbf{x}_{k} \\
& \ldots \ldots \text { here... } \\
& \delta_{k}=y_{k}-\mathbf{w}^{T} \mathbf{x}_{k} \\
&=-2 \sum_{k=1}^{R} \delta_{k} \frac{\partial}{\partial w_{j}} \sum_{i=1}^{m} w_{i} x_{k i} \\
&=-2 \sum_{k=1}^{R} \delta_{k} x_{k j}
\end{aligned}
$$

Linear Perceptron Training Rule
 $E=\sum_{k=1}^{R}\left(y_{k}-\mathbf{w}^{T} \mathbf{x}_{k}\right)^{2}$

Gradient descent tells us we should update w thusly if we wish to minimize E :
$w_{j} \leftarrow w_{j}-\eta \frac{\partial E}{\partial w_{j}}$
...where...
$\frac{\partial E}{\partial w_{j}}=-2 \sum_{k=1}^{R} \delta_{k} x_{k j}$

The "Batch" perceptron algorithm

1) Randomly initialize weights $w_{1} w_{2} \ldots w_{m}$
2) Get your dataset (append 1's to the inputs if you don't want to go through the origin).
3) for $i=1$ to R

$$
\delta_{i}:=y_{i}-\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i}
$$

4) for $j=1$ to m

$$
w_{j} \leftarrow w_{j}+\eta \sum_{i=1}^{R} \delta_{i} x_{i j}
$$

5) if $\sum \delta_{i}^{2}$ stops improving then stop. Else loop back to 3.

If data is voluminous and arrives fast

Input-output pairs $(\boldsymbol{x}, \boldsymbol{y})$ come streaming in very quickly. THEN

Don't bother remembering old ones. Just keep using new ones.
observe (\mathbf{x}, y)

$$
\delta \leftarrow y-\mathrm{w}^{\mathrm{T}} \mathrm{x}
$$

$$
\forall j w_{j} \leftarrow w_{j}+\eta \delta x_{j}
$$

```
Gradient Descent vs Matrix Inversion
    for Linear Perceptrons
GD Advantages (MI disadvantages):
.
\bullet
-
GD Disadvantages (MI advantages):
-
-
.
.
.

\section*{Gradient Descent vs Matrix Inversion for Linear Perceptrons GD Advantages (MI disadvantages):}
- Biologically plausible
- With very very many attributes each iteration costs only \(O(m R)\). If fewer than \(m\) iterations needed we've beaten Matrix Inversion
- More easily parallelizable (or implementable in wetware)?

\section*{GD Disadvantages (MI advantages):}
- It's moronic
- It's essentially a slow implementation of a way to build the XTX matrix and then solve a set of linear equations
- If \(m\) is small it's especially outageous. If \(m\) is large then the direct matrix inversion method gets fiddly but not impossible if you want to be efficient.
- Hard to choose a good learning rate
- Matrix inversion takes predictable time. You can't be sure when gradient descent will stop.

\section*{Gradient Descent vs Matrix Inversion for Linear Perceptrons GD Advantages (MI disadvantag ):}
- Biologically plausible
- With very very many attrib fewer than m iterations nee
- More easily parallelizable (ou

GD Disadvanta,
- It's moronic
- It's essentially and then solve a se
- If \(m\) is small it's espery matrix inversion mey be efficient.
- Hard to choose a good lear

But we'll soon see that GD has an important extra XTX matrix trick up its sleeve fipossme if you want to
- Matrix inversion takes pred kable time. You can't be sure when gradient descent will stop.

\section*{Perceptrons for Classification}

What if all outputs are 0's or 1's?


We can do a linear fit.
Our prediction is 0 if \(\operatorname{out}(x) \leq 1 / 2\)
1 if out \((x)>1 / 2\)
WHAT'S THE BIG PROBLEM WITH THIS???

\section*{Perceptrons for Classification}

\section*{What if all outputs are 0's or 1's?}

or


We can do a linear fit. Blue \(=\operatorname{Out}(x)\)

Our prediction is 0 if \(\operatorname{out}(\boldsymbol{x}) \leq 1 / 2\)
1 if out \((x)>1 / 2\)
WHAT'S THE BIG PROBLEM WITH THIS???

\section*{Perceptrons for Classification} What if all outputs are 0's or 1's?



We can do a linear fit.
Blue \(=\) Out(x)
Our prediction is 0 if \(\operatorname{out}(\boldsymbol{x}) \leq 1 / 2\) Green = Classification
1 if out \((\boldsymbol{x})>1 / 2\)

\section*{Classification with Perceptrons I}

Don't minimize \(\quad \sum\left(y_{i}-\mathrm{w}^{\mathrm{T}} \mathrm{X}_{i}\right)^{2}\).
Minimize number of misclassifications instead. [Assume outputs are \(+1 \&-1\), not \(+1 \& 0]\)
\[
\sum\left(y_{i}-\operatorname{Round}\left(\mathrm{w}^{\mathrm{T}} \mathrm{x}_{i}\right)\right)
\]
where \(\operatorname{Round}(x)=-1\) if \(x<0\)
1 if \(x \geq 0\)

NOTE: CUTE \& NON OBVIOUS WHY THIS WORKS!!

The gradient descent rule can be changed to:
if \(\left(\boldsymbol{x}_{i}, y_{i}\right)\) correctly classed, don't change
if wrongly predicted as \(1 \quad \boldsymbol{w} \leftarrow \boldsymbol{w}-\boldsymbol{x}_{i}\)
if wrongly predicted as \(-1 \quad \boldsymbol{\omega} \leftarrow \boldsymbol{w}+\boldsymbol{x}_{i}\)


\section*{Classification with Perceptrons II: Sigmoid Functions}

Least squares fit useless

\section*{SOLUTION:}

Instead of \(\operatorname{Out}(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}\)
We'll use \(\quad \operatorname{Out}(\boldsymbol{x})=g\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)\) where \(g(x): \mathfrak{R} \rightarrow(0,1)\) is a squashing function


\section*{Linear Perceptron Classification Regions}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\chi_{2}
\]} & \multirow[t]{2}{*}{\[
{ }^{0} 0
\]} & \multirow{4}{*}{1} \\
\hline & & \\
\hline & 1 & \\
\hline & 1 & \\
\hline
\end{tabular}

We'll use the model
\[
\begin{aligned}
& \operatorname{Out}(\boldsymbol{x})=g\left(\boldsymbol{w}^{\top}(\boldsymbol{x}, 1)\right) \\
& \quad=g\left(w_{1} x_{1}+w_{2} x_{2}+w_{0}\right)
\end{aligned}
\]

Which region of above diagram classified with +1 , and which with 0 ??

\section*{Gradient descent with sigmoid on a perceptron}
\[
\begin{aligned}
& \text { First, notice } g^{\prime}(x)=g(x)(1-g(x)) \\
& \text { Because: } g(x)=\frac{1}{1+e^{-x}} \text { so } g^{\prime}(x)=\frac{-e^{-x}}{\left(1+e^{-x}\right)^{2}} \\
& \qquad=\frac{1-1-e^{-x}}{\left(1+e^{-x}\right)^{2}}=\frac{1}{\left(1+e^{-x}\right)^{2}}-\frac{1}{1+e^{-x}}=\frac{-1}{1+e^{-x}}\left(1-\frac{1}{1+e^{-x}}\right)=-g(x)(1-g(x))
\end{aligned}
\]
\(\operatorname{Out}(\mathrm{x})=g\left(\sum_{k} w_{k} x_{k}\right)\)
\(\mathrm{E}=\sum_{i}\left(y_{i}-g\left(\sum_{k} w_{k} x_{i k}\right)\right)^{2}\)
\(\frac{\partial \mathrm{E}}{\partial w_{j}}=\sum_{i} 2\left(y_{i}-g\left(\sum_{k} w_{k} x_{i k}\right)\right)\left(-\frac{\partial}{\partial w_{j}} g\left(\sum_{k} w_{k} x_{i k}\right)\right)\)
\(=\sum_{i}-2\left(y_{i}-g\left(\sum_{k} w_{k} x_{i k}\right)\right) g^{\prime}\left(\sum_{k} w_{k} x_{i k}\right) \frac{\partial}{\partial w_{j}} \sum_{k} w_{k} x_{i k}\)
\(=\sum-2 \delta_{i} g\left(\right.\) net \(\left._{i}\right)\left(1-g\left(\right.\right.\) net \(\left.\left._{i}\right)\right) x_{i j}\)
where \(\delta_{i}=y_{i}-\operatorname{Out}\left(\mathrm{x}_{i}\right) \quad \operatorname{net}_{i}=\sum w_{k} x_{k}\)
Copyright © 2001, 2003, Andrew W. Moôre

The sigmoid perceptron update rule:
\[
\begin{gathered}
w_{j} \leftarrow w_{j}+\eta \sum_{i=1}^{R} \delta_{i} g_{i}\left(1-g_{i}\right) x_{i j} \\
\text { where } \quad g_{i}=g\left(\sum_{j=1}^{m} w_{j} x_{i j}\right) \\
\delta_{i}=y_{i}-g_{i}
\end{gathered}
\]

\section*{Other Things about Perceptrons}
- Invented and popularized by Rosenblatt (1962)
- Even with sigmoid nonlinearity, correct convergence is guaranteed
- Stable behavior for overconstrained and underconstrained problems

\section*{Perceptrons and Boolean Functions}

If inputs are all 0's and 1's and outputs are all 0's and 1's...
- Can learn the function \(x_{1} \wedge x_{2}\)
- Can learn the function \(x_{1} \vee x_{2}\).

- Can learn any conjunction of literals, e.g.
\[
x_{1} \wedge \sim x_{2} \wedge \sim x_{3} \wedge x_{4} \wedge x_{5}
\]

QUESTION: WHY?

\section*{Perceptrons and Boolean Functions}
- Can learn any disjunction of literals
e.g. \(x_{1} \wedge \sim x_{2} \wedge \sim x_{3} \wedge x_{4} \wedge x_{5}\)
- Can learn majority function
\[
f\left(x_{1}, x_{2} \ldots x_{n}\right)=\left\{\begin{array}{l}
1 \text { if } n / 2 x_{i}^{\prime} \text { s or more are }=1 \\
0 \text { if less than } n / 2 x_{i}^{\prime} \text { s are }=1
\end{array}\right.
\]
- What about the exclusive or function?
\[
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1} \forall \mathrm{x}_{2}= \\
& \left(x_{1} \wedge \sim x_{2}\right) \vee\left(\sim x_{1} \wedge x_{2}\right)
\end{aligned}
\]

\section*{Multilayer Networks}

\section*{The class of functions representable by perceptrons} is limited
\[
\operatorname{Out}(\mathrm{x})=g\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}\right)=g\left(\sum_{j} w_{j} x_{j}\right)
\]



\section*{Backpropagation Convergence}

Convergence to a global minimum is not guaranteed.
-In practice, this is not a problem, apparently.
Tweaking to find the right number of hidden units, or a useful learning rate \(\eta\), is more hassle, apparently.

IMPLEMENTING BACKPROP: Differentiate Monster sum-square residual Write down the Gradient Descent Rule 害 It turns out to be easier \& computationally efficient to use lots of local variables with names like \(h_{j} o_{k} v_{j}\) net \({ }_{i}\) etc...

\section*{Choosing the learning rate}
- This is a subtle art.
- Too small: can take days instead of minutes to converge
- Too large: diverges (MSE gets larger and larger while the weights increase and usually oscillate)
- Sometimes the "just right" value is hard to find.

\section*{Learning-rate problems}
 Theory of Neural Computation. Addison-Wesley, 1994.


FIGURE 5.10 Gradient descent on a simple quadratic surface (the left and right parts are copies of the same surface). Four trajectories are shown, each for 20 stant error contour. The only minimum is at the + and the ellipse shows a convalue of \(\eta\), which was \(0.02,0.0476,0.045\) diference between the trajectories is the

\section*{Improving Simple Gradient Descent}

\section*{Momentum}

Don't just change weights according to the current datapoint.
Re-use changes from earlier iterations.
Let \(\Delta \mathbf{w}(t)=\) weight changes at time \(t\).
Let \(-\eta \frac{\partial \mathrm{E}}{\partial \mathrm{w}}\) be the change we would make with regular gradient descent.
Instead we use
\[
\begin{aligned}
& \Delta \mathbf{w}(t+1)=-\eta \frac{\partial \mathrm{E}}{\partial \mathbf{w}}+\alpha \mathbf{\Delta} \mathbf{w}(t) \\
& \mathbf{w}(t+1)=\mathbf{w}(t)+\Delta \mathbf{w}(t)
\end{aligned}
\]

Momentum damps oscillations.
A hack? Well, maybe.

\section*{Momentum illustration}

FIGURE 6.3 Gradient descent on the simple quadratic surface of Fig. 5.10. Both trajectories are for 12 steps with \(\eta=0.0476\), the best value in the absence of momentum. On the left there is no mo mentum ( \(\alpha=0\) ), while \(\alpha=0.5\) on the right.

\section*{Improving Simple Gradient Descent} Newton's method
\[
E(\mathbf{w}+\mathbf{h})=E(\mathbf{w})+\mathbf{h}^{T} \frac{\partial E}{\partial \mathbf{w}}+\frac{1}{2} \mathbf{h}^{T} \frac{\partial^{2} E}{\partial \mathbf{w}^{2}} \mathbf{h}+O\left(|\mathbf{h}|^{3}\right)
\]

If we neglect the \(O\left(h^{3}\right)\) terms, this is a quadratic form
Quadratic form fun facts:
If \(y=c+\boldsymbol{b}^{T} \boldsymbol{x}-1 / 2 \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}\)
And if \(\boldsymbol{A}\) is SPD
Then
\(\boldsymbol{x}^{\text {opt }}=\boldsymbol{A}^{-1} \boldsymbol{b}\) is the value of \(\boldsymbol{x}\) that maximizes \(y\)

\section*{Improving Simple Gradient Descent}

\section*{Newton's method}
\[
E(\mathbf{w}+\mathbf{h})=E(\mathbf{w})+\mathbf{h}^{T} \frac{\partial E}{\partial \mathbf{w}}+\frac{1}{2} \mathbf{h}^{T} \frac{\partial^{2} E}{\partial \mathbf{w}^{2}} \mathbf{h}+O\left(|\mathbf{h}|^{3}\right)
\]

If we neglect the \(O\left(h^{3}\right)\) terms, this is a quadratic form
\[
\mathbf{w} \leftarrow \mathbf{w}-\left[\frac{\partial^{2} E}{\partial \mathbf{w}^{2}}\right]^{-1} \frac{\partial E}{\partial \mathbf{w}}
\]

This should send us directly to the global minimum if the function is truly quadratic.

And it might get us close if it's locally quadraticish

\section*{Improving Simple Gradient Descent} Newton's method
\[
E(\mathbf{w}+\mathbf{h})=E(\mathbf{w})+\mathbf{h}^{T} \frac{\partial E}{\partial \mathbf{w}}+\frac{1}{2} \mathbf{h}^{T} \frac{\partial^{2} E}{\partial \mathbf{w}^{2}} \mathbf{h}+O\left(|\mathbf{h}|^{3}\right)
\]


\section*{Improving Simple Gradient Descent}

\section*{Conjugate Gradient}

Another method which attempts to exploit the "local quadratic bowl" assumption

But does so while only needing to use \(\frac{\partial E}{\partial \mathbf{w}}\)
and not \(\frac{\partial^{2} E}{\partial \mathbf{w}^{2}}\)
It is also more stable than Newton's method if the local quadratic bowl assumption is violated.
It's complicated, outside our scope, but it often works well. More details in Numerical Recipes in C.

\section*{BEST GENERALIZATION}

Intuitively, you want to use the smallest, simplest net that seems to fit the data.

\section*{HOW TO FORMALIZE THIS INTUITION?}
1. Don't. Just use intuition
2. Bayesian Methods Get it Right
3. Statistical Analysis explains what's going on
4. Cross-validation


Discussed in the next lecture

\section*{What You Should Know}
- How to implement multivariate Leastsquares linear regression.
- Derivation of least squares as max. likelihood estimator of linear coefficients
- The general gradient descent rule

\section*{What You Should Know}
- Perceptrons
\(\rightarrow\) Linear output, least squares
\(\rightarrow\) Sigmoid output, least squares
- Multilayer nets
\(\rightarrow\) The idea behind back prop
\(\rightarrow\) Awareness of better minimization methods
- Generalization. What it means.

\section*{APPLICATIONS}

\section*{To Discuss:}
- What can non-linear regression be useful for?
- What can neural nets (used as non-linear regressors) be useful for?
- What are the advantages of N . Nets for nonlinear regression?
-What are the disadvantages?

\section*{Other Uses of Neural Nets...}
- Time series with recurrent nets
- Unsupervised learning (clustering principal components and non-linear versions thereof)
- Combinatorial optimization with Hopfield nets, Boltzmann Machines
- Evaluation function learning (in reinforcement learning)```

