High temperature / peak demand observations for all days in 2008-2011
- Central idea of non-linear regression: same as linear regression, just with *non-linear features*

 \[\phi(x_i) = \begin{bmatrix} x_i^2 \\ x_i \\ 1 \end{bmatrix} \]

- Two ways to construct non-linear features: explicitly (construct actual feature vector), or implicitly (using kernels)
High Temperature (F) vs. Peak Hourly Demand (GW)

Observed Data

Degree 2 polynomial
Degree 3 polynomial

Observed Data

\[d = 3 \]
High Temperature (F)

Peak Hourly Demand (GW)

Observed Data
d = 4

Degree 4 polynomial
Constructing explicit feature vectors

- Polynomial features (max degree d)

Special case, $n=1$: $\phi(z) = \begin{bmatrix} z^d \\ z^{d-1} \\ \vdots \\ z \\ 1 \end{bmatrix} \in \mathbb{R}^{d+1}$

General case: $\phi(z) = \left\{ \prod_{i=1}^{n} z_i^{b_i} : \sum_{i=1}^{n} b_i \leq d \right\} \in \mathbb{R}^{\binom{n+d}{n}}$
• Radial basis function (RBF) features
 – Defined by bandwidth σ and k RBF centers $\mu_j \in \mathbb{R}^n$, $j = 1, \ldots, k$

$$\phi_j(z) = \exp \left\{ \frac{-||z - \mu_j||^2}{2\sigma^2} \right\}$$
Difficulties with non-linear features

- Problem #1: Computational difficulties
 - Polynomial features,
 \[k = \binom{n + d}{d} = O(d^n) \]
 - RBF features; suppose we want centers in uniform grid over input space (w/ \(d \) centers along each dimension)
 \[k = d^m \]
 - In both cases, exponential in the size of the input dimension; quickly intractable to even store in memory
Problem #2: Representational difficulties

- With many features, our prediction function becomes very expressive

- Can lead to overfitting (low error on input data points, but high error nearby)
Least-squares fits for polynomial features of different degrees
Least-squares fits for different numbers of RBFs
• A few ways to deal with representational problem:
 - Choose less expressive function (e.g., lower degree polynomial, fewer RBF centers, larger RBF bandwidth)
 - Regularization: penalize large parameters θ

$$\minimize_{\theta} \sum_{i=1}^{m} \ell(\hat{y}_i, y_i) + \lambda \|\theta\|_2^2$$

λ: regularization parameter, trades off between low loss and small values of θ (often, don’t regularize constant term)

- We’ll come back to this issue when talking about evaluating machine learning methods
Pareto optimal surface for 20 RBF functions
RBF fits varying regularization parameter (not regularizing constant term)
Implicit feature vectors (kernels)

• One of the main trends in machine learning in the past 15 years

• Kernels let us work in high-dimensional feature spaces without explicitly constructing the feature vector

• This addresses the first problem, the computational difficulty
• Simple example, polynomial feature, \(n = 2, d = 2 \)

\[
\phi(z) = \begin{bmatrix}
1 \\
\sqrt{2}z_1 \\
\sqrt{2}z_2 \\
z_1^2 \\
z_1z_2 \\
\sqrt{2}z_1z_2 \\
z_2^2
\end{bmatrix}
\]

• Let’s look at the inner product between two different feature vectors

\[
\phi(z)^T\phi(z') = 1 + 2z_1z'_1 + 2z_2z'_2 + z_1^2z_1'^2 + 2z_1z_2z_1'z'_2 + z_2^2z_2'^2
\]

\[
= 1 + 2(z_1z'_1 + z_2z'_2) + (z_1z'_1 + z_2z'_2)^2
\]

\[
= 1 + 2(z^Tz') + (z^Tz')^2
\]

\[
= (1 + z^Tz')^2
\]
• General case: $(1 + z^T z')^d$ is the inner product between two polynomial feature vectors of max degree d ($\binom{n+d}{d}$-dimensional)

 – But, can be computed in only $O(n)$ time

• We use the notation of a kernel function $K : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$ that computes these inner products

$$K(z, z') = \phi(z)^T \phi(z')$$

• Some common kernels

 polynomial (degree d): $K(z, z') = (1 + z^T z')^d$

 Gaussian (bandwidth σ): $K(z, z') = \exp\left\{ \frac{-\|z - z'\|^2}{2\sigma^2} \right\}$
Using kernels in optimization

- We can compute inner products, but how does this help us solve optimization problems?

- Consider (regularized) optimization problem we’ve been using

\[
\min_{\theta} \sum_{i=1}^{m} \ell(\theta^T \phi(x_i), y_i) + \lambda \|\theta\|_2^2
\]

- **Representer theorem**: The solution to above problem is given by

\[
\theta^* = \sum_{i=1}^{m} \alpha_i \phi(x_i), \quad \text{for some } \alpha \in \mathbb{R}^m, \quad \text{(or } \theta^* = \Phi^T \alpha)\]
• Notice that
\[(\Phi\Phi^T)_{ij} = \phi(x_i)^T \phi(x_j) = K(x_i, x_j)\]

• Abusing notation a bit, we’ll define the \textit{kernel matrix}
\[K \in \mathbb{R}^{m \times m}\]

\[K = \Phi\Phi^T, \quad (K_{ij} = K(x_i, x_j))\]

can be computed \textit{without} constructing feature vectors or Φ
• Let’s take (regularized) least squares objective...

\[J(\theta) = \| \Phi \theta - y \|_2^2 + \lambda \| \theta \|_2^2 \]

• and substitute \(\theta = \Phi^T \alpha \)

\[
J(\alpha) = \| \Phi \Phi^T \alpha - y \|_2^2 + \lambda \alpha^T \Phi \Phi^T \alpha \\
= \| K \alpha - y \|_2^2 + \lambda \alpha^T K \alpha \\
= \alpha^T KK \alpha - 2y^T K \alpha + y^T y + \lambda \alpha^T K \alpha
\]

• Taking the gradient w.r.t. \(\alpha \) and setting to zero

\[
\nabla_\alpha J(\alpha) = 2KK \alpha - 2Ky + 2\lambda K \alpha \Rightarrow \alpha^* = (K + \lambda I)^{-1}y
\]
• How do we compute prediction on a new input x'?

$$
\hat{y}' = \theta^T \phi(x') = \left(\sum_{i=1}^{m} \alpha_i \phi(x_i) \right)^T \phi(x') = \sum_{i=1}^{m} \alpha_i K(x_i, x')
$$

• Need to keep around all examples x_i in order to make a prediction; *non-parametric* method
• MATLAB code for polynomial kernel

```matlab
% computing alphas
d = 6;
lambda = 1;
K = (1 + X*X').^d;
alpha = (K + lambda*eye(m)) \ y;

% computing prediction
k_test = (1 + x_test*X').^d;
y_hat = k_test*alpha;
```

• Gaussian kernel

```matlab
sigma = 0.1;
lambda = 1;
K = exp(-0.5*sqdist(X', X')/sigma^2)
alpha = (K + lambda*eye(m)) \ y;
```
Fits from polynomial and RBF kernels
• Kernels can also be used with other loss functions; key element is just the transformation \(\theta = \Phi^T \alpha \).

• Absolute loss

\[
\text{alpha} = \text{sdpvar}(m,1);
\text{solvesdp}([], \text{sum}(\text{abs}(K*\alpha - y)));\]

• Some advanced algorithms possible: deadband loss + kernels = “support vector regression”