15-780 – Mixed integer programming

J. Zico Kolter

February 12, 2014
Overview

• Introduction to mixed integer programs

• Examples: Sudoku, planning with obstacles

• Solving integer programs with branch and bound

• Extensions
Overview

• Introduction to mixed integer programs

• Examples: Sudoku, planning with obstacles

• Solving integer programs with branch and bound

• Extensions
Introduction

- Recall optimization problem

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g_i(x) \leq 0 \quad i = 1, \ldots, m
\end{align*}
\]

“easy” when \(f, g_i\) convex, “hard” otherwise

- But how hard? How do we even go about solving (locally or globally) these problems?

- We’ve seen how to solve discrete non-convex optimization problems with search, can we apply these same techniques for mathematical optimization?
Mixed integer programs

- A special case of non-convex optimization methods that lends itself to a combination of search and convex optimization

\[
\begin{align*}
\text{minimize} \quad & f(x, z) \\
\text{subject to} \quad & g_i(x, z) \leq 0 \quad i = 1, \ldots, m
\end{align*}
\]

- \(x \in \mathbb{R}^n \), and \(z \in \mathbb{Z}^p \) are optimization variables

- \(f : \mathbb{R}^n \times \mathbb{Z}^p \rightarrow \mathbb{R} \) and \(g_i : \mathbb{R}^n \times \mathbb{Z}^p \rightarrow \mathbb{R} \) convex objective and constraint functions

- *Not* a convex problem (set of all integers is not convex)

- Note: some ambiguity in naming, some refer to MIPs as only *linear* programs with integer constraints
Mixed binary integer programs

• For this class, we’ll focus on a slightly more restricted case

$$\min_{x,z} f(x, z)$$

subject to $g_i(x, z) \leq 0 \quad i = 1, \ldots, m$

$z_i \in \{0, 1\}, \quad i = 1, \ldots, p$

• Still an extremely powerful class of problems (i.e., binary integer programming is NP-complete)
Overview

• Introduction to mixed integer programs

• Examples: Sudoku, planning with obstacles

• Solving integer programs with branch and bound

• Examples (solved)

• Extensions
Example: Sudoku

• The ubiquitous Sudoku puzzle

\[
\begin{array}{cccccccc}
5 & 3 & & & & 7 & & \\
6 & & 1 & 9 & 5 & & & \\
9 & 8 & & & & 6 & & \\
8 & & 6 & & 3 & & & \\
4 & 8 & 3 & & 1 & & & \\
7 & & 2 & & 6 & & & \\
& 6 & & & 2 & 8 & & \\
& 4 & 1 & 9 & & 5 & & \\
& & 8 & & 7 & 9 & & \\
\end{array}
\]

• Can be encoded as binary integer program: let \(z_{i,j} \in \{0, 1\}^9 \) denote the “indicator” of number in the \(i, j \) position

\[
z_{6,3} = [0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]^T \iff
\begin{array}{cccccccc}
5 & 3 & & & & 7 & & \\
6 & & 1 & 9 & 5 & & & \\
9 & 8 & & & & 6 & & \\
8 & & 6 & & 3 & & & \\
4 & 8 & 3 & & 1 & & & \\
7 & & 2 & & 6 & & & \\
& 6 & & & 2 & 8 & & \\
& 4 & 1 & 9 & & 5 & & \\
& & 8 & & 7 & 9 & & \\
\end{array}
\]
• Each square can have only one number
\[
\sum_{k=1}^{9} (z_{i,j})_k = 1, \quad i, j = 1, \ldots, 9
\]

• Every row must contain each number
\[
\sum_{j=1}^{9} z_{i,j} = 1, \text{ (all ones vector)} \quad i = 1, \ldots, 9
\]

• Every column must contain each number
\[
\sum_{i=1}^{9} z_{i,j} = 1, \quad j = 1, \ldots, 9
\]

• Every 3x3 block must contain each number
\[
\sum_{k,\ell=1}^{3} z_{i+k,j+\ell} = 1, \quad i, j \in \{0, 3, 6\}
\]
Final optimization problem (note that objective is irrelevant, as we only care about finding a feasible point)

\[
\begin{align*}
\text{minimize} & \quad \sum_{i,j=1}^{9} \max_k (z_{i,j})_k \\
\text{subject to} & \quad z_{i,j} \in \{0, 1\}^9, \; i, j = 1, \ldots, 9 \\
& \quad \sum_{k=1}^{9} (z_{i,j})_k = 1, \; i, j = 1, \ldots, 9 \\
& \quad \sum_{j=1}^{9} z_{i,j} = 1, \; i = 1, \ldots, 9 \\
& \quad \sum_{i=1}^{9} z_{i,j} = 1, \; j = 1, \ldots, 9 \\
& \quad \sum_{k,\ell=1}^{3} z_{i+k,j+\ell} = 1, \; i, j \in \{0, 3, 6\}
\end{align*}
\]
Example: path planning with obstacles

- Find path from start to goal that avoids obstacles

\[
\begin{align*}
\text{Start} & \quad \text{Goal} \\
\square & \quad \bigcirc
\end{align*}
\]

- Represent path as set of points \(x_i \in \mathbb{R}^2, i = 1, \ldots, m \) and minimize squared distance between consecutive points

- Obstacle is defined by \(a, b \in \mathbb{R}^2 \)

\[
O = \{ x : a_1 \leq x_1 \leq b_1, a_2 \leq x_2 \leq b_2 \}
\]
• Constraint that we \textit{not} hit obstacle can be represented as

\[(x_i)_1 \leq a_1 \lor (x_i)_1 \geq b_1 \lor (x_i)_2 \leq a_2 \lor (x_i)_2 \geq b_2, \ i = 1, \ldots, m\]

• How can we represent this using binary variables?
• The trick: “big-M” method

• Let $M \in \mathbb{R}$ be some big number and consider the constraint

\[(x_i)_1 \leq a_1 + zM\]

for $z \in \{0, 1\}$; if $z = 0$, this is the same as the original constraint, but if $z = 1$ then constraint will always be satisfied

• Introduce new variables $z_{i1}, z_{i2}, z_{i3}, z_{i4}$ for each x_i

\[
\begin{align*}
(x_i)_1 &\leq a_1 + z_{i1}M \\
(x_i)_1 &\geq b_1 - z_{i2}M \\
(x_i)_2 &\leq a_2 + z_{i3}M \\
(x_i)_2 &\geq b_2 - z_{i4}M \\
z_{i1} + z_{i2} + z_{i3} + z_{i4} &\leq 3
\end{align*}
\]
Final optimization problem

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{m-1} \|x_{i+1} - x_i\|_2^2 \\
\text{subject to} & \quad (x_i)_1 \leq a_1 + z_{i1}M \\
& \quad (x_i)_1 \geq b_1 - z_{i2}M \\
& \quad (x_i)_2 \leq a_2 + z_{i3}M \\
& \quad (x_i)_2 \geq b_2 - z_{i4}M \\
& \quad z_{i1} + z_{i2} + z_{i3} + z_{i4} \leq 3 \\
& \quad z_{ij} \in \{0, 1\}, \quad i = 1, \ldots, m, \quad j = 1, \ldots, 4 \\
x_1 = \text{start}, \quad x_m = \text{goal}
\end{align*}
\]
Overview

- Introduction to mixed integer programs
- Examples: Sudoku, planning with obstacles
- Solving integer programs with branch and bound
- Examples (solved)
- Extensions
Solution via enumeration

- Recall that optimization problem

\[
\begin{align*}
\text{minimize } & \quad f(x, z) \\
\text{subject to } & \quad g_i(x, z) \leq 0 \quad i = 1, \ldots, m \\
& \quad z_i \in \{0, 1\}, \quad i = 1, \ldots, p
\end{align*}
\]

is easy for a fixed \(z \) (then a convex problem)

- So, just enumerate all possible \(z \)’s and solve optimization problem for each

- \(2^p \) possible assignments, quickly becomes intractable
Branch and bound

- Branch and bound is simply a search algorithm (best-first search) applied to finding the optimal z assignment

- In the worst case, still exponential (have to check every possible assignment)

- In many cases much better
Convex relaxations

• The key idea: *convex relaxation* of non-convex constraint

\[
\begin{align*}
\text{minimize} & \quad f(x, z) \\
\text{subject to} & \quad g_i(x, z) \leq 0 \quad i = 1, \ldots, m \\
& \quad z_i \in \{0, 1\}, \quad i = 1, \ldots, p
\end{align*}
\]
Convex relaxations

• The key idea: \textit{convex relaxation} of non-convex constraint

\[
\begin{align*}
\text{minimize} \quad & f(x, \bar{z}) \\
\text{subject to} \quad & g_i(x, \bar{z}) \leq 0 \quad i = 1, \ldots, m \\
& \bar{z}_i \in [0, 1], \quad i = 1, \ldots, p
\end{align*}
\]
Convex relaxations

• The key idea: *convex relaxation* of non-convex constraint

\[
\begin{align*}
\text{minimize} & \quad f(x, \bar{z}) \\
\text{subject to} & \quad g_i(x, \bar{z}) \leq 0 \quad i = 1, \ldots, m \\
& \quad \bar{z}_i \in [0, 1], \quad i = 1, \ldots, p
\end{align*}
\]

• Key point: if the optimal solution \(\bar{z}^* \) to the relaxation is integer valued, then it is an optimal solution to the integer program

• Furthermore, all solutions to relaxed problem provide *lower bounds* on optimal objective

\[
f(x^*, \bar{z}^*) \leq f(x^*, z^*)
\]
Simple branch and bound algorithm

• Idea of approach
 1. Solve relaxed problem

 2. If there are variables \tilde{z}_i^* with non-integral solutions, pick one of the variables and recursively solve each relaxation with $\tilde{z}_i = 0$ and $\tilde{z}_i = 1$

 3. Stop when a solution is integral

• By using best-first search (based upon lower bound given by relaxation), we potentially need to search many fewer possibilities than for enumeration
function \((f, x^*, \bar{z}^*, C) = \text{Solve-Relaxtion}(C)\)
// solves relaxation plus constraints in \(C\)

\[
q \leftarrow \text{Priority-Queue}()
\]
\[
q.\text{push}(\text{Solve-Relaxtion}(\{\}))
\]

while (q not empty):
\[
(f, x^*, \bar{z}^*, C) \leftarrow q.\text{pop}()
\]

if \(\bar{z}^*\) integral:
\[
\text{return } (f, x^*, \bar{z}^*, C)
\]

else:

Choose \(i\) such that \(\bar{z}_i\) non-integral
\[
q.\text{push}(\text{Solve-Relaxtion}(C \cup \{\bar{z}_i = 0\}))
\]
\[
q.\text{push}(\text{Solve-Relaxtion}(C \cup \{\bar{z}_i = 1\}))
\]
• A common modification: in addition to maintaining lower bound from relaxation, maintain an upper bound on optimal objective

• Common method for computing upper bound: round entries in \bar{Z}_i to nearest integer, and solve optimization problem with this fixed \bar{Z}

• (May not produce a feasible solution)
function \((f, x^*, \bar{z}^*, C) = \text{Solve-Relaxtion}(C)\)

\(/ / \text{solves relaxation plus constraints in } C\)

q ← Priority-Queue()
q2 ← Priority-Queue()
q.push(Solve-Relaxtion(\{\}))

while (q not empty):
 \((f, x^*, \bar{z}^*, C) ← q.pop()\)
 q2.push(Solve-Relaxtion(\{\bar{z} = \text{round}(\bar{z}^*)\}))

 if q2.first() − \(f < \epsilon\):
 return q2.pop()
 else:
 Choose \(i\) such that \(\bar{z}_i\) non-integral
 q.push(Solve-Relaxtion(\(C \cup \{\bar{z}_i = 0\}\)))
 q.push(Solve-Relaxtion(\(C \cup \{\bar{z}_i = 1\}\)))
Simple example (from Boyd and Mattingley)

\[\begin{align*}
\text{minimize} & \quad 2z_1 + z_2 - 2z_3 \\
\text{subject to} & \quad 0.7z_1 + 0.5z_2 + z_3 \geq 1.8 \\
& \quad z_i \in \{0, 1\}, \quad i = 1, 2, 3
\end{align*} \]
Simple example (from Boyd and Mattingley)

\[
\begin{align*}
\text{minimize} & \quad 2z_1 + z_2 - 2z_3 \\
\text{subject to} & \quad 0.7z_1 + 0.5z_2 + z_3 \geq 1.8 \\
& \quad z_i \in [0, 1], \quad i = 1, 2, 3
\end{align*}
\]

Search tree

\[
\{\}
\]

Queue

\[
(-0.143, [0.43, 1, 1], \{\})
\]
Simple example (from Boyd and Mattingley)

\[
\begin{align*}
\text{minimize} & \quad 2z_1 + z_2 - 2z_3 \\
\text{subject to} & \quad 0.7z_1 + 0.5z_2 + z_3 \geq 1.8 \\
& \quad z_i \in [0, 1], \quad i = 1, 2, 3
\end{align*}
\]

Search tree

\[
\begin{array}{c}
\{\}\rightarrow z_1 = 0 \\
& \rightarrow z_1 = 1
\end{array}
\]

Queue

\[
(0.2, [1, 0.2, 1], \{z_1 = 1\}) \\
(\infty, -, \{z_1 = 0\})
\]
Simple example (from Boyd and Mattingley)

\[
\begin{align*}
\text{minimize} & \quad 2z_1 + z_2 - 2z_3 \\
\text{subject to} & \quad 0.7z_1 + 0.5z_2 + z_3 \geq 1.8 \\
& \quad z_i \in [0, 1], \quad i = 1, 2, 3
\end{align*}
\]

Search tree

\[
\begin{array}{c}
\{\} \\
| \quad \quad
\end{array}
\]

Queue

\[
\begin{align*}
(1, [1, 1, 1], \{z_1 = 1, z_2 = 1\}) \\
(\infty, -, \{z_1 = 0\}) \\
(\infty, -, \{z_1 = 1, z_2 = 0\})
\end{align*}
\]
Sudoku revisited

- The hard part with Sudoku is finding puzzles where the initial linear programming relaxation is not already tight.

- Branch and bound solves this problem after 27 steps.
minimize \(\sum_{i,j=1}^{9} \max_k (z_{i,j})_k \)

subject to \(z \in \text{Valid-Sudoku} \)

\(z_{i,j} \in \{0, 1\}^9, \quad i,j = 1, \ldots, 9 \)
Path planning with obstacles

- Final optimization problem

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{m-1} \|x_{i+1} - x_i\|^2_2 \\
\text{subject to} & \quad (x_i)_1 \leq a_1 + z_{i1}M \\
& \quad (x_i)_1 \geq b_1 - z_{i2}M \\
& \quad (x_i)_2 \leq a_2 + z_{i3}M \\
& \quad (x_i)_2 \geq b_2 - z_{i4}M \\
& \quad z_{i1} + z_{i2} + z_{i3} + z_{i4} \leq 3 \\
& \quad z_{ij} \in \{0, 1\}, \quad i = 1, \ldots, m \\
& \quad x_1 = \text{start}, \quad x_m = \text{goal}
\end{align*}
\]
Overview

- Introduction to mixed integer programs
- Examples: Sudoku, planning with obstacles
- Solving integer programs with branch and bound
- Extensions
Extensions to MIP

• How to incorporate actual integer (instead of just binary) constraints?
 – When solution is non-integral, split after adding constraints
 \[\{ \bar{z}_i \leq \text{floor}(\bar{z}_i^*) \}, \{ \bar{z}_i \geq \text{ceil}(\bar{z}_i^*) \} \]

• More advanced splits, addition of “cuts” that rule out non-integer solutions (branch and cut)

• Solve convex problems more efficiently, many solvers can be sped up given a good initial point, and many previous solutions will be good initializations
Take home points

• Integer programs are a power subset of non-convex optimization problems that can solve many problems of interest

• Combining search and numerical optimization techniques, we get an algorithm that solve many problems much more efficiently than the “brute force” approach

• Performance will still be exponential in the worst case, and problem dependent, but can be reasonable for many problems of interest