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ABSTRACT
Many information-management tasks (including classifica-
tion, retrieval, information extraction, and information in-
tegration) can be formalized as inference in an appropriate
probabilistic first-order logic. However, most probabilistic
first-order logics are not efficient enough for realistically-
sized instances of these tasks. One key problem is that
queries are typically answered by “grounding” the query—
i.e., mapping it to a propositional representation, and then
performing propositional inference—and with a large database
of facts, groundings can be very large, making inference and
learning computationally expensive. Here we present a first-
order probabilistic language which is well-suited to approxi-
mate “local” grounding: in particular, every query Q can be
approximately grounded with a small graph. The language
is an extension of stochastic logic programs where inference
is performed by a variant of personalized PageRank. Ex-
perimentally, we show that the approach performs well on
an entity resolution task, a classification task, and a joint
inference task; that the cost of inference is independent of
database size; and that speedup in learning is possible by
multi-threading.

Categories and Subject Descriptors
[Information Systems Applications]: Miscellaneous
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1. INTRODUCTION
Many information-management tasks (including classifi-

cation [18], retrieval [12], information extraction [23], and in-
formation integration [24, 7]) can be formalized as inference
in an appropriate probabilistic first-order logic. However,
most probabilistic first-order logics are not efficient enough
to be used for the large-scale versions of these tasks. One key
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Figure 1: A Markov logic network program and its
grounding. (Dotted lines are clique potentials asso-
ciated with rule R2, solid lines with rule R1.)

problem is that queries are typically answered by “ground-
ing” the query—i.e., mapping it to a propositional repre-
sentation, and then performing propositional inference—and
for many logics, the size of the“grounding”can be extremely
large for large databases. For instance, in probabilistic Data-
log [12], a query is converted to a structure called an “event
expression”, which summarizes all possible proofs for the
query against a database; in ProbLog [10] and MarkoViews
[14] similar structures are created, encoded more compactly
with binary decision diagrams (BDDs); in probabilistic sim-
ilarity logic (PSL) an intentional probabilistic program, to-
gether with a database, is converted to constraints for a
convex optimization problem; and in Markov Logic Net-
works (MLNs) [25], queries are converted to a (proposi-
tional) Markov network. As an illustration of the “ground-
ing” process, Figure 1 shows a very simple MLN and its
grounding (which here is query-independent.).

The size of groundings is sometimes, but not always, diffi-
cult to analyze. For instance, for MLNs, a naive grounding
is linear in the number of possible facts in the database—
i.e., O(nk) where k is the maximal arity of a predicate and n
the number of database constants. However, even a ground-
ing of size linear in the number of facts in the database,
|DB|, is impractically large for inference. Superficially, it
would seem that groundings must inherently be o(|DB|) for
some programs: in the example, for instance, the proba-
bility of aboutSport(x) must depend to some extent on the
entire hyperlink graph (if it is fully connected). However,
it also seems intuitive that if we are interested in infer-
ring information about a specific page—say, the probabil-



ity of aboutSport(d1)—then the parts of the network only
distantly connected to d1 are likely to have a small influ-
ence. This suggests that an approximate grounding strategy
might be feasible, in which a query such as aboutSport(d1)
would be grounded by constructing a small subgraph of the
full network, followed by inference on this small “locally
grounded” subgraph. Likewise, consider learning (e.g., from
a set of queries Q with their desired truth values). Learning
might proceed by locally-grounding every query goal, allow-
ing learning to also take less than O(|DB|) time.

In this paper, we present a first-order probabilistic lan-
guage which is well-suited to approximate “local” grounding.
We present an extension to stochastic logic programs (SLP)
[9] that is biased towards short derivations, and show that
this is related to personalized PageRank (PPR) [22, 6] on a
linearized version of the proof space. Based on the connec-
tion to PPR, we develop a proveably-correct approximate
inference scheme, and an associated proveably-correct ap-
proximate grounding scheme: specifically, we show that it
is possible to prove a query, or to build a graph which con-
tains the information necessary for weight-learning, in time
O( 1

αε
), where α is a reset parameter associated with the bias

towards short derivations, and ε is the worst-case approxi-
mation error across all intermediate stages of the proof. This
means that both inference and learning can be approximated
in time independent of the size of the underlying database—a
surprising and important result.

The ability to locally ground queries has another impor-
tant consequence: it is possible to decompose the problem
of weight-learning to a number of moderate-size subtasks (in
fact, tasks of size O( 1

αε
) or less) which are weakly coupled.

Based on this we outline a parallelization scheme, which in
our initial implementation provides an order-of-magnitude
speedup in learning time.

Below, we will first introduce our formalism, and then de-
scribe our weight-learning algorithm. We will then present
experimental results on a prototypical inference task, and
compare the scalability of our method to Markov logic net-
works. We finally discuss related work and conclude.

2. PROGRAMMING WITH PERSONALIZED
PAGERANK (PROPPR)

2.1 Inference as Graph Search
We will now describe our “locally groundable” first-order

probabilistic language, which we call ProPPR. Inference for
ProPPR is based on a personalized PageRank process over
the proof constructed by Prolog’s Selective Linear Definite
(SLD) resolution theorem-prover. To define the semantics
we will use notation from logic programming [17]. Let LP be
a program which contains a set of definite clauses c1, . . . , cn,
and consider a conjunctive query Q over the predicates ap-
pearing in LP . A traditional Prolog interpreter can be
viewed as having the following actions. First, construct a
“root vertex” v0, which is a pair (Q,Q) and add it to an
otherwise-empty graph G′Q,LP . (For brevity, we drop the
subscripts of G′ where possible.) Then recursively add to
G′ new vertices and edges as follows: if u is a vertex of
the form (Q, (R1, . . . , Rk)), and c is a clause in LP of the
form R′ ← S′1, . . . , S

′
`, and R1 and R′ have a most general

unifier θ = mgu(R1, R
′), then add to G′ a new edge u→ v

where v = (Qθ, (S′1, . . . , S
′
`, R2, . . . , Rk)θ). Let us call Qθ

Table 1: A simple program in ProPPR. See text for
explanation.

about(X,Z) :- handLabeled(X,Z) # base.
about(X,Z) :- sim(X,Y),about(Y,Z) # prop.
sim(X,Y) :- links(X,Y) # sim,link.
sim(X,Y) :-

hasWord(X,W),hasWord(Y,W),
linkedBy(X,Y,W) # sim,word.

linkedBy(X,Y,W) :- true # by(W).

the transformed query and (S′1, . . . , S
′
`, R2, . . . , Rk)θ the as-

sociated subgoal list. If a subgoal list is empty, we will de-
note it by 2. Here Qθ denotes the result of applying the
substitution θ to Q; for instance, if Q = about(a, Z) and
θ = {Z = fashion}, then Qθ is about(a, fashion).

The graph G′ is often large or infinite so it is not con-
structed explicitly. Instead Prolog performs a depth-first
search on G′ to find the first solution vertex v—i.e., a ver-
tex with an empty subgoal list—and if one is found, returns
the transformed query from v as an answer to Q. Table 1
and Figure 2 show a simple Prolog program and a proof
graph for it.1 Given the query Q = about(a,Z), Prolog’s
depth-first search would return Q = about(a,fashion).

Note that in this proof formulation, the nodes are conjunc-
tions of literals, and the structure is, in general, a digraph
(rather than a tree). Also note that the proof is encoded as
a graph, not a hypergraph, even if the predicates in the LP
are not binary: the edges represent a step in the proof that
reduces one conjunction to another, not a binary relation
between entities.

2.2 From SLPs to ProPPR
In stochastic logic programs (SLPs) [9], one defines a ran-

domized procedure for traversing the graph G′, which thus
defines a probability distribution over vertices v, and hence
(by selecting only solution vertices) a distribution over trans-
formed queries (i.e. answers) Qθ. The randomized pro-
cedure thus produces a distribution over possible answers,
which can be tuned by learning to upweight desired (correct)
answers and downweight others.

In past work, the randomized traversal of G′ was defined
by a probabilistic choice, at each node, of which clause to
apply, based on a weight for each clause. We propose two
extensions. First, we will introduce a new way of comput-
ing clause weights, which allows for a potentially richer pa-
rameterization of the traversal process. We will associate
with each edge u→ v in the graph a feature vector φu→v.
This edge is produced indirectly, by associating with every
clause c ∈ LP a function Φc(θ),

2 which produces the vec-
tor φ associated with an application of c using mgu θ. This
feature vector3 is computed during theorem-proving, and
used to annotate the edge u→ v in G′ created by apply-

1The annotations after the hashmarks and the edge labels
in the proof graph will be described below. For conciseness,
onlyR1, . . . , Rk is shown in each node u = (Q, (R1, . . . , Rk)).
2We use a set to denote a sparse vector with 0/1 weights.
3An example of the feature vector would be: if the
last clause of the program in Table 1 was applied to
(Q, linkedBy(a, c, sprinter), about(c, Z)) with mgu θ =
{X = a, Y = c,W = sprinter} then Φc(θ) would be
{by(sprinter)}.



Figure 2: A partial proof graph for the query about(a,Z). The upper right shows the link structure between
documents a, b, c, and d, and some of the words in the documents. Restart links are not shown.

ing c with mgu θ. Finally, an edge u→ v will be traversed
with probability Pr(v|u) ∝ f(w, φu→v) where w is a param-
eter vector and where f(w, φ) is a weighting function—e.g.,
f(w, φ) = exp(wi · φ). This weighting function now deter-
mines the probability of a transition, in theorem-proving,
from u to v: specifically, Prw(v|u) ∝ f(w, φu→v). Weights
in w default to 1.0, and learning consists of tuning these.

The second and more fundamental extension is to add
edges in G′ from every solution vertex to itself, and also
add an edge from every vertex to the start vertex v0. We
will call this augmented graph GQ,LP below (or just G if
the subscripts are clear from context). These links make
SLP’s graph traversal a personalized PageRank (PPR) pro-
cedure, sometimes known as random-walk-with-restart [30].
These links are annotated by another feature vector function
Φrestart(R), which is applied to the leftmost literal R of the
subgoal list for u to annotate the edge u→ v0.

These links back to the start vertex bias the traversal of
the proof graph to upweight the results of short proofs. To
see this, note that if the restart probability P (v0|u) = α for
every node u, then the probability of reaching any node at
depth d is bounded by (1− α)d.

To summarize, if u is a node of the search graph, u =
(Qθ, (R1, . . . , Rk)), then the transitions from u, and their
respective probabilities, are defined as follows, where Z is
an appropriate normalizing constant:

• If v = (Qθσ, (S′1, . . . , S
′
`, R2, . . . , Rk)θσ) is a state de-

rived by applying the clause c (with mgu σ), then

Pr
w

(v|u) =
1

Z
f(w,Φc(θ ◦ σ))

• If v = v0 = (Q,Q) is the initial state in G, then

Pr
w

(v|u) =
1

Z
f(w,Φrestart(R1θ))

• If v is any other node, then Pr(v|u) = 0.

Finally we must specify the functions Φc and Φrestart. For
clauses in LP , the feature-vector producing function Φc(θ)
for a clause is specified by annotating c as follows: every

clause c = (R← S1, . . . , Sk) can be annotated with an addi-
tional conjunction of “feature literals” F1, . . . , F`, which are
written at the end of the clause after the special marker “#”.
The function Φc(θ) then returns a vector φ = {F1θ, . . . , F`θ},
where every Fiθ must be ground.

The requirement4 that edge features Fiθ are ground is
the reason for introducing the apparently unnecessary pred-
icate linkedBy(X,Y,W) into the program of Table 1: adding
the feature literal by(W) to the second clause for sim would
result in a non-ground feature by(W), since W is a free vari-
able when Φc is called. Notice also that the weight on the
by(W) features are meaningful, even though there is only
one clause in the definition of linkedBy, as the weight for
applying this clause competes with the weight assigned to
the restart edges.

It would be cumbersome to annotate every database fact,
and difficult to learn weights for so many features. Thus, if
c is the unit clause that corresponds to a database fact, then
Φc(θ) returns a default value φ = {db}, where db is a special
feature indicating that a database predicate was used.5

The function Φrestart(R) depends on the functor and ar-
ity of R. If R is defined by clauses in LP , then Φrestart(R)
returns a unit vector φ = {defRestart}. If R is a database
predicate (e.g., hasWord(doc1,W)) then we follow a slightly
different procedure, which is designed to ensure that the
restart link has a reasonably large weight even with unit fea-
ture weights: we compute n, the number of possible bindings
for R, and set φ[defRestart] = n · α

1−α , where α is a global
parameter. This means that with unit weights, after nor-
malization, the probability of following the restart link will
be α.

Putting this all together with the standard iterative ap-
proach to computing personalized PageRank over a graph

4The requirement that the feature literals returned by Φc(θ)
must be ground in θ is not strictly necessary for correctness.
However, in developing ProPPR programs we noted than
non-ground features were usually not what the programmer
intended.
5If a non-database clause c has no annotation, then the de-
fault vector is φ = {id(c)}, where c is an identifier for the
clause c.



[22], we arrive at the following inference algorithm for an-
swering a query Q, using a weight vector w. Below, we let
Nv0(u) denote the neighbors of u—i.e., the set of nodes v
where Pr(v|u) > 0 (including the restart node v = v0). We
also let W be a matrix such that W[u, v] = Prw(v|u), and
in our discussion, we use ppr(v0) to denote the personalized
PageRank vector for v0.

1. Let v0 = (Q,Q) be the start node of the search graph.
Let G be a graph containing just v0. Let v0 = {v0}.

2. For t = 1, . . . , T (i.e., until convergence):

For each u with non-zero weight in vt−1, and each
v ∈ Nu+0(u), add (u, v, φu→v) to G with weight
Prw(v|u), and set vt = W · vt−1

3. At this point vT ≈ ppr(v0). Let S be the set of nodes
(Qθ,2) that have empty subgoal lists and non-zero
weight in vT , and let Z =

∑
u∈S vT [u]. The final

probability for the literal L = Qθ is found by extract-
ing these solution nodes S, and renormalizing:

Pr
w

(L) ≡ 1

Z
vT [(L,2)]

For example, given the query Q = about(a,Z) and the pro-
gram of Table 1, this procedure would give assign a non-zero
probability to the literals about(a,sport) and about(a,fashion),
concurrently building the graph of Figure 2.

2.3 Locally Grounding a Query
Note that this procedure both performs inference (by com-

puting a distribution over literals Qθ) and “grounds” the
query, by constructing a graph G. ProPPR inference for
this query can be re-done efficiently, by running an ordinary
PPR process on G. This is useful for faster weight learning.
Unfortunately, the grounding G can be very large: it need
not include the entire database, but if T is the number of
iterations until convergence for the sample program of Ta-
ble 1 on the query Q = about(d, Y ), G will include a node
for every page within T hyperlinks of d.

To construct a more compact local grounding graph G,
we adapt an approximate personalized PageRank method
called PageRank-Nibble [2]. This method has been used for
the problem of local partitioning : in local partitioning, the
goal is to find a small, low-conductance component Ĝ of a
large graph G that contains a given node v.

The PageRank-Nibble-Prove algorithm is shown in Ta-
ble 2. It maintains two vectors: p, an approximation to
the personalized PageRank vector associated with node v0,
and r, a vector of “residual errors” in p. Initially, p = ∅
and r = {v0}. The algorithm repeatedly picks a node u
with a large residual error r[u], and reduces this error by
distributing a fraction α′ of it to p[u], and the remaining
fraction back to r[u] and r[v1], . . . , r[vn], where the vi’s are
the neighbors of u. The order in which nodes u are picked
does not matter for the analysis (in our implementation, we
follow Prolog’s usual depth-first search as much as possible.)
Relative to PageRank-Nibble, the main differences are the
the use of a lower-bound on α rather than a fixed restart
weight and the construction of the graph Ĝ.

Following the proof technique of Andersen et al. [2], it can
be shown that after each push, p + r = ppr(v0). It is also
clear than when PageRank-Nibble terminates, then for any

u, the error ppr(v0)[u]−p[u] is bounded by ε|N(u)|: hence,
in any graph where N(u) is bounded, a good approximation
can be obtained. It can also be shown [2] that the subgraph

Ĝ is in some sense a “useful” subset of the full proof space:
for an appropriate setting of ε, if there is a low-conductance
subgraph G∗ of the full graph that contains v0, then G∗ will
be contained in Ĝ: thus if there is a subgraph G∗ containing
v0 that approximates the full graph well, PageRank-Nibble
will find (a supergraph of) G∗.

Finally, we have the following efficiency bound:

Theorem 1 (Andersen,Chung,Lang). Let ui be the
i-th node pushed by PageRank-Nibble-Prove. Then,∑
i |N(ui)| < 1

α′ε .

This can be proved by noting that initially ||r||1 = 1, and
also that ||r||1 decreases by at least α′ε|N(ui)| on the i-th
push. As a direct consequence we have the following:

Corollary 1. The number of edges in the graph Ĝ pro-
duced by PageRank-Nibble-Prove is no more than 1

α′ε .

Importantly, the bound holds independent of the size of
the full database of facts. The bound also holds regardless of
the size or loopiness of the full proof graph, so this inference
procedure will work for recursive logic programs.

To summarize, we have outlined an efficient approximate
proof procedure, which is closely related to personalized
PageRank. As a side-effect of inference for a query Q, this
procedure will create a ground graph ĜQ on which person-
alized PageRank can be run directly, without any (relatively
expensive) manipulation of first-order theorem-proving con-
structs such as clauses or logical variables. As we will see,
this “locally grounded” graph will be very useful in learning
weights w to assign to the features of a ProPPR program.

As an illustration of the sorts of ProPPR programs that
are possible, some small sample programs are shown in Fig-
ure 3. Clauses c1 and c2 are, together, a bag-of-words classi-
fier: each proof of predictedClass(D,Y) adds some evidence
for D having class Y , with the weight of this evidence de-
pending on the weight given to c2’s use in establishing re-
lated(w,y), where w and y are a specific word in D and y is
a possible class label. In turn, c2’s weight depends on the
weight assigned to the r(w, y) feature by w, relative to the
weight of the restart link.6 Adding c3 and c4 to this pro-
gram implements label propagation, and adding c5 and c6
implements a sequential classifier.

These examples show that, in spite of its efficient infer-
ence procedure, and its limitation to only definite clauses,
ProPPR appears to have much of the expressive power of
MLNs [11], in that many useful heuristics can apparently be
encoded.

2.4 Learning for ProPPR
As noted above, inference for a query Q in ProPPR is

based on a personalized PageRank process over the graph
associated with the SLD proof of a query goal G. More
specifically, the edges u→ v of the graph G are annotated
with feature vectors φu→v, and from these feature vectors,
weights are computed using a parameter vector w, and fi-
nally normalized to form a probability distribution over the

6The existence of the restart link thus has another impor-
tant role in this program, as it avoids a sort of “label bias
problem” in which local decisions are difficult to adjust.



Table 2: The PageRank-Nibble-Prove algorithm for inference in ProPPR. α′ is a lower-bound on Pr(v0|u) for

any node u to be added to the graph Ĝ, and ε is the desired degree of approximation.

define PageRank-Nibble-Prove(Q):
let v =PageRank-Nibble((Q,Q), α′, ε)
let S = {u : p[u] > u and u = (Qθ,2)}
let Z =

∑
u∈S p[u]

define Prw(L) ≡ 1
Z

v[(L,2)]
end

define PageRank-Nibble(v0, α
′, ε):

let p = r = 0, let r[v0] = 1, and let Ĝ = ∅
while ∃u : r(u)/|N(u)| > ε do: push(u)
return p

end

define push(u, α′):

comment: this modifies p, r, and Ĝ
p[u] = p[u] + α′ · r[u]
r[u] = r[u] · (1− α′)
for v ∈ N(u):

add the edge (u, v, φu→v) to Ĝ
if v = v0 then r[v] = r[v] + Pr(v|u)r[u]
else r[v] = r[v] + (Pr(v|u)− α′)r[u]

endfor
end

neighbors of u. The “grounded” version of inference is thus
a personalized PageRank process over a graph with feature-
vector annotated edges.

In prior work, Backstrom and Leskovec [3] outlined a fam-
ily of supervised learning procedures for this sort of anno-
tated graph. In the simpler case of their learning procedure,
an example is a triple (v0, u, y) where v0 is a query node, u is
a node in in the personalized PageRank vector pv0 for v0, y is
a target value, and a loss `(v0, u, y) is incurred if pv0 [u] 6= y.
In the more complex case of “learning to rank”, an example
is a triple (v0, u+, u−) where v0 is a query node, u+ and u−
are nodes in in the personalized PageRank vector pv0 for v0,
and a loss is incurred unless pv0 [u+] ≥ pv0 [u−]. The core of
Backstrom and Leskovic’s result is a method for computing
the gradient of the loss on an example, given a differentiable
feature-weighting function f(w, φ) and a differentiable loss
function `. The gradient computation is broadly similar to
the power-iteration method for computation of the personal-
ized PageRank vector for v0. Given the gradient, a number
of optimization methods can be used to compute a local
optimum.

Instead of directly using the above learning approach for
ProPPR, we decompose the pairwise ranking loss into a
standard positive-negative log loss function. The training
data D is a set of triples {(Q1, P 1, N1), . . . , (Qm, Pm, Nm)}
where each Qk is a query, P k = 〈Qθ1+, . . . , QθI+〉 is a list of
correct answers, and Nk is a list 〈Qθ1−, . . . , QθJ−〉 incorrect
answers. We use a log loss with L2 regularization of the pa-
rameter weights. Hence the final function to be optimized
is

−

(
I∑
k=1

log pv0 [uk+] +

J∑
k=1

log(1− pv0 [uk−])

)
+ µ||w||22

To optimize this loss, we use stochastic gradient descent
(SGD), rather than the quasi-Newton method of Backstrom
and Leskovic. Weights are initialized to 1.0 + δ, where δ is
randomly drawn from [0, 0.01]. We set the learning rate β
of SGD to be β = η

epoch2 where epoch is the current epoch

in SGD, and η, the initial learning rate, defaults to 1.0.
We implemented SGD because it is fast and has been

adapted to parallel learning tasks [32, 21]. Local ground-
ing means that learning for ProPPR is quite well-suited to
parallelization. The step of locally grounding each Qi is

“embarassingly” parallel, as every grounding can be done in-
dependently. To parallelize the weight-learning stage, we use
multiple threads, each of which computes the gradient over
a single grounding ĜQk , and all of which accesses a single
shared parameter vector w. Although the shared parameter
vector is a potential bottleneck [31], it is not a severe one,
as the gradient computation dominates the learning cost.7

3. EXPERIMENTS

3.1 Sample Tasks
To evaluate this method, we use data from several tasks.

Because the semantics of ProPPR and other probabilistic
logics are different, the tasks are evaluated by ranking the
possible answers to a query, and scoring the ranking by a
standard measure such as AUC; in other words, we are not
attempting to evaluate the absolute probability scores pro-
duced by ProPPR, only the relative scores for a query.

Our first sample task is an entity resolution task previ-
ously studied as a test case for MLNs [27]. The program we
use in the experiments is shown in Table 4: it is approxi-
mately the same as the MLN(B+T) approach from Singla
and Domingos.8 To evaluate accuracy, we use the CORA
dataset, a collection of 1295 bibliography citations that re-
fer to 132 distinct papers. We set the regularization coeffi-
cient µ to 0.001, the number of epochs to 5, and the learning
rate parameter η to 1. An L2-regularized standard log loss
function was used in our objective function.

Our second task is a bag-of-words classification task, which
was previously studied as a test case for both ProbLog [13]
and MLNs [18]. In this experiment, we use the following
ProPPR program:

class(X,Y) :- has(X,W), isLabel(Y), related(W,Y).
related(W,Y) :- true, # w(W,Y).

which is a bag-of-words classifier that is approximately the
same as the ones used by Gutmann et al. [13], as well as
7This is not the case when learning a linear classifier, where
gradient computations are much cheaper.
8The principle difference is that we do not include tests on
the absence of words in a field in our clauses, and we drop
the non-horn clauses from their program.



Table 3: Some more sample ProPPR programs. LP = {c1, c2} is a bag-of-words classifier (see text). LP =
{c1, c2, c3, c4} is a recursive label-propagation scheme, in which predicted labels for one document are assigned
to similar documents, with similarity being an (untrained) cosine distance-like measure. LP = {c1, c2, c5, c6} is
a sequential classifier for document sequences.

c1: predictedClass(Doc,Y) :-
possibleClass(Y),
hasWord(Doc,W),
related(W,Y) # c1.

c2: related(W,Y) :- true,
# relatedFeature(W,Y)

Database predicates:
hasWord(D,W): doc D contains word W
inDoc(W,D): doc D contains word W
previous(D1,D2): doc D2 precedes D1
possibleClass(Y): Y is a class label

c3: predictedClass(Doc,Y) :-
similar(Doc,OtherDoc),
predictedClass(OtherDoc,Y) # c3.

c4 : similar(Doc1,Doc2) :-
hasWord(Doc1,W),
inDoc(W,Doc2) # c4.

c5 : predictedClass(Doc,Y) :-
previous(Doc,OtherDoc),
predictedClass(OtherDoc,OtherY),
transition(OtherY,Y) # c5.

c6: transition(Y1,Y2) :- true,
# transitionFeature(Y1,Y2)

Lowd and Domingos9 [18]. The dataset we use is the We-
bKb dataset, which includes a set of web pages from four
computer science departments (Cornell, Wisconsin, Wash-
ington, and Texas). Each web page has one or multiple la-
bels: course, department, faculty, person, research project,
staff, and student. The task is to classify the given URL
into the above categories. This dataset has a total of 4165
web pages. Using our ProPPR program, we learn a separate
weight for each word for each label.

In addition to the entity resolution task and the bag-of-
words classification task, we also investigate our approach
for joint inference in a link (relation) prediction problem. In
this experiment, our goal is to answer the following question:
can we use ProPPR to perform joint inference to improve the
performance of a link prediction task on a relational knowl-
edge base? To do this, we use a subset of 19,527 beliefs
from a knowledge base, which is extracted imperfectly from
the web by NELL, a never-ending language learner [5]. The
training set contains 12,331 queries, and the test set con-
tains 1,185 queries. In contrast to a previous approach [16]
for link prediction, we combine the top-ranked paths learned
by PRA, another method for link prediction that we have ap-
plied to the NELL’s KB [15], and transform these paths into
ProPPR programs, then perform joint inference to predict
the links between entities. The total number of translated
rules is 797, and ε was set to 0.00001. One goal of this exper-
iment is to evaluate the performance of ProPPR on larger
logic programs, containing hundreds of rules. To do this, we
build on a previous approach [16] called PRA for link predic-
tion, which learns weighted sets of “paths” of relations. We
compare two experimental settings: the rules (paths) that
are non-recursive and recursive. A non-recursive rule only
makes use of the information in the database, and therefore
cannot be used for joint learning with other learned PRA
rules. For example, the relation agentActsinLocation only
has the following non-recursive rule:

9Note that we do not use the negation rule and the link rule
from Lowd and Domingos.

agentActsinLocation :- fact agentActsinLocation.

and this fact agentActsinLocation predicate only uses the
beliefs in the database, but not other PRA rules. Recursive
rules, on the other hand, allow us to perform joint inference
on all the learned PRA rules related to the given relation.
Here is an excerpt of the recursive ProPPR program, trans-
lated from the learned PRA rules:

athletePlaySport(Athlete,Sport) :-
fact athletePlaySport(Athlete,Sport).

athletePlaySport(Athlete,Sport) :-
onTeam(Athlete,Team), teamPlaysSport(Team,Sport)

teamPlaysSport(Team,Sport) :-
member(Team,Conference),
member(Team2,Conference),
plays(Team2,Sport).

teamPlaysSport(Team,Sport) :-
onTeam(Athlete,Team),
athletePlaysSport(Athlete,Sport).

3.2 CORA Entity Resolution Results
We first consider the cost of the PageRank-Nibble-Prove

inference/grounding technique. Table 5 shows the time re-
quired for inference (with uniform weights) for a set of 52
randomly chosen entity-resolution tasks from the CORA
dataset, using a Python implementation of the theorem-
prover. We report the time in seconds for all 52 tasks, as
well as the mean average precision (MAP) of the scoring for
each query. It is clear that PageRank-Nibble-Prove offers
a substantial speedup on these problems with little loss in
accuracy: on these problems, the same level of accuracy is
achieved in less than a tenth of the time.

While the speedup in inference time is desirable, the more
important advantages of the local grounding approach are



Table 4: ProPPR program used for entity resolution.
samebib(BC1,BC2) :- author(BC1,A1),sameauthor(A1,A2),authorinverse(A2,BC2) # author.
samebib(BC1,BC2) :- title(BC1,A1),sametitle(A1,A2),titleinverse(A2,BC2) # title.
samebib(BC1,BC2) :- venue(BC1,A1),samevenue(A1,A2),venueinverse(A2,BC2) # venue.
samebib(BC1,BC2) :- samebib(BC1,BC3),samebib(BC3,BC2) # tcbib.
sameauthor(A1,A2) :- haswordauthor(A1,W),haswordauthorinverse(W,A2),keyauthorword(W) # authorword.
sameauthor(A1,A2) :- sameauthor(A1,A3),sameauthor(A3,A2) # tcauthor.
sametitle(A1,A2) :- haswordtitle(A1,W),haswordtitleinverse(W,A2),keytitleword(W) # titleword.
sametitle(A1,A2) :- sametitle(A1,A3),sametitle(A3,A2) # tctitle.
samevenue(A1,A2) :- haswordvenue(A1,W),haswordvenueinverse(W,A2),keyvenueword(W) # venueword.
samevenue(A1,A2) :- samevenue(A1,A3),samevenue(A3,A2) # tcvenue.
keyauthorword(W) :- true # authorWord(W).
keytitleword(W) :- true # titleWord(W).
keyvenueword(W) :- true # venueWord(W).

Table 5: Performance of the approximate
PageRank-Nibble-Prove method on the Cora
dataset, compared to the grounding by running
personalized PageRank to convergence. In all cases
α′ = 0.1.

ε MAP Time(sec)
0.0001 0.30 28
0.00005 0.40 39
0.00002 0.53 75
0.00001 0.54 116
0.000005 0.54 216
power iteration 0.54 819

Table 6: AUC results on CORA citation-matching.

Cites Authors Venues Titles
MLN(Fig 1) 0.513 0.532 0.602 0.544
MLN(S&D) 0.520 0.573 0.627 0.629
ProPPR(w=1) 0.680 0.836 0.860 0.908
ProPPR 0.800 0.840 0.869 0.900

that (1) grounding time, and hence inference, need not grow
with the database size and (2) learning can be performed
in parallel, by using multiple threads for parallel computa-
tions of gradients in SGD. Figure 3 illustrates the first of
these points: the scalability of the PageRank-Nibble-Prove
method as database size increases. For comparison, we also
show the inference time for MLNs with three inference meth-
ods: Gibbs refers to Gibbs sampling, Lifted BP is the lifted
belief propagation method, and MAP is the maximum a
posteriori inference approach. In each case the performance
task is inference over 16 test queries.

Note that ProPPR’s runtime is constant, independent of
the database size: it takes essentially the same time for
28 = 256 entities as for 24 = 16. In contrast, lifted be-
lief propagation is around 1000 times slower on the larger
database.

Figure 4 explores the speedup in learning (from grounded
examples) due to multi-threading. The weight-learning is
using a Java implementation of the algorithm which runs
over ground graphs. The full CORA dataset was used in this
experiment. As can be seen, the speedup that is obtained is
nearly optimal, even with 16 threads running concurrently.

Figure 3: Run-time for inference on the Cora
dataset using ProPPR (with a single thread) as a
function of the number of entities in the database.
The base of the log is 2.

We finally consider the effectiveness of weight learning.
We train on the first four sections of the CORA dataset, and
report results on the fifth. Following Singla and Domingos
[27] we report performance as area under the ROC curve
(AUC). Table 6 shows AUC on the test set used by Singla
and Domingos for several methods. The line for MLN(Fig 1)
shows results obtained by an MLN version of the program
of Figure 1. The line MLN(S&D) shows analogous results
for the best-performing MLN from [27]. Compared to these
methods, ProPPR does quite well even before training (with
unit feature weights, w=1); the improvement here is likely
due to the ProPPR’s bias towards short proofs, and the
tendency of the PPR method to put more weight on shared
words that are rare (and hence have lower fanout in the
graph walk.) Training ProPPR improves performance on
three of the four tasks, and gives the most improvement on
citation-matching, the most complex task.

The results in Table 6 all use the same data and evaluation
procedure, and the MLNs were trained with the state-of-
the-art Alchemy system using the recommended commands



Figure 4: Performance of the parallel SGD method
on CORA dataset. The x axis is the number of
threads on a multicore machine, and the y axis is the
speedup factor over a single-threaded implementa-
tion.

for this data (which is distributed with Alchemy10). How-
ever, we should note that the MLN results reproduced here
are not identical to previous-reported ones [27]. Singla and
Domingos used a number of complex heuristics that are dif-
ficult to reproduce—e.g., one of these was combining MLNs
with a heuristic, TFIDF-based matching procedure based
on canopies [19]. While the trained ProPPR model outper-
formed the reproduced MLN model in all prediction tasks, it
outperforms the reported results from Singla and Domingos
only on venue, and does less well than the reported results
on citation and author11.

3.3 WebKb Classification Results
Similar to the evaluation of the entity resolution task, here

we focus on three evaluations: the cost of inference as a func-
tion of the database size, the accuracy in the classification
task, and the speedup in the learning due to multi-threading.

We show the cost of inference as a function of database
size on the WebKb dataset in the Figure 5. In this experi-
ment, we fix the number of test queries, and vary the num-
ber of entities in the database. We see that the run time for
ProPPR is independent of the size of the database: it takes
the same amount of time for ProPPR to perform inference
for 210 = 1024 entities as for 24 = 16 entities. However, this
is not the case for inference in the Markov logic network.
We see that when the size of the database is small, all of
the approaches have similar run time, but when there are
1024 entities in the database, the run time of each method
diverges significantly. The result is consistent with those of
the CORA experiments.

We also consider the accuracy of the ProPPR language
on the Webkb dataset. We use exactly the same cross-
validation experimental settings that previous work use [18,

10http://alchemy.cs.washington.edu
11Performance on title matching is not reported by Singla
and Domingos.

Figure 5: Run-time for inference on the WebKb
dataset using ProPPR (with a single thread) as a
function of the number of entities in the database.
The base of the log is 2.

13]: in each fold, for the four universities, we train on the
three, and report result on the fourth. In Table 7, we show
the detailed AUC results of each fold, as well as the av-
eraged results12. First, we see that if we do not perform
weight learning, the averaged result is equivalent to a ran-
dom baseline. As reported by Gutmann et al. [13], the
ProbLog approach obtains an AUC of 0.606 on the dataset.
The voted perceptron algorithm (MLN VP, AUC ≈ 0.605)
and the contrastive divergence algorithm (MLN CD, AUC
≈ 0.604) reported by Lowd and Domingos [18] are within
the same range as ProbLog. When using the conjugate gra-
dients approach, the MLN (CG) achieved an AUC of 0.730.
When comparing to the trained version of ProPPR on the
same dataset, we see that ProPPR obtains an AUC of 0.797,
which outperforms all the results reported by ProbLog and
MLN.

Finally, we consider the speedup in learning due to multi-
threading on the WebKb dataset. Learning time averages
about 950 seconds with a single thread, but this can be
reduced to only two minutes if 16 threads are used. For
comparison, Lowd and Domingos report that around 10,000
seconds were needed to obtain the best results were obtained
for MLNs. The multi-threaded speed up performance on
different sections of the WebKb dataset is shown in Table 8.

3.4 NELL Link Prediction Results
The accuracy results on the NELL link-prediction task

are shown in Table 9. We observe that when not performing
joint inference with the learned top-ranked paths, ProPPR
obtains an AUC of 0.858. However, when using these rules
for joint learning, we observe an AUC of 0.916 when using
ProPPR. The total time for joint inference with 797 rules is
13 minutes.

4. RELATED WORK
12Note that both [18, 13] do not show the detailed breakdown
of the results on WebKb dataset.



Table 7: AUC results on the WebKb classification
task. Co.: Cornell. Wi.: Wisconsin. Wa.: Washing-
ton. Te.: Texas.

Co. Wi. Wa. Te. Avg.
ProLog [13] – – – – 0.606
MLN (VP) [18] – – – – 0.605
MLN (CD) [18] – – – – 0.604
MLN (CG) [18] – – – – 0.730
ProPPR(w=1) 0.501 0.495 0.501 0.505 0.500
ProPPR 0.785 0.779 0.795 0.828 0.797

Table 8: Detailed Performance (seconds) of the
parallel SGD method of ProPPR on the WebKb
dataset. Co.: Cornell. Wi.: Wisconsin. Wa.: Wash-
ington. Te.: Texas.

#Threads Co. Wi. Wa. Te. Avg.
1 1190.4 504.0 1085.9 1036.4 954.2
2 594.9 274.5 565.7 572.5 501.9
4 380.6 141.8 404.2 396.6 330.8
8 249.4 94.5 170.2 231.5 186.4
16 137.8 69.6 129.6 141.4 119.6

Although we have chosen here to compare mainly to MLNs
[25, 27], ProPPR represents a rather different philosophy to-
ward language design: rather than beginning with a highly-
expressive but intractable logical core, we begin with a lim-
ited logical inference scheme and add to it a minimal set
of extensions that allow probabilistic reasoning, while main-
taining stable, efficient inference and learning. While ProPPR
is less expressive than MLNs (for instance, it is limited to
definite clause theories) it is also much more efficient. This
philosophy is similar to that illustrated by probabilistic simi-
larity logic (PSL) [4]; however, unlike ProPPR, PSL does not
include a “local” grounding procedure, which leads to small
inference problems, even for large databases. Our work also
aligns with the lifted personalized PageRank [1] algorithm,
which can be easily incorporated as an alternative inference
algorithm in our language.

Technically, ProPPR is most similar to stochastic logic
programs (SLPs) [9]. The key innovation is the integration
of a restart into the random-walk process, which, as we have
seen, leads to very different computational properties.

There has been some prior work on reducing the cost of
grounding probabilistic logics: notably, Shavlik et al [26]
describe a preprocessing algorithm called FROG that uses
various heuristics to greatly reduce grounding size and infer-
ence cost, and Niu et al [20] describe a more efficient bottom-
up grounding procedure that uses an RDBMS. Other meth-
ods that reduce grounding cost and memory usage include
“lifted” inference methods (e.g., [29]) and “lazy” inference
methods (e.g., [28]); in fact, the LazySAT inference scheme
for Markov networks is broadly similar algorithmically to
PageRank-Nibble-Prove, in that it incrementally extends a
network in the course of theorem-proving. However, there
is no theoretical analysis of the complexity of these meth-
ods, and experiments with FROG and LazySAT suggest that
they still lead to a groundings that grow with DB size, albeit
more slowly.

ProPPR is also closely related to the PRA, learning al-
gorithm for link prediction [15], like ProPPR, PRA uses

Table 9: AUC results on the NELL link prediction
task.

AUC
ProPPR(Non-recursive PRA rules) 0.858
ProPPR(Recursive PRA rules) 0.916

random walk processes to define a distribution, rather than
some other forms of logical inference, such as belief propaga-
tion. In this respect PRA and ProPPR appear to be unique
among probabilistic learning methods; however, this distinc-
tion may not be as great as it first appears, as it is known
there are close connections between personalized PageRank
and traditional probabilistic inference schemes 13. PRA,
however, is much more limited than ProPPR: PRA uses
random-walk methods to approximate logical inference. The
set of “inference rules” learned by PRA corresponds roughly
to a logic program in a particular form—namely, the form

p(S, T )← r1,1(S,X1), . . . , r1,k1(Xk1−1, T ).
p(S, T )← r2,1(S,X1), . . . , r2,k2(Xk2−1, T ).

ProPPR allows much more general logic programs. How-
ever, unlike PRA, we do not consider the task of searching
for new logic program clauses.

5. CONCLUSIONS
We described a new probabilistic first-order language

which is designed with the goal of highly efficient inference
and rapid learning. ProPPR takes Prolog’s SLD theorem-
proving, extends it with a probabilistic proof procedure, and
then limits this procedure further, by including a “restart”
step which biases the system to short proofs. This means
that ProPPR has a simple polynomial-time proof procedure,
based on the well-studied personalized PageRank (PPR)
method.

Following prior work on PPR-like methods, we designed a
local grounding procedure for ProPPR, based on local parti-
tioning methods [2], which leads to an inference scheme that
is an order of magnitude faster that the conventional power-
iteration approach to computing PPR, takes timeO( 1

εα′ ), in-
dependent of database size. This ability to“locally ground”a
query also makes it possible to partition the weight learning
task into many separate gradient computations, one for each
training example, leading to a weight-learning method that
can be easily parallelized. In our current implementation, an
additional order-of-magnitude speedup in learning is made
possible by parallelization. Experimentally, we showed that
ProPPR performs well on an entity resolution task, a clas-
sification task, and a joint inference task. The cost of the
inference is independent of the data size, and the speedup
in learning is made possible due to multi-threading.
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Stephen J Wright. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. arXiv
preprint arXiv:1106.5730, 2011.

[22] Larry Page, Sergey Brin, R. Motwani, and
T. Winograd. The PageRank citation ranking:
Bringing order to the web. In Technical Report,
Computer Science department, Stanford University,
1998.

[23] Hoifung Poon and Pedro Domingos. Joint inference in
information extraction. In Proceedings of the National
Conference on Artificial Intelligence, 2007.

[24] Hoifung Poon and Pedro Domingos. Joint
unsupervised coreference resolution with markov logic.
In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 650–659.
Association for Computational Linguistics, 2008.

[25] Matthew Richardson and Pedro Domingos. Markov
logic networks. Mach. Learn., 62(1-2):107–136, 2006.

[26] Jude Shavlik and Sriraam Natarajan. Speeding up
inference in markov logic networks by preprocessing to
reduce the size of the resulting grounded network. In
Proceedings of the Twenty-first International Joint
Conference on Artificial Intelligence (IJCAI-09), 2009.

[27] Parag Singla and Pedro Domingos. Entity resolution
with markov logic. In Data Mining, 2006. ICDM’06.
Sixth International Conference on, 2006.

[28] Parag Singla and Pedro Domingos. Memory-efficient
inference in relational domains. In Proceedings of the
national conference on Artificial intelligence, 2006.

[29] Parag Singla and Pedro Domingos. Lifted first-order
belief propagation. In Proceedings of the 23rd national
conference on Artificial intelligence, 2008.

[30] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan.
Fast random walk with restart and its applications. In
ICDM, pages 613–622. IEEE Computer Society, 2006.

[31] Martin Zinkevich, Alex Smola, and John Langford.
Slow learners are fast. Advances in Neural Information
Processing Systems, 22:2331–2339, 2009.

[32] Martin Zinkevich, Markus Weimer, Alex Smola, and
Lihong Li. Parallelized stochastic gradient descent.
Advances in Neural Information Processing Systems,
2010.


