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ABSTRACT
Content personalization is a key tool in creating attractive
websites. Synergies can be obtained by integrating person-
alization between several internet properties. In this paper
we propose a hierarchical Bayesian model to address these
issues. Our model allows the integration of multiple proper-
ties without changing the overall structure, which makes it
easily extensible across large internet portals. It relies at its
lowest level on Latent Dirichlet Allocation and on latent side
features for cross-property integration. We demonstrate the
efficiency of our approach by analyzing data from several
properties of a major internet portal.
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1. INTRODUCTION
The rapid growth of the World Wide Web results in a

tremendous amount of information available to people. To
prevent information overload, many collaborative filtering
and recommendation systems [1, 19, 8, 3, 2] have been de-
veloped to filter the information stream and display only
information the user may be interested in. Such methods
have been successfully deployed in various settings ranging
from movies (Netflix) to music (iTunes, last.fm) and books
(Amazon).

A problem with existing recommendation systems is that
they generally require some amount of user interaction to be
recorded before personalization is possible.1 For instance, a
movie recommendation system will need a user to provide
preference information for some movies, before it is possible
to provide personalized recommendation of other movies;
likewise, a news portal will require a number of page views
before an interest profile of the user can be constructed.
In the meantime, the user will experience poor recommen-
dation results. This is known as the cold-start problem.
Many methods have been developed to tackle this problem
typically by making use of additional information about the
user (such as age, gender and occupation) [2]. A variation
of the cold-start problem is where a new item is added to
the system. In this case there is typically a decent amount
of prior information available about the new item and other

1User could be either a browser cookie or registered Yahoo!
id. No personally identifiable user information was available
in the data analyzed.

feature based methods have been developed that performs
well [13, 17].

In this paper, we propose a solution to the cold-start
problem by combining user information across multiple do-
mains(properties). We construct a hierarchical Bayesian
model which integrates recommendation systems over mul-
tiple different domains (such as the frontpage of an internet
portal and its news site) and makes use of the user’s in-
teractions in one set of domain to immediately provide a
personalized experience in other domains the user may have
never interacted with. Note that the domains may operate
over different “vocabularies”. For instance, this model could
be used to infer that a person interested in sports news (at
a news webpage) is also interested in buying sports apparel
(at a store) even if no metadata matching is provided for
the store items. Our contributions include:

• A novel graphical model formulation of the user per-
sonalization problem which is easily extensible and al-
lows integration over an unlimited number of domains.
• A scalable inference procedure which allows the model

to scale to millions of users.
• Demonstrating excellent predictive performance on a

large real-world dataset.

Outline: We begin with a background overview of related
hierarchical graphical models used for text analysis. Next,
we provide a detailed description of the estimation and the
model associated with it in Sections 3 and 4. This is followed
in Section 5 by details on how to implement the estimator
efficiently. Experimental results are reported in Section 6
and we conclude with a discussion and an outlook towards
more advanced user modeling techniques.

2. BACKGROUND
Latent variable graphical models have found great success

in text analysis applications; of which Latent Dirichlet Al-
location (LDA) [4] is probably the most well known model.
we provide a brief overview of LDA here since our proposed
model has LDA as a sub-model.

2.1 Latent Dirichlet Allocation
Latent Dirichlet Allocation [4] aims to extract “semanti-

cally valid” topics from document collections. Each topic is
simply a distribution over words in a fixed vocabulary. For
instance, Table 2.1 gives a few plausible examples of LDA
topics. The size of the word represents the probability of
the word in the topic.



Topic 1 basketball NBA hoop train 3-point

Topic 2 golf hole-on-one Tiger Woods club

Topic 3 learning network latent machine neural train

Table 1: Example of LDA topics. Size of word rep-
resents the probability of the word in the topic.

Figure 1: LDA Bayes Net

In LDA, each document is represented as “bag of words”
where the sequence of words, as well as the number of oc-
curences of each word, is ignored. The aim of LDA is then to
infer for each document, what is its distribution over topics
(is this document about both basketball and golf? Or is this
document about machine learning?), as well as the contents
of each topic.

Letting ϕt be the word distribution of topic t, the gener-
ative procedure is as follows:

1. For each topic t:

(a) Generate the topic->word distribution ϕt ∼ D(β)

2. For each document i:

(a) generate its distribution over topics θi ∼ D(α)

(b) For each word wi,j in document i:

i. Pick the topic of the word: zi,j ∼MN (θi)

ii. Pick the word: wi,j ∼MN (ϕzi,j )

The equivalent Bayes Net is provided in Fig. 1.
Where α and β are fixed constant priors. Intuitively α

is the “smoothness” of document’s topics (low α’s allow for
more variability of topics across documents). While β is the
“smoothness”of the topic->word distributions (low β’s allow
more variability of words across topics).

The typical inference procedure used is the collapsed Gibbs
Sampler described in [7] where θ is integrated out. [20] de-
scribes an equivalent sampler which is significantly faster
through careful choice of data structures and creative rear-
rangement of the conditional probabilities.

2.2 Dirichlet Multinomial Regression
[11] provides an extension to the LDA model called the

Dirichlet Multinomial Regression (DMR) model which al-
lows conditioning on arbitrary document features. For in-
stance, we could learn a topic model which includes the au-
thors of the document as features. This allows us to make

Figure 2: Dirichlet Multinomial Regression

predictions of the form “Author X prefers to write docu-
ments about topics Y”.

The Bayes Net of the model is provided in Fig. 2. The
DMR model extends the LDA model by letting the topic
prior α be a parameter which is computed from the docu-
ment feature vector x. Where λ is a matrix of size #features
by #topics,

α = exp(λ× x).

Essentially, xi is a (possibly sparse) document feature vec-
tor for document i, and λ is a matrix which projects the fea-
ture vector into the “topic-space”. The exp is used to ensure
positivity of α.

The inference procedure is straight-forward: Fixing λ, the
remaining model is identical to LDA, allowing the standard
LDA Gibbs sampler to be used on z and ϕ. λ however is
difficult to sample, and [11] optimizes it using L-BFGS.

3. MODEL

3.1 Data Integration
Data integration between different sites is a key problem

and challenge for large internet portals. For instance, for a
content provider such as Yahoo, Google or Microsoft, serving
specialized content sites such as search, news, advertising, a
portal, instant messaging, photos, video, cars, dating, etc.
it is highly desirable to be able to leverage information from
one site on the other. Some of the benefits from such an
approach are:

• We can use information gained about a user on one
site to provide personalized content right from the be-
ginning on a second site, too. This addresses issues
with the cold-start problem.
• We can use such information for improving the overall

recommendation accuracy even for users which visit
several sites frequently.
• Cross property information helps with abuse detection.
• Personalization can be used for recommending other

properties.

Naively we could simply attempt to address the problem
by having one joint set of user specific features that are
shared by all properties and which are modified based on
the user behavior. However, this approach is problematic
for a number of reasons:

1. Users may exhibit different site-specific behavior which
may only partially relate to the big picture about them.
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Figure 3: The highlevel structure of the proposed
hierarchical statistical model. All properties share
(and update) a joint profile vector. In addition to
that, each property may keep a local model of the
user’s behavior in order to adapt to the possibly
idiosyncratic activities of a user on a given site.

For instance, a user may well fancy himself as an expert
in medieval numismatics on an answering site, yet at
the same time he may exhibit some more mainstream
preferences on the other sites. This means that we
need to allow for the possibility of rather diverse and
incoherent behavior between sites, and thus additional
site-specific personalization, in our model.

2. It must be easy to add sites to the profiling system
without the need to re-engineer the model of the al-
ready integrated sites. This is a practical impera-
tive since in reality internet properties are launched,
bought or sold and our model must accommodate these
requirements efficiently.

3. The framework needs to allow for different levels of
sophistication in the model across different sites. That
is, while some properties might only be willing to use
a simple demographic targeting approach, others may
be open to using an advanced nonparametric Bayesian
approach such as Latent Dirichlet Allocation [4].

In this paper we propose a flexible model that addresses all
of these concerns in a principled fashion, namely by means
of directed graphical models [14]. Its main structure is given
in the diagram of Figure 3.

There are two basic use cases for such a model. In the first
use case, each domain already has an existing personaliza-
tion system. This model could then be used to provide for
each user an“initialization prior”allowing personalization on
the first visit to a new domain. In the second use case, the
existing personalization system can be directly integrated
into the hierarchical model, allowing personalization in dif-
ferent domains to be inferred jointly, potentially improving
performance. The second use case is of course preferred.

3.2 Formal Definition
In the following we denote by U the set of users in the

system and let |U | be the number of users. Furthermore
let D be the set of personalization domains, such as News,
Answers, Frontpage or Movies. Each user u ∈ U interacts
with one or more domains d ∈ D producing a sparse list of

tokens Wdu ⊆ Wd. Note that the space Wd can be different
from domain to domain. For instance, in the News domain,
this could be the text of the documents viewed, while in the
Movies domain, this could be the list of movies rated. Addi-
tionally, let Du denote the set of domains the user interacted
with. Note that the number of domains a user interacts with
is variable. So is the number of interactions per site.

The task is to predict for each user his preferences in all
domains — for those he visited we would like to improve
the estimates, for those he never saw before we would like
to obtain a good estimate of his future behavior. The latter
is clearly the more difficult task as we study the case where
we have no information regarding a user’s behavior on, say,
a news site at all. Hence, we will focus on the cold-start
problem while noting that the multiple-site personalization
problem is contained in it. Formally, for each user u ∈ U ,
predict Wdu where d /∈ Du.

As measures for the accuracy of the estimator we use a)
the increase in log-likelihood by combining several domains,
i.e. the increase in statistical prediction accuracy by combin-
ing several domains; b) the increase in the cosine similarity
score when using several domains for improved personaliza-
tion. Before we discuss the design of the graphical model
associated with Figure 3 let us evaluate some alternatives.

3.3 Alternatives

Joint parameter vector:
Inferring two or more domains jointly is difficult due
to the different domain spaces Wd. The simplistic
solution of combining all the domains by letting the
domain be

S
d∈DWd is undesirable as it restricts the

model excessively. Such a model will not deal well with
often rather different amounts of data per domain.
For instance, if we naively combine the Movie and
News domains by using article headlines for the News
domain, and movie titles for the Movies domain, the
model would infer that a person interested in Sports
news, must also be interested in Sports movies, and
a person interested in Political news must also be in-
terested political documentaries. The model will have
difficulties modelling users who are interested in Polit-
ical news and Action movies since it ignores the fact
that users may exhibit different personalities on differ-
ent properties.
Secondly, if we combine search queries and page views
we might end up with several orders of magnitude
more tokens in the case of page views. Simply combin-
ing both datasets would give queries only a minuscule
weight and consequently underestimate their impor-
tance as relevant user features.

Joint action space: Another possibility is to combine the
domains in a way such that tokens from one domain do
not interfere with tokens from the other domain. For
instance, this could be done in the Movie and News
example by append the numeral “1” to every word in
the movie title, and appending the numeral “2” to ev-
ery word in the news title. Forcing the “dictionary”
of both domains to be different, but inferring a joint
model naively will resolve the case described in the pre-
vious paragraph, but still will not lead to a desirable
solution. There are several issues.

• The “model complexity” of the domains could be



very different. For instance, the number of tokens
in the News domain could be significantly greater
than the number of tokens in the Movie domain.
Inferring them jointly will cause the latent factors
will be largely dominated by the News. Moreover,
the problem of recommending movies might be
considerably harder than that of recommending
news, thus requiring a richer latent representa-
tion.
• The modelling complexity could grow rapidly with

the number of domains. For instance, we could
observe that the News domain alone could be
modelled with 10 latent factors, while the Movie
domain could be modelled with 5 latent factors.
However, when inferred jointly, the number of la-
tent factors required could be much larger than
10+5 = 15 since there could be one group of users
who are interested in Political news and Action
movies, as well as another group of users who are
interested in Political news and Horror movies.
These would have to be modelled as different la-
tent factors, resulting in potentially a multiplica-
tive increase in the number of factors necessary
to build an accurate model. This model there-
fore does not provide the scalability necessary to
extend to a large number of domains.

Independent Parameter Vector: This model trivially solves
both problems mentioned above, simply by modeling
each domain on its own. However, such an approach
entire defeats the purpose of integration. In the follow-
ing we propose a modification of this model to allow
for cross-domain personalization.

3.4 Hierarchical Latent Model
Our model resolves these problems by adding an addi-

tional layer of latent parameters. We begin by assuming
that each user has a hidden latent feature vector xu which
completely describes the user’s global preferences and inter-
ests. Each domain also has a hidden latent domain ma-
trix λd. Furthermore we assume that for each property d
the user u also exhibits local traits, say θdu. We assume
that the local traits θdu characterize the actions Wdu that
we observe. This yields the following generative model:

1. For all properties d do

(a) Sample trait vector λd

2. For all users u do

(a) Sample user trait xu
(b) For all properties d do

i. Sample θdu|xu, λd
ii. Sample user actions Wdu|θdu

In other words, the joint distribution is given by

p(λ, x, θ,W ) =
Y
d

p(λd)
Y
u

p(xu)
Y
d,u

p(θdu|xu, λd)p(Wdu|θdu)

This has the advantage that we can express the distribution
of the global user vector in terms of its local parameter es-
timates only. Moreover, the distribution factorizes, that is
we have

p(xu|rest) ∝ p(xu)
Y
d

p(θdu|xu, λd). (1)

4. STATISTICAL FORMULATION
To make further progress we need to specify the distri-

butions involved in p(λ, x, θ,W ). Specifically we use Latent
Dirichlet Allocation [4] (LDA) to describe p(Wdu|θdu) and
we subsequently employ a latent variant of “upstream con-
ditioning” [11] to couple properties into a joint graphical
model. We begin with an explanation of plain LDA.

4.1 Latent Dirichlet Allocation
One model for estimating user behavior is to assume that

users have a number of interests and that their actions are
given by a combination of said interests. For instance, if
we had a model describing which websites are visited by
users interested in politics and which websites are visited by
users interested in automobiles then we could easily infer the
activity pattern of a user interested in both topics, simply
by mixing the topical interest patterns of both.

Such a model is considerably more flexible than, say, an
attempt to cluster users: in the latter case we would need to
generate clusters for each and every combination of interests.
Even worse, interests can be expressed to various degrees,
so a simple model clustering users as being interested in
cars may not be sensitive enough to infer whether users are
die-hard car fanatics or whether they just exhibit a fleeting
interest in automobiles.

LDA addresses this issue as follows: each user is endowed
with a topic mixture θu that is drawn from some Dirichlet
distribution Dir(α). Subsequently, for each user action, we
draw a topic zui from the user-specific topic distribution θu
and finally, we draw an action wui from the action distri-
bution associated with topic zui. The action distributions
ϕk themselves are drawn from a Dirichlet distribution. The
parameters α and β are priors that adjust how nonuniform
the topic distributions and the word distributions are. We
obtain [4]

p(w, z, θ, ϕ|α, β) (2)

=
Y
k

p(ϕk|β)
Y
u

p(θu|α)
Y
i∈Wu

p(zui|θu)p(wui|zui, ϕ)

Large scale inference for (2) presents a significant challenge
and there are only few published results on how to apply
LDA to millions of instances (i.e. users). We use the ap-
proach of [18] for distributed collapsed inference and build
on this framework. Before going into details regarding large
scale estimation let us extend (2) in the spirit of Figure 3.

4.2 Upstream Coupling
The key to combining different properties is to make the

prior α depend on both the property and the global features
of the user. That is, instead of fixing α we assume that
αdu|xu, λd where xu is the global user feature and λd is the
site specific trait.

More specifically, to interact with a domain, a nonneg-
ative2 user-domain feature vector αdu is produced by
computing the logistic transfer function lgt(λdxu) where

lgt(y) = log [1 + ey] . (3)

In other words, αdu is computed by multiplying the user’s
latent feature vector with the domain’s latent domain

2Nonnegativity of the coefficients α is needed to encode a
valid Dirichlet prior on the topic distribution.
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Figure 4: Left: Latent Dirichlet Allocation. This model covers the behavior of users u, as expressed in
the actions wui on a single property. Right: Hierarchical Model with LDA applied to all properties. Each
property has a characterization vector λd and each user is endowed with a global personalization vector xu.
σd and ψ are priors for these personalization terms.

matrix and passed through a non-linear transform to en-
force positivity. Note that the choice of lgt is somewhat ar-
bitrary as there are many ways to project from (−∞,∞) to
[0,∞). In [11] this is done by exponentiation. However, we
found exponentiation to be difficult to work with as its steep
gradients cause numeric instabilities in inference. Hence we
chose lgt for its simplicity. If sparsity in α is desirable, other
possibilities such as Huber or L1 loss can be considered.

The user-domain feature vector is a description of how
the user may interact with a given domain and can be in-
terpreted freely by the domain specific model. As already
outlined above we use LDA [4] as the domain specific model.
However note that the design of Figure 3 does not require
this assumption.

Essentially, the user’s latent feature vector can be in-
terpreted as a “super-topic” in the same spirit as [12]. Each
column in the latent domain matrix can then be inter-
preted as the distribution of topics inside the super-topic.
Multiplying these two latent parameters together will there-
fore produce a distribution over topics within the domain,
which can then be used as a prior (αdu) for the actual topic
distribution of the user’s interaction within the domain.

Note that this model allows us to have different degrees
of complexity in different domains: while the dimensional-
ity of the global latent space is fixed via xu ∈ Rk we may
have different numbers of topics on different properties via
λdxu, simply by choosing different dimensions for different
λd. This makes sense from a modeling perspective — some
properties may only see small amounts of a user’s activity
(e.g. it is unlikely that on a cars site we may care much
about the interest of a user in medieval numismatics). In
summary the generative process is as follows:

1. For all properties d do

(a) Generate latent domain matrix λd ∼ N (0, σd)

2. For all users u do

(a) Generate latent feature vector xu ∼ N (0, ψ)
(b) For all visited properties d ∈ Du do

i. Let user-domain feature vector be

αdu = lgt(λdxu)

ii. Draw user-domain topic distribution

θdu ∼ D(αdu)

iii. for each observed token i ∈Wdu

A. Draw topic zdui ∼MN (θdu)
B. Draw word w ∼MN (φzdui)

The graphical model is in Fig. 4. We observe that if all user
and domain latent parameters are known, i.e. if λ and x
are observed, each domain essentially reduces to an instance
of LDA. This therefore provides a relatively straightforward
inference scheme.

4.3 Inference
Making the observation that once all λ and x are fixed,

the model is essentially equivalent to having |D| indepen-
dent LDA models, where users are documents, and where
the topic prior is different for each document. We can there-
fore perform collapsed sampling in a similar manner as in
[7] by integrating out θ and ϕ, and sampling z. In addi-
tion we sample x using Langevin diffusion. The λ parame-
ter is optimized using L-BFGS [9]. We describe (the rather
technical) details below. They are not essential to under-
standing the experiments but they matter for the purpose
of reproducibility of the results. After integrating over θ the
complete likelihood P (z, λ, x) of the model is given by

Y
d,u:d∈Du

Γ(
P
td

lgt(xTuλd,td))

Γ(
P
td

lgt(xTuλd,td) + ndu)

Y
td

Γ(lgt(xTuλd,td) + nt|du)

Γ(lgt(xTuλd,td))

(4)Y
d,td,k

1

2πσ2
k

lgt

 
−λ2

d,td,k

2σ2
k

!Y
u,k

1

2πψ2
k

lgt

 
−
x2
u,k

2ψ2
k

!

Note that this is very similar to [11, Eq. (1)], but with user-
properties instead of documents, and different choices for λ
and x. Let dlgt(y) := ∂y lgt(y) be the derivative of the lo-
gistic transfer function. In this case the derivative of the log
likelihood with respect to λp,tp,k, i.e. ∂λp,tp,k logP (z, λ, x) is
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− λd,td,k
σ2
k

+
X

u:d∈Du

xu,k dlgt
“
xTuλd,td

”
× (5)
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We use this equation to optimize λ using L-BFGS. The
derivative ∂xu,k logP (z, λ, x) with respect to xu,k is similar:

− xu,k
ψ2
k

+
X

u:d∈Du

X
td

λp,td,k dlgt
“
xTuλp,td

”
× (6)
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0@X
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”
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””#
This equation allows us to sample each xu,k using a Langevin
Diffusion sampler.

4.4 Langevin Sampler
The Langevin Diffusion sampler [15] is essentially a Metropolis-

Hastings sampler with a Gaussian proposal shifted in the
direction of the gradient: Where the current value of xu,k is
xtu,k (sample value at time t), we propose the new value:

yu,k = xtu,k +
σ2

2

∂ logP (z, λ, x)

∂xu,k

˛̨̨̨
xt

u,k

+N(0, σ2)

Where the notation ∂ logP (z,λ,x)
∂xu,k

|xt
u,k

means to take the par-

tial derivative of logP (z, λ, x) against the variable xu,k (Eq. (6))
and evaluate it at the value xtu,k.

We then compute the acceptance ratio:

r =

exp

(
−

‚‚‚‚‚yu,k − xtu,k − σ2

2
∂ logP (z,λ,x)

∂xu,k

˛̨̨̨
xt

u,k

‚‚‚‚‚
2ffi

2σ2

)

exp


−
‚‚‚xtu,k − yu,k − σ2

2
∂ logP (z,λ,x)

∂xu,k
|yu,k

‚‚‚2
ffi

2σ2

ff
Then update xtu,k to the proposed value yu,k with proba-

bility min(r, 1):

xt+1
u,k =

(
yu,k with probability min(r, 1)

xtu,k with probability 1-min(r, 1)

5. IMPLEMENTATION
To run experiments on large datasets, it is necessary to

make use of large scale distributed processing. We there-
fore implemented the model by extending the distributed
LDA implementation from [18]. The extension is relatively
straightforward due to the similarities to regular LDA. The
main contributions we made to the implementation is a dis-
tributed L-BFGS solver, as well as a novel way to initialize
the distributed sampler which accelerates convergence sig-
nificantly.

Algorithm 1 Sampling executed on each machine.

for Each user u in this machine’s partition do
Initialize u’s latent feature vector
for Each domain d ∈ Du the user interacted with do

for Each observed token w ∈Wdu do
Sample w’s topic using the procedure in Sec. 5.2

end for
end for

end for
if I am Machine 0 then

Initialize latent domain matrices
Store latent domain matrices into Memcached

else
Initialize latent domain matrices from Memcached

end if
for i = 1 to #sampling iterations do

if i mod 15 = 0 then
\\ Optimize every 15 iterations
Optimize latent domain matrices using

distributed L-BFGS
end if
for Each user u in this machine’s partition do

Sample u’s latent feature vector using
Langevin Diffusion

Sample the topic in each observed token in u
end for

end for

An overview of our approach is provided in Algorithm 1.
Firstly, the set of users are equally partitioned among the P
machines in the cluster. Each machine then initializes each
user with a random latent feature vector, and uses the
Distributed Initialization procedure described in Sec. 5.2 to
provide the initial topic assignments to each observed to-
ken, producing local word-topic counts. A set of memcached
servers3 are used to synchronize the local word-topic counts
with the global word-topic counts. See [18] for details on
the communication between nodes. The latent domain
matrix is initialized by having one machine generate the
random matrix, writing it into memcached, and all remain-
ing machines reading from it.

The sampler then proceeds as described in [18], with the
exception that the user’s latent feature vector must be sam-
pled, and the latent domain matrices are optimized period-
ically (every 15 iterations in the pseudo-code in Alg. 1).

5.1 Distributed L-BFGS solver
The latent domain matrices are optimized using a dis-

tributed L-BFGS solver. We first observe that the gradient
of the log-likelihood of the model with respect to the domain
matrices λ can be written as a sum over all the users in the
dataset. This naturally means that the gradient can be com-
puted in a fully distributed fashion, collected and summed
on one machine, which then performs the actual L-BFGS
update. This procedure is however further complicated by
the Armijo line-search stage of the L-BFGS solver, which
requires the log-likelihood and and the gradient to be re-
computed repeatedly for different values of λ. This requires
a close level of coordination among all the machines which

3memcached is a fast distributed (key, value) storage system



is not immediately provided by the memcached framework.4

To implement this algorithm, we must first re-implement
three standard distributed programming primitives within
the memcached environment. The three primitives are the
barrier, sum and broadcast.

The barrier is a function which provides “sequentializa-
tion” of execution across a distributed program. When a
process call the barrier function, the process will stop exe-
cution and pause. The barrier function only returns when
all machines in the distributed system enter the barrier. A
common use-case for the barrier is to “wait” for all proces-
sors to complete a particular task, before going on to the
next task. We implement a version of the sense-reversing
barrier algorithm described in [10].

The distributed sum function (or more generally also known
as reduce or fold) simply collects and aggregates a value
posted by each machine. Each machine p calls the sum func-
tion with a particular value vp. The function then returns
with the sum of all the values (v1 +v2 + · · ·+vP−1 +vP ). We
implement this operation by having each machine write its
value vp to a memcached. A barrier is then called to guar-
antee that all machines have completed the write. Machine
1 then reads all the values from memcached, sums them and
writes back to memcached. Another barrier is used here to
ensure that the write is completed. Then all machines reads
the resultant value from from memcached.

The broadcast operation allows one machine to send a
value to all the other machines in the network. This opera-
tion is similar to the sum operation.

Combining these operations, we can write the distributed
L-BFGS solver in pseudo-code in Alg. 2.

5.2 Distributed Initialization
The standard way to initialize an LDA sampler is to sam-

ple the topic of each new word from a uniform distribution.
However, this results in slow convergence. A more effective
way of initializing the sampler is to perform online sampling
[5]. That is, the topic of each new word is sampled by con-
ditioning on all the words seen so far. This procedure is
easy when performed on a single machine, but is extremely
complex to implement in a distributed setting as the global
topic counts will need to be synchronized very frequently.

A plausible alternative is to have each machine perform
the online sampling process independently using only the
local topic counts. This however, produces poor initializa-
tions as each machine could assign very different topics to
the same word resulting in a uniform topic distribution when
the topic counts are aggregated across all the machines.

Instead, we propose a simple solution: We perform on-
line sampling independently on each machine as described
above. However, when we sample a topic for a new word
w, instead of using a random/pseudo-random generator, we
use hash (w + #occurrences of w seen so far) as the random
number.

This procedure is equivalent to constructing a different
pseudo-random generator for each unique word, and that

4One might suspect that the entire algorithm could be effi-
ciently implemented in Hadoop MapReduce. However, one
of the issues is that by deferring all inter-process commu-
nication to the Reduce phase convergence of the sampling
algorithm is severely hampered. Moreover, it creates arti-
ficial barriers to the sampling iterations which can lead to
considerable performance penalties. For a detailed discus-
sion see [18].

Algorithm 2 Pseudo-code of Distributed L-BFGS Solver
ran on each machine in the cluster
\\ compute the initial gradient and log likelihoods
Compute the local gradient g Using Eq. (5)
Compute the local log likelihood l Using Eq. (4)
Perform distributed sum over g and l
if I am machine 1 then

Compute L-BFGS step ∆ using g and l
Update λ
broadcast λ

else
receive broadcast λ

end if
\\ Armijo Line search
while True do

Compute the local gradient g′ Using Eq. (5)
Compute the local log likelihood l′ Using Eq. (4)
Perform distributed sum over g′ and l′

if I am machine 1 then
Test Armijo and Wolfe conditions using g′ and l′

\\ quit if armijo conditions are satisfied
Let quit = 1 if Armijo conditions are satisfied
Let quit = 0 otherwise.
broadcast quit
if quit then

break
else
\\ conditions not satisfied. Perform line search
Decrease step-size and update λ
broadcast λ

end if
else

receive broadcast quit
if quit then
\\ If quit is true then Armijo conditions are satis-
fied
break

else
\\ If not, line search proceeds
\\ and we need to receive the new λ
receive broadcast λ

end if
end if

end while

this generator is seeded identically across all the machines.
This algorithm does not correspond to a true online-LDA
initalization, but it simply “correlates” the random number
generator across all machines, encouraging similar topic dis-
tributions for each word. An advantage of this procedure
is that it does not require any communication between the
machines, allowing for a simple implementation.

6. TWO DOMAIN EXPERIMENTS
We tested the model on a large real world dataset compris-

ing a random subsample of 5.6 million users who interacted
with Yahoo! News and Yahoo! Frontpage for a week. We
record “click-through” information for each user. That is to
say, when the user clicks on a Frontpage link, we record the
words in the link. Likewise, when the user clicks on a News
article, we record the words in the article.

The goal is to predict how a new user might interact with



Frontpage, given the user’s past interactions with News (and
vice versa). The problem is made particularly difficult since
only 1% of all the users in our dataset interacted with both
Yahoo! News and Yahoo! Frontpage.

To perform holdout testing, we selected 20% of the users
who interacted with both domains and hide the user’s inter-
action with one of the properties when training the model.
The model can then be used to predict the user’s interaction
with the hidden property. Where αdu is the user-domain
feature vector, we note that the predicted word distribution
P (wdu|α) is simply proportional5 to ϕ × αdu. We evalu-
ate accuracy using the cosine similarity score between the
predicted word distribution P (wdu|α) and the true observed
word distribution wdu.

〈wdu, ϕ× αdu〉
|wdu| × |ϕ× αdu|

We tested against a simple baseline, which is the mean-
prediction formed by averaging the word distribution across
all the user-interactions within the domain. This intuitively
represents the“average”user. We do not test against nearest-
neighbor methods as they require large amounts of compu-
tation to evaluate each new user and do not scale well to
large dataset sizes. We also do not consider the method of
combining all the domains into a single LDA model (joint
parameter vector and joint action space in Sec. 3.3) to be
viable models due to the significant difference in the domain
types for the three-domain experiment of Section 7.

Using 100 topics to model FrontPage and 400 topics to
model News, we plot in Fig. 5 the model log-likelihood P (w, z)
across sampling iterations. We compare the likelihood curves
obtained when varying the dimensionality of the latent fea-
ture vector. As expected, running independent LDA on both
domains (equivalent to using a latent feature vector of length
0) produces the lowest log-likelihood value. Increasing the
dimensionality of the latent feature vector from 0 to 25 al-
lows the model to fit the data better, resulting in a higher
log-likelihood. Further increasing from 25 to 50 still pro-
duces a small increase in log-likelihood, though we observe
diminishing returns.

Next in Fig. 6 we plot the % improvement in hold-out
accuracy over baseline prediction. We observe significant
gains in holdout accuracy for both Front Page and News.
Increased model complexity (by increasing the number of
latent features) appears to overfit slightly, resulting in de-
creased hold out accuracy.

Fig. 6 also suggests that it is easier to predict FrontPage
preferences from News preferences than vice versa. This is
expected since the size of News vocabulary is about 4 times
larger than the size of the FrontPage vocabulary. Each inter-
action with a News article also produces significantly more
tokens. Moreover, the range of stories on the FrontPage is
considerably more constrained than the set of news events in
general. Hence there is simply less information to be gained
from knowing which FrontPage story a given user viewed.

Next, since λnewsxi is the topic “preference” for user i in
the News domain, and λfpxi is the topic “preference” for
user i in the Frontpage, we can use

P
x(λnewsx)(λfpx)T to

estimate the correlation between the topics across News and

5This simple identity holds for Dirichlet priors in the absence
of any additional data since it forms a conjugate prior to the
multinomial mixture.
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Figure 5: Two Property FrontPage + News model
log- likelihood over iterations using 100 topics for
FrontPage and 400 topics for News. Each curve cor-
responds to using a user latent feature vector of dif-
ferent lengths. The “Independent LDA” is the log-
likelihood of running LDA independently on both
domains and is equivalent to using a latent feature
vector of length 0. As expected, increased dimen-
sionality of the latent feature vector results in in-
creased log-likelihood.

Frontpage. Using this, we can try to infer that for a person
who is interested in a particular topic on Frontpage, what
other topics might he be interested in when he goes to the
News domain.

A minor problem with this procedure is that it can be
hard to factor out strong “background preferences”. That
is, a Frontpage topic which everyone is interested in, might
appear to be strongly correlated with almost all other News
topics. However, we can still obtain very interpretable re-
sults.

In Table 2, we demonstrate this for two random selected
topics in Frontpage, and their top correlated topic in News.
For instance, the first row suggests that people interested in
reading about science articles on Frontpage might also be
interested in reading about Avatar (a science fiction movie)
on the News website. And people interested in the Oscars
might also be interested in reality TV shows.

In Table 3, we demonstrate the reverse. For two randomly
selected topics in News, what are their top correlated topics
in Frontpage. The first row suggests that people interested
in technology, might also be interested in college graduate
earnings. In the second row, we encounter the strong “back-
ground preference” problem as stated earlier. Here we try
to infer the Frontpage preferences of a user who is inter-
ested reading about the healthcare debate on News. If we
simply look at the top correated topic, we might infer that
the user is interested in reading about sports. However, in-
cluding the second and third most correlated topics, we also
see that the user might also be interested in banking and
terrorism related articles.

7. THREE DOMAIN EXPERIMENT



FrontPage News
bacteria, fight, super, struggling, developed, doctors, re-
sistant, lethal, virtually, drugs, antibiotic, competitors,
chad, andrews, ochocinco, erin, whos, aas, batteries,
stronger

film, movie, movies, films, director, story, avatar, james,
time, hollywood, big, make, hes, star, good, remake, hor-
ror, great, award, man

sandra, oscar, oscars, red, carpet, bullock, golden, gown,
bullocks, nominee, bestactress, sparkles, stunning, retire-
ment, saving, cost, taxes, expenses, fully, major,

vienna, bachelor, jake, pavelka, giraldi, finale, show,
stars, dancing, love, season, time, abc, episode, tonights,
question, popped, relationship, maintains, man,

Table 2: Given a particular frontpage topic (left column), the top correlated news topic (right column). For
instance, the first row suggests that people interested in science might also be interested in Avatar (a science
fiction movie).

News Frontpage
iphone, apple, app, apps, ipod, google, store, apples, an-
droid, mac, mobile, touch, ipad, device, phone, screen,
jobs, developers, iphones, time,

college, year, earn, years, 000, bestpaid, average, 129,
colleges, graduates, ten, alums, schools, actor, likes,
prompt, spirit, wrench, time, ghost,

health, care, bill, obama, president, rep, house, republi-
can, senate, news, sen, democrats, fox, congress, reform,
federal, majority, obamas, roberts, john

drafts, player, nfl, scouts, team, riskiest, peril,
bryant, dez, pick, talented, nba, james, news,
23, familiar, number, lebron, cleveland, decision,

home, bank, facing, ceo, gomez, evic-
tion, rosalina, bought, cleaning, foreclosed,
client, janitor, offices, surprising, video

”

captured, inside, mountain, terrorist, observers, im-
presses, alqaidas, complexity, base, features, hideout,
size, special, secret, struck, sell, products, month, ways,
arctic

Table 3: Given a news topic (left column), the top correlated frontpage topic (right column). For the second
row, the top three topics are provided.

We next extend the model further by including a third
domain: MyYahoo. Here, we demonstrate the scalability
and extensibility of the model. To our knowledge this is
first attempt at user personalization across three different
domains.

For the myYahoo domain, we only record the id’s of the
articles the user clicked on. This makes the problem sig-
nificantly harder as the article id’s have no semantic signif-
icance. We selected 5.6 million users from the same date
range as the two domain experiment. About 5.5% of the
users interact with two or more domains. We selected 10%
of the users who interacted with two or more domains for
holdout testing.

We trained the model on the dataset, using 50 latent fea-
tures and plot the % improvement in holdout accuracy over
baseline prediction in Fig. 7. We demonstrated improvement
for both Frontpage and News, as well as an insignificant im-
provement in MyYahoo. This is to be expected due to the
lack of semantic information in the MyYahoo domain and
due to the comparatively small number of applications pro-
vided on MyYahoo.

Next, in Fig. 7, we compare the holdout accuracy for
FrontPage and News between the 3-domain model and the
2-domain model. Each model was tested with 25, 50 and 75
latent features and the best setting for each model was used.
The 2-domain model required only 25 latent features and in-
creasing the feature count further results in overfitting, while

the 3-domain model continues to improve in performance up
to 50 latent features. We observe that even with the lim-
itations of the MyYahoo data, including the third domain
still improves holdout performance significantly on Front-
page prediction (while incurring a small drop for News).

8. EXTENSIONS
The model is designed to be a highly generic model for

user personalization, supporting a variety of possible exten-
sions.

Firstly, the design of the model does not require all the
user features x to be latent. Instead, we may combine our
model with the upstream conditioning of [11] which imme-
diately allows us to add observed variables. For instance,
one could use geographical location (via the IP address or
via HTML5) as a fully observed user feature. Alternatively,
the model also permits the use of features which are not
observed for all users (such as gender). The latter case is
particularly interesting as the model would then try to in-
fer the feature value for the remaining users. For instance,
the model would try to infer the gender of user if the user’s
gender is not observed.

Next, the model does not require the use of LDA within
a domain. The inference process is highly modular with
regards to each domain, and permits any domain model to
be used as long as a log-likelihood derivative with respect to
x can be computed.
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Figure 6: Two Property FrontPage + News Hold
out accuracy improvement over baseline for different
number of latent features.
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Figure 7: Three Property FrontPage + News +
myYahoo hold out accuracy.

• This could permit the model to provide cross-domain
personalization into unusual domains such as person-
alized spam filtering.
• We could use a Gaussian latent matrix factorization

model along the lines of [16] which replaces the dis-
crete set of topics by a continuous (low dimensional)
factorization.
• We could employ a factorization akin to the Indian

Buffet Process [6] which uses a binary latent variable
representation instead of a finite (sparse) set of topics.

Also, since the model places no restriction on the number of
domains it can personalize over, the model could, with little
effort, be used as a back-end to connect other generative
user-personalization schemes.

9. CONCLUSION
In this work, we designed a new model for providing user

personalization across two or more domains and demon-
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Figure 8: Comparing Frontpage and News holdout
accuracy for the two domain model and the three
domain model

strated its efficacy on a large real-world dataset compris-
ing of data from Yahoo News, Yahoo FrontPage and MyYa-
hoo, obtaining significant gains in prediction accuracy. The
model we developed is highly extensible and observed user
features such as geographical location and gender can be in-
tegrated. Furthermore, the model treats each domain in a
modular fashion, allowing other generative user-personalization
schemes to be connected easily. Finally, we provide a highly
scalable inference procedure with a novel initialization schemem,
allowing the model to scale to millions of users easily.
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