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ABSTRACT

This paper studies the effects of boosting in the context of
different classification methods for text categorization, in-
cluding Decision Trees, Naive Bayes, Support Vector Ma-
chines (SVMs) and a Rocchio-style classifier. We identify
the inductive biases of each classifier and explore how boost-
ing, as an error-driven resampling mechanism, reacts to those
biases. Our experiments on the Reuters-21578 benchmark
show that boosting is not effective in improving the perfor-
mance of the base classifiers on common categories. How-
ever, the effect of boosting for rare categories varies across
classifiers: for SVMs and Decision Trees, we achieved a 13-
17% performance improvement in macro-averaged F; mea-
sure, but did not obtain substantial improvement for the
other two classifiers. This interesting finding of boosting on
rare categories has not been reported before.

Categories and Subject Descriptors

1.5.1 [Computing Methodologies|: Pattern Recognition—
Models; 1.2.6 [Computing Methodologies|: Artificial In-
telligence— Learning; H.4.m [Information Systems]: Mis-
cellaneous

General Terms

Algorithms, Experimentation

Keywords

Text Classification, Machine Learning, Boosting, Inductive
Bias

1. INTRODUCTION

Boosting is an important method in machine learning,
which has gained popularity in recent years. It works by
repeatedly running a given weak learning algorithm on var-
ious training examples sampled from the original training
pool, and combining the classifiers produced by the weak
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learner into a single composite classifier. Boosting has its
root in PAC (probably approximately correct) learning the-
ory [23]. Kearns and Valiant were the first to propose the
idea of boosting a “weak” learning algorithm that performs
just slightly better than random guessing into a “strong”
learning algorithm. As a general approach to improving the
effectiveness of learning, boosting has been investigated in
many variants in recent years, and has been the subject of
both theoretical analysis and practical applications. How-
ever, the differential effect of boosting different base classi-
fiers as a function of per-category training data size has not
been previously investigated, and is the focus of this paper.

AdaBoost, first introduced by Freund and Schapire in
1995[5], is an iterative algorithm which induces a series of
classifiers (“base classifiers”) using a training set of labelled
examples. Schapire[21] proved that the training error of Ad-
aBoost drops exponentially fast if the error rate of each base
classifier is slightly smaller than 0.5 and gave a qualitative
weak bound on the generation error. Friedman[7] suggested
a connection between boosting and logistic regression. Fre-
und and Shapire also connected boosting with game the-
ory and linear programming. Lebanon and Lafferty demon-
strated a clear theoretical connection (a near equivalence)
between boosting and exponential models [11]. These stud-
ies give a set of theoretical evidence that given sufficient
data and a weak learner, we can reliably construct moder-
ately “strong” classifiers using boosting.

Applying boosting to text categorization tasks, Schapire
and Singer[22] evaluated AdaBoost on a benchmark corpus
of Reuters news stories (the Apte version of Reuters-21450,
see Section 5.1). They obtained the results comparable to
the best results of Support Vector Machines and k-Nearest
Neighbor methods[26, 25, 20], and better performing than
Sleeping-experts, Rocchio, Naive Bayes and PrIF/DF[22].

An interesting and effective variant of the boosting method
is the resampling approach by Weiss et al.[25]. Instead of
assigning explicit weights to training instances and using
a specific formula to update those weights, the resampling
boost constructs a different training sample for each itera-
tion by updating the underlying distribution of the training
documents (i.e., increasing the population of misclassified
documents) and then randomly sampling from the new pop-
ulation. To make the subsequent classifiers emphasize the
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a simple pseudo-probability function (Section 2). The com-
posite final classifier consists of an unweighted vote of the de-



cisions made by the base classifiers. It has been proved that
unweighted vote and resampling with any technique that can
effectively increase the likelihood of the erroneously classi-
fied documents in subsequent training cycles will achieve
improvement[3].

Although the previous work provided theoretical founda-
tions for boosting methods and strong empirical results in
text categorization evaluations, further research is needed
for deeper understanding of the power and limitations of
boosting approaches. In this paper, we study the issue of
using boosting to reduce the inductive biases of different
classification algorithms, a research question which has not
been explicitly explored previously. Specifically, we are in-
terested in how well boosting works with “non-weak” learn-
ing algorithms, by which we mean classification methods
whose performance is much stronger than a near random
classifier or even decision stumps. We chose to use Deci-
sion Trees, Naive Bayes, Support Vector Machines (SVMs)
and a Rocchio classifier which have been among the top-
performers in text categorization evaluations [9, 26, 27, 22,
12] as base classifiers for our investigation on boosting. We
focus on answering the question of whether boosting is an
effective way of correcting the inductive biases in those clas-
sifiers. We hope our analysis and experiments suggest useful
insights for boosting with a broader range of classifiers as
well.

2. BOOSTING ALGORITHMS

The version of boosting mainly investigated in this paper
is AdaBoost.M1 (Freund and Schapire). In order to illus-
trate that sampling with any technique that can effectively
increase the weight of the erroneously classified documents
will achieve improvement, not constrained to the weight up-
dating function of AdaBoost, we implemented resampling
boost algorithms as well for boosting Naive Bayes, SVMs
and Rocchio. These two algorithms are outlined below.

AdaBoost: Let W/} be the weight of document i on train-
ing iteration t. Initialize W, to be %, where N is the size
of the training set of documents. Particularly, in the re-
sampling version of boosting, W/ reflects the probability
of document i to be sampled. In each training iteration
t=1,2,...,T, the system constructs a training sample of doc-
uments chosen according the weight Wt and uses that sam-
ple to train a base classifier C* (using a given learning algo-
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where Z* is a normalization factor. Boosting will terminate
if € is greater than 0.5 or equal to 0. The resulting classifier
is the weighted vote of the base classifiers C,C?,...,CT
where the weight of C* is .

Resampling Boost: The idea of resampling boost is sim-
ilar to AdaBoost except that the weight updating function
is different. During each iteration in boosting, the training

documents that are misclassified by the previously induced
base classifier receive an increased weight. That is, their
probabilities for being selected in the next iteration is up-
dated as follows: let e(d;) be the cumulative number of times
that document d; is misclassified in previous iterations, and
N denotes the number of documents in the training set. The
probability that document d; will be sampled is:

1+ e(di)g
Siso(1+e(di)?)

Finally, the resulting classifier is the unweighted majority
vote of all the multiple base classifiers.

P(di) = (2)

3. INDUCTIVE BIASES OF CLASSIFIERS

Inductive learning is the problem of inducing classification
functions from a set of training examples[15]. Depending on
how the classification functions are induced, classifiers may
have different inductive biases, by which we mean differ-
ent assumptions underlying their inductive inferences. In
general, there are two types of inductive biases: preference
bias and restriction bias. The former comes from a prefer-
ence in the search strategy; that is, the algorithm prefers
certain types of hypotheses over others (shorter hypotheses
over longer ones in a disjunctive normal form learner, for
example, or a more general MDL criterion in other sym-
bolic classifiers). The latter comes from a restriction on the
search space; that is, there is a restriction on classification
functions to be considered (linear functions only, for exam-
ple, or independence assumptions among the input features
to the function in Naive Bayes).

Inductive learning classifiers are able to classify unseen in-
stances only because they have an implicit bias for selecting
one consistent hypothesis over another. On the other hand,
an inductive bias may be the cause of classification errors
when it is inconsistent with the target concepts. Our task,
therefore, is to identify the inductive biases of the classifiers
and find ways to correct them when they are not suitable for
the target concepts. To make our points clear, we discuss
below the inductive biases of the four classification methods
which are common in text categorization. Those classifiers
are Decision Trees[l, 25], Naive Bayes[14], Support Vector
Machines (SVMs)[9] and Rocchio[22].

A Decision Trees is a tree structure grown from the
root downward using a greedy algorithm which selects the
next best feature (that is, word for text classification) for
each new decision branch added to the tree, typically with
an entropy-minimization criterion such as information gain.
The resulting tree is equivalent to Disjunctive Normal Form
(DNF) rules that cover the complete hypothesis space; thus,
Dtrees have no restriction bias with respect to the given
set of features.! On the other hand, Dtrees have a clear
preference bias in their search strategy, that is, the greedy
feature selection based on information gain and a preference
for smaller trees over larger trees (either during initial Dtrees
construction, or by post-construction automated pruning).

Naive Bayes classifiers estimate the probability of each
candidate category for a given document using the joint

'In reality, for text categorization, Dtrees are typically induced
using a much smaller, selected set of features instead of the full
vocabulary found in training documents in order to accommodate
the computation cost. Restriction bias would also be an issue in
such a case.



probabilities of features in that instance (e.g. words in a
document) given the category. An obvious inductive bias
of NB corresponds to the “naive” assumption that the con-
ditional probability of a word given a category is indepen-
dent of the conditional probabilities of other words given
that category. This bias is a consequence of the expressive
power of its hypothesis representation, i.e., a strong restric-
tion bias. Another more subtle inductive bias of NB is that
each training example (document) has equal weight during
the computation of the conditional probabilities.

SVMs are defined over a vector space, and the problem
is to find a decision surface that “best” separates the data
points into two classes based on the Structural Minimiza-
tion Principle. Specifically, the “best” decision surface in a
linearly separable space is a hyperplane that maximizes the
“margin”, that is the distance between two parallel hyper-
planes that separate the two classes of data points in the
training set. Maximizing the margin as the optimization
criterion introduces a preference bias: only the data points
on the margin (namely, the support vectors) have a non-
zero weight in the classification function. As a consequence,
the decision boundary is likely to be too sensitive to outliers
around the margin (if any), and not sufficiently sensitive to
the density of data points beyond the margin. The SVMs
algorithm for linearly separable cases can be extended for
solving the linearly non-separable cases by either introduc-
ing a soft margin hyperplane, or by transforming the original
data vectors to a higher dimensional space where the data
points become linearly separable. The transformed solution
has the same inductive bias as a linear SVMs, and the soft-
margin solution has the following inductive bias: the data
points within the margin have non-zero weights, but the
data points beyond the margin are still ignored. Similar bi-
ases exist if other (non-linear) kernel functions are used for
SVMs.

Rocchio classifiers compute a prototype vector for each
category as a weighted average of positive and negative train-
ing examples. A commonly used formula for the prototype
of a category (c) is:

Ay k)= 3yt
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where R. is the “centroid” of positive training examples;
R, . is the centroid of the negative training examples as se-
lected in the “query zone”?[22] and ~ is the weight of the
negative centroid. For both efficiency and effectiveness, we
retain only the top pmaz non-zero elements in the prototype
vector®. Rocchio estimates the relevance score of each cate-
gory with respect to a test example using the cosine of the
prototype vector of the category and the document vector,
and thresholds on those scores for classification decisions.
An inductive (restriction) bias in Rocchio is that it only
allows a two-centroid representation for the prototype of a
class, which may not be suitable or sufficient for the kind
of categories whose examples are naturally clustered around
more than two centroids. Another inductive (preference)

2That is, the k top-ranking documents retrieved from the neg-
ative training examples when using the centroid of the positive
training examples as the query

3These choices for the values of Pmaz, ¥ and k are based on pa-
rameter optimization using k-fold cross validation over a training
set (in our experiments, k=>5)

bias is that all the positive (or negative) training examples
are given an equal weight when computing a positive (or
negative) centroid, which is clearly different from SVMs.

4. BOOSTING FOR INDIVIDUAL CLASSI-
FIERS

DTreeBoost: The original decision-trees algorithm cov-
ers a complete hypothesis space and has no restriction bias.
However, for text categorization we typically select only a
subset of the features instead of the full vocabulary. This
saves substantial computation cost, but simultaneously in-
troduces a restriction bias. Boosting has particular advan-
tages on correcting this bias for the reason that this modified
decision trees have a larger variance than the original Dtrees,
that is, when the training documents are slightly changed,
the trees induced from these data may differ greatly. When
boosting gradually updates the weight of each training doc-
ument, the set of selected features change as a function of
the weight, and so the inductive bias adjusts accordingly.

NBBoost:Boosting Naive Bayes strengthens the expres-
sive power of a hypothesis space by breaking the indepen-
dence assumption. Another inductive bias comes from the
implicit assumption that each training document has equal
weight. Let us see in detail how boosting addresses this bias:
Naive Bayes classifier applies Bayes’ rule when making the
classification judgement, that is

P(cjldi) = 71’(0]'])31(;(31@).

The result category we assigned to this document is
C = argmaz.; P(c;|d;)

In the multinomial model, the probability of the word wy
given category c; and the prior probability of category c;
are computed as follows:
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After plugging in the weight by boosting, we get

N
Zi:l nifW;

P'(wylej) = , 4
( f‘ J) Zgzlzfilmswf ( )

t
P'(¢j) = %j\,ecjm‘j? ‘ (5)

k=1 "k

where W} is the weight of document i in iteration t, niy
is the number of appearances of word fin document i, N
refers to the number of training documents and V refers
to the vocabulary size. In this way, boosting assigns larger
weights to the misclassified training documents in previous
iterations and smaller weights to the correct ones.
SVMBoost:The inductive bias of SVMs we are concerned
about is that only the training points on the margin (the
support vectors) have a non-zero weight in the classifica-
tion function. To allow other training examples to also have
a contribution, the minimization function is modified. To



illustrate how the weight of each training document influ-
ences each base classifier we built, we choose the linearly
non-separable case, in which the original problem is reduced
to a quadratic programming problem:

Mazimize
N | i=NI=N o
Lp = ;al -3 ;1 2 QO Y Y Ti - T
subject to
0<a; <G,

the solution is given by

where (23, y) corresponds to one training document; N is the
number of whole training set; «; is Lagrange multipliers, and
C'is a constant.

After adding our modification for boosting, the formula
above become:

Mazimaize
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where W{ is the weight of document k in iteration ¢.

In this way, the documents that are misclassified by pre-
vious classifiers will have larger weights in the classification
function of the current iteration. By this error-driven cor-
rection technique, boosting helps to correct the preference
bias of SVMs in terms that the data points beyond the orig-
inal margin (that is the margin without boosting) will also
have an effect on the final classification, whether great or
slight. The number of documents to be selected on each
training round is a parameter that can be tuned using cross
validation.

RocchioBoost: Rocchio assumes that each training doc-
ument is given equal weight when computing the centroid
(positive or negative). Boosting corrects this bias by in-
creasing the weights of the misclassified documents in each
training round. As a result, the centroid will move toward
these data points in the next iteration and the resulting
classification function will have a preference bias for those
documents that are particularly hard to classify. For the
implementation of RocchioBoost we could also use the re-
sampling strategy, as we did for SVMs and Naive Bayes.
However, we instead directly added a per-document weight
in the Rocchio formula for computing the prototype of a
category because it was a straightforward and even simpler
solution. The modified formula is:

t= _ t.
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where W} and W]t are the updating weights of document ¢
and j, respectively, at time t.

5. EMPIRICAL VALIDATION

We conducted experiments for boosting with the four clas-
sifiers: Decision Trees, Naive Bayes, SVMs and Rocchio.

5.1 Data, Text Representation and Metrics

For our data collection we chose the ApteMod version
of Reuters-21578 corpus which has been used as a bench-
mark in recent text categorization evaluations, and is simi-
lar to the previous version named the Apte set of Reuters-
21450[27]. It consists of a training set of 7,769 documents
and a test set of 3,019 documents, with 90 categories each of
which has at least one occurrence in both sets. The number
of categories per document is 1.3 on average.

We pre-processed the documents, including down-casing,
tokenization, removal of punctuation and stop words, stem-
ming and supervised statistical features selection. We de-
fined tokens to be maximal sequences of letters and dig-
its, followed by an optional “’s” or “nt”. Tokens which
were purely numbers were discarded, as were words on the
SMART stoplist[19]. Tokens were stemmed with the Porter
Stemmer. The resulting documents had a vocabulary of
24,240 unique words. Features corresponding to stemmed
words were ranked using the y?_max criterion, i.e. the max-
imum of x? over the 90 categories [18, 28]. Feature sets of
several sizes were chosen by going down this list to various
depths. The optimal feature set size was chosen separately
for each classifier (Dtrees, SVMs, kNN, or Rocchio) by 5-
fold cross validation so as to optimize macro-averaged or
micro-averaged F;. Document vectors based on these fea-
ture sets were computed using the SMART ltc version of
TF-IDF term weighting [4]. This gives term ¢ in document
d a weight of:

wa(t) = (1 +log, n(t, d)) x log,(|D|/n(t)) (8)

where n(t) is the number of documents that contain ¢.
For the evaluation metric, we used a common effectiveness
measure, I, defined to be [13, 24]:

2A
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where A is the number of documents the system correctly
assigns to the category, B is the number of documents incor-
rectly assigned to the category (aka false-alarms), and C' is
the number of documents which belong to the category but
are misclassified as non-members. It is easy to show that Fy
is equivalent to the harmonic average of precision (defined

to be p = ﬁ) and recall (defined to be r = AJ‘:%C). That
is,
2rp
= 10
Ty (10)

To measure overall effectiveness we use both the micro-
average (effectiveness computed from the sum of per-category
contingency tables) and the macro-average (unweighted av-
erage of effectiveness across all categories). The former is
dominated by the system’s performance on common cate-
gories while the latter is dominated by the performance on
rare categories, if the majority of categories in the data col-
lection are rare as is typically the case [26].



5.2 Experiment Results on Boosting

In our experiment, we tested both the AdaBoost and the
resampling boost. We also ran the classifiers without boost-
ing as a baseline for comparison. We set the iteration num-
ber in the boosting runs to be 5, 10 and 20 respectively.

In the following sections, Figure 1-4 shows the perfor-
mance curves (interpolated) of AdaBoost and resampling
boost as a function of the iteration number in boosting®.
Table 1-4 presents the peak scores of each method at the cor-
responding iterations and when micro- and macro-averaged
Fy were chosen as the measure, respectively °.

SVMBoost In our experiments with SVMs we used the

SVM_Light package ([10], http://www.joachims.org/svm_light).

We employed SVMs with a linear kernel which we have found
as competitive as other kernels in a previous study on this
corpus[27]. All parameters were left at default values. In
feature selection we found the performance of SVMs not
sensitive to the feature-set size when the set is sufficiently
large, which is consistent to previously reported observa-
tions[9]; therefore we used the entire feature space. The
results of boosting SVMs are shown in Figure 1 and Table
1.
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Figure 1: Perfermance of SVMBoost on Reuters-
21578

Comparing these micro-averaged scores to previously pub-
lished results on the same data collection, the score (0.863
in F) of our baseline SVMs is similar to the scores (0.860 -
0.864 in F1) reported by Joachims for SVMs without boost-
ing[9]. Our scores (0.875 in F1) for SVMs with resampling
boost are comparable to the results reported by Weiss et

“Tteration 0 corresponds to individual classifier without boosting.
SIBMBoost refers to resampling boost in these figures.

Micro-averaged Performance

iterations miPre miRec miF1 improvement
AdaBoost 10 .8904 | .8507 | .8701 | +0.8%
Resampling Boost 10 .8931 | .8568 | .8746 | +1.3%
NoBoost 0 .9228 | .8109 | .8632 n/a

Macro-averaged Performance

iterations maPre maRec maF1 improvement
AdaBoost 10 .6662 | .5689 | .6027 +17.1%
Resampling Boost 5 6612 | 5758 | .6045 | +17.4%
NoBoost 0 .8230 | .4708 | .5147 n/a
miPre = micro-averaged precision; maPre = macro-averaged precision
miRec = micro-averaged recall; maRec = macro-averaged recall
miF; = micro-averaged F; maF| = macro-averaged Fp

Table 1: Results summary of SVMBoost on
Reuters-21578

al. for their experiments of resampling boost with decision
trees for which they obtained the break-even point scores
(the simple average of recall and precision) of 0.859 - 0.878
when the number of boosting iterations varied from 10 to
100. Our score (0.870 in F;) for SVMs with AdaBoost is
slightly higher than the result (0.853 in Fi) reported by
Schapire and Singer for AdaBoost (MH) on Reuters-21450,
an older version of the Reuters-21578 dataset.

The most noticeable improvement by SVMBoost over base-
line SVMs (without boosting) is in the macro-averaged Fi
scores, suggesting that boosting is more effective for improv-
ing the decision boundaries by SVMs for rare categories than
it does for common categories. For the macro-averaged per-
formance scores, the only results previously reported on this
collection were those by Yang & Liu[27] who obtained a Fy
score of 0.525 for SVMs without boosting. That score is
very similar to our baseline SVMs result, and significantly
worse than the result (0.6045 in F1) of SVMs with resam-
pling boost. More interestingly, both the curves for Ad-
aBoost and resampling boost decline when the number of
iterations exceed a certain value, suggesting that boosting
can indeed lead to overfitting, at least with strong classifiers.

DtreeBoost The C4.5 decision trees algorithm [17] is
used for the experiment. The software package we employed
is the Weka Data Mining Toolkit®. All parameters were left
at default values except otherwise specified. For feature se-
lection, we selected 500 words with the highest Chi-squared
score [28]. We tested only the AdaBoost version for decision
trees because the resampling boost on the same collection
has been explored by Weiss[25]. The results of DtreeBoost
are shown in Figure 2 and Table 2.

The micro-averaged score of our baseline (0.8099 in Fi)
is very similar to the scores (0.789 in break-even point) re-
ported by Apte for Decision Trees (C4.5)[25] on Reuters-
21450, an older version of the Reuters-21578 dataset. Our
experiment results shows only a slight improvement for boost-
ing with decision trees using AdaBoost in micro-averaged
score.

The impressive improvement by boosting decision trees in
the macro-averaged F scores (13.4%) strengthens the point
that boosting is more effective in correcting the inductive
bias of rare categories than common categories, which was

5We have also tried the C5.0 software package and the results we
got are very similar to the ones with Weka software package.



Micro-averaged Performance

iterations miPre miRec miF1 improvement
AdaBoost 10 7863 | .8472 | .8156 | +0.8%
NoBoost 0 .7829 | .8389 | .8099 n/a

Macro-averaged Performance

iterations maPre maRec maF1 improvement
AdaBoost 5 4780 | .5643 | 5176 | +13.4%
NoBoost 0 4183 | 5017 | .4562 n/a

Table 2: Results summary of DTreeBoost on
Reuters-21578
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Figure 2: Perfermance of DtreeBoost on Reuters-
21578

also suggested by the results of boosting with SVMs.

NBBoost For Naive Bayes, we used McCallum’s Rain-
bow system. There are two models for naive bayes in Rain-
bow: the multinomial mizture model and the multi-variate
Bernoulli model. In our experiment we use the multinomial
model which is tested better than the Bernoulli model [14].
We tuned the feature-set size and selected 2000 features to
optimize the F'1 measure. The results of NBBoost are shown
in Figure 3 and Table 3. We compared our results with
the ones obtained by Joachims[8]. For the ten most com-
mon categories, the micro-F1 of our method is comparable
or better than Joachims’; as for the averaged micro-F1 over
the whole corpus, ours (0.7908) is significantly higher than
the NB score(0.720) obtained by Joachims. Our averaged
micro-F1 on the ten most common categories is also compa-
rable to the results by McCallum at al [14].

From Table 3 we can see that boosting achieved only
marginal improvement with respect to micro-F1 measure

Micro-averaged Performance

iterations miPre miRec miF1 improvement
AdaBoost 5 .8936 | .7202 | .7977 | +1.0%
Resampling Boost 10 8920 | .7189 | .7961 | +1.0%
NoBoost 0 .8006 | .7813 | .7908 n/a

Macro-averaged Performance

iterations maPre maRec maF1 improvement
AdaBoost 5 7636 | .2811 | .3362 -8.0%
Resampling Boost 10 .8205 | .2986 | .3558 -2.7%
NoBoost 0 4499 | .3517 | .3658 n/a

Table 3: Results summary of NBBoost on Reuters-
21578

while the macro-F1 got worse than without boosting. Sim-
ilar observation that boosting Naive Bayes does not work
well for some datasets has been reported before. Compared
with SVMs and Decision Trees, the different behavior of
boosting with NB for rare categories, might be related to
the fact that Naive Bayes uses a generative model for clas-
sification. Boosting NB will change the distribution model
instead of modifying the decision boundary gradually. How-
ever, to thoroughly explain this result we might need fur-
ther research such as running the same experiments on some
other datasets.

Micro-averaged Performance

iterations miPre miRec miF1 improvement
AdaBoost 10 .8851 | .8066 | .8440 -0.4%
Resampling Boost 20 8740 | .8040 | .8375 -1.2%
NoBoost 0 8731 | .8231 | .8474 n/a

Macro-averaged Performance

iterations maPre maRec maF1 improvement
AdaBoost 15 7249 | 5966 | .6088 | +2.9%
Resampling Boost 3 7072 | 5860 | .5953 | +1.0%
NoBoost 0 .7288 | .5681 | .5914 n/a

Table 4: Results summary of RocchioBoost on
Reuters-21578

RocchioBoost All the parameters were tuned using 5-
fold cross validation on the original training set before boost-
ing. Parameters in Rocchio were set to be: pmas = 1000
(the maximum number of features with non-zero weights in
the class centroid), n = 1000 (the size of the “query-zone”
in terms of the number of the documents), v = 1.0 (the
weight for the negative centroid), ftm; = 2000 (the number
of features selected for maximizing the micro-averaged F}
performance of the system), and ftmae = 2000 (the number
of features selected for maximizing the macro-averaged Fi
performance of the system). The results of RocchioBoost
are shown in Table 4. From the results, we can see that
there is no significant trend for boosting Rocchio (increase
or decrease) in terms of both Micro-averaged and Macro-
averaged measures.

5.3 Discussion

The observation that boosting is effective to correct the
inductive bias of SVMs and Dtree for rare categories, but
not the other two classifiers is interesting. To see this im-
provement in detail, table 5 compares the results of ten
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Figure 3: Perfermance of NBBoost on Reuters-
21578

most common categories and ten rare categories for SVMs
without boosting and SVMBoost in terms of F1 measure.”
From the table, we can see that boosting is indeed effective

Performance Comparison in F1 measure

Common | SVMs | SVMBoost | Rare Cate- | SVMs | SVMBoost

Categories gories

earn 19980 19834 sun-meal 0 1.000
acq .9645 .9678 naphtha 0 .4000
money-fix 7331 7393 potato 5000 .8000
grain .9143 19300 propane 0 .8000
crude .8432 .8526 cpu 0 1.000
trade .7366 7354 coconut 6667 .6667
interest 7456 7737 coconut-oil 0 .4000
ship 8077 .8092 platinum 0 .4000
wheat .8444 .8345 instal-debt 1.000 1.000
corn .8889 .8624 sun-oil 0 .5000

Table 5: Results of SVMs and SVMBoost on Ten
Most Common Categories and Ten Rare Categories

to improve the performance for rare categories. Although
most classifiers did comparably well for common categories,
boosting can make better use of the training examples when
the training data are not enough. But why this positive ef-
fects of boosting does not work for NB and Rocchio? One

"The rare categories are selected as follows: we sort the cate-
gories in ascending order and select the ten first categories, while
omitting those for which both Fj results of SVMs and SVMBoost
are zero.
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Figure 4: Perfermance of RocchioBoost on Reuters-
21578

reason might be that boosting implicitly requires the in-
stability of classifiers induced by base classifiers[16]. As a
generative model, Naive Bayes is more stable than the dis-
criminative classifiers such as Dtree [2]. Small changes of
the training data will seldom if ever result in big changes to
the estimated probabilities. The Rocchio algorithms build
the prototype for each category beforehand, which is also
relative stable. This is especially the case for the rare cate-
gories that have only one or two training documents because
the range that the prototype can change is small. Therefore,
boosting NB and Rocchio may not be able to generate mul-
tiple models with sufficient diversity, thus cannot effectively
correct the inductive bias of the base classifiers.

6. CONCLUSIONS

This paper studies the effects of boosting applied to dif-
ferent classification methods for text categorization, includ-
ing Decision Trees, Naive Bayes, Support Vector Machines
(SVMs) and a Rocchio-style classifier. We identify the in-
ductive biases of these classifiers and explore how boosting
reacts to those biases.

The main observations of our experiments are: (1) In gen-
eral, boosting is not significantly effective to improve the
performance of the base classifiers on common categories.
One point worth noticing is that boosting SVMs works the
best among the four cases while boosting NB does by far the
worse. By Boosting SVMs we obtained comparable results
in the micro-averaged F; measure as the best one ever re-
ported on this benchmark collection with boosting. (2) The
effect of boosting for rare categories varies across classifiers:



for SVMs and Decision Trees, we achieve 13-17% perfor-
mance improvements by boosting in the macro-averaged I}
measure; however, boosting with Rocchio and Naive Bayes
did not obtain substantial improvement. Some analysis is
given to explain this interesting observation.

Most current work on boosting focuses on common cat-
egories. We hope our exploration of both rare and com-
mon categories will shed light to a deeper understanding of
boosting and furthermore contribute to solving the problem
of how to optimally combine different classifiers.
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