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Abstract: Real-world social networks, while disparate in nature, often 
comprise of a set of loose clusters (a.k.a. communities), in which members are 
better connected to each other than to the rest of the network. In addition, such 
communities are often hierarchical, reflecting the fact that some communities 
are composed of a few smaller, sub-communities. Discovering the complicated 
hierarchical community structure can gain us deeper understanding about the 
networks and the pertaining communities. This paper describes a hierarchical 
Bayesian model based scheme namely hierarchical social network-pachinko 
allocation model (HSN-PAM), for discovering probabilistic, hierarchical 
communities in social networks. This scheme is powered by a previously 
developed hierarchical Bayesian model. In this scheme, communities are 
classified into two categories: super-communities and regular-communities. 
Two different network encoding approaches are explored to evaluate this 
scheme on research collaborative networks, including CiteSeer. The 
experimental results demonstrate that HSN-PAM is effective for discovering 
hierarchical community structures in large-scale social networks. 

Keywords: community discovery; hierarchical; social networks; graphical 
models; data mining. 
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1 Introduction 

Social networks have been studied for decades. In recent years, this line of research has 
gained even more momentum with the prevalence of online social networking systems, 
such as MySpace, LiveJournal, Friendster and instant messaging systems. These social 
networking systems are being used by millions and have gained increasing popularity 
among very diverse user groups. Despite the vast number of nodes, the heterogeneity of 
the user bases and the variety of interactions among the members, most of these networks 
exhibit some common properties, such as the small-world property and power-law degree 
distribution. In addition, some members in the networks form loose clusters, making 
them better connected to each other than to the rest of the network. An important task in 
these emerging networks is community discovery, which is to identify subsets of 
networks such that connections within each subset are dense and connections among 
different subsets are relatively sparse. Discovering such inherent community structures 
can lead to deeper understanding about the networks. Since large-scale complex networks 
based applications exist in many disciplines, community discovery is appealing to 
researchers from a variety of areas such as computer science, biology, social science and 
so on. 

While the concept of ‘community’ is self-explanatory, there is no quantitative, 
rigorous definition that is commonly accepted. This is partly due to the fact that members 
in social networks can potentially belong to more than one community and the 
boundaries between communities are often blurry and difficult to draw. Moreover, the 
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community structures are seldom flat. Analogous to the human society, most complex 
social networks imply hierarchical structures. For instance, in computer science research 
collaboration networks, a researcher may belong to artificial intelligence (AI) community 
in general. But his specific research interests could be focused on a sub-area in AI with 
his collaborators working on similar topics. The sub-community this researcher and his 
collaborators belong to, together with the general AI community, constitute a simple  
two-level community structure. In order to discover these hierarchical communities from 
large-scale social networks, we develop a hierarchical social network-pachinko 
allocation model (HSN-PAM) scheme by applying the pachinko allocation model (PAM) 
(Li and McCallum, 2006), a direct acyclic graph (DAG) structured mixture models, to 
identify and discover probabilistic hierarchical communities in complex, large-scale 
social networks. This technique is aligned with two previously developed graphical 
model approaches, namely: simple social network-latent Dirichlet allocation (SSN-LDA) 
(Zhang et al., 2007b) and generic weighted network-latent Dirichlet allocation  
(GWN-LDA) (Zhang et al., 2007a), which discover hidden correlations among social 
actors using hierarchical Bayesian network models. However, the HSN-PAM model is 
able to discover not only correlations among social actors in networks, but also 
correlations among hidden groups, thus making it possible to uncover complicated, 
hierarchical community structures. 

In this paper, we first describe probabilistic model and the pertaining network 
encoding approaches are evaluated on three social networks with the sizes varying from 
extremely small to very large. The experimental results indicate that this probabilistic 
approach is promising in recovering latent relations in large scale social networks. Note 
that while this approach is evaluated in the social network domain with co-authorship 
networks, it can be easily extended to other complex network-based applications. 

In conclusion, the contributions of this paper include: 

1 applying a DAG-structured mixture model to discover hierarchical, probabilistic 
communities in large-scale networks that only requires the topological structure of 
networks 

2 the exploration of the impact of two different network encoding schemes, namely 
direct neighbour encoding scheme (DNES) and indirect neighbour encoding scheme 
(IDNES) on hierarchical community discovery. 

The rest of this paper is organised as follows: Section 2 introduces related studies; 
Section 3 introduces related terminology and notations for social networks and discusses 
using graphical models to detect single-level group structures in social networks;  
Section 4 describes the network encoding schemes; Section 5 presents the HSN-PAM 
model and its corresponding learning procedures; Section 6 describes three social 
networks and corresponding experimental results; Section 7 discusses some possible 
directions for future work including model extension. Finally, Section 8 concludes the 
paper. 

2 Related work 

Community structures exist in different types of networks and have been studied in the 
context of different applications such as: web communities (Flake et al., 2000, 2004; Jing 
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et al., 2009; Zhang et al., 2007c), social networks (Clauset et al., 2004; Girvan and 
Newman, 2004; Hopcroft et al., 2004; Newman, 2004b; Palla et al., 2005; Scott, 2000), 
co-authorship networks (Börner et al., 2004; Krichel and Bakkalbasi, 2006; Newman, 
2004a) and biological networks (Girvan and Newman, 2002; Palla et al., 2005; Wilkinson 
and Huberman, 2004). 

This section introduces the background of this study and describes a series of related 
work, ranging from graph partition, community discovery, clustering algorithms, to 
several variants of latent Dirichlet allocation (LDA) models. 

2.1 Community discovery algorithms 

A closely-related problem is graph partitioning problem whose goal is to find a set of 
optimal graph partitions, so that the edge weight between the partitions is minimised 
while maintaining partitions of a minimal size. The NP-complete complexity nature of 
this problem (Garey and Johnson, 1979) requires approximate solutions. Flake et al. 
(2000, 2004) developed approximate algorithms to partition the network by solving s-t 
maximum flow techniques. The main idea behind maximum flow is to create clusters that 
have small inter-cluster cuts and relatively large intra-cluster cuts. This idea was first 
used to explore the web structure in order to provide guidance for crawlers to identify the 
authoritative nodes (sinks) and hubs, etc. (Flake et al., 2000). While the graph 
partitioning problem appears to be similar as the community discovery problem, there 
exists distinct difference between the two problems. Community discovery usually has no 
requirements on the size of communities and does not attempt to minimise the number of 
inter-community edges. Most of the existing community discovery methods can be 
classified as clustering algorithms and fall into two following categories: 

1 Agglomerative approaches: In an agglomerative approach, similarity (or distance) 
measures are calculated and edges are added to an initially empty network starting 
with the vertex pairs with highest similarity. This process stops on a set of  
pre-defined criteria and the resulting subgraphs are considered as the discovered 
communities. However, such approaches tend to find only the cores of communities 
and leave out the periphery. 

2 Divisive approaches: A divisive method starts with the original network and 
removes edges based on similarity/distance measures. In practice, the centrality 
indices or betweenness metric has been used. The betweenness concept was 
introduced by Freeman (1977) as a centrality measure. It is defined on a vertex vi as 
the number of shortest paths between pairs of other vertices that contain vertex vi. 
This measure has been used in many previous studies on co-authorship network 
(Girvan and Newman, 2002; Wilkinson and Huberman, 2004; Krichel and 
Bakkalbasi, 2006). Girvan and Newman (2002) extended this measure to edges and 
designed a clustering algorithm which gradually removed the edges with highest 
betweenness value. A similar approach was taken to find communities in gene 
networks by Wilkinson and Huberman (2004), where gene networks were created by 
collecting gene cooccurrence information from the literature and partitioning them 
into communities of related genes. However, a major problem with this approach is 
that the complexity of this approach is O(m2n), where m is the number of edges in 
the graph and n is the number of vertices in the network. 
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While the distance measures employed in these approaches are usually easy  
to understand, such strategies have difficulty in capturing the overlap among  
communities, the multiple membership phenomenon and inherent hierarchical 
communities. Conducting hierarchical clustering algorithms based on these distance 
measures is one potential way to discover hierarchical structures. However, it  
still does not provide probabilistic results and the stop criteria are usually hard to 
determine. 

2.2 Probabilistic models 

LDA model was first introduced by Blei et al. (2003) for modelling the generative 
process of a document corpus. Its ability of modelling topics using latent variables has 
attracted significant interests and it has been applied to many domains such as document 
modelling (Blei et al., 2003), text classification (Blei et al., 2003), collaborative filtering 
(Blei et al., 2003), topic models detection (Wang and McCallum, 2006) and social 
networks (Zhang et al., 2007a, 2007b). Based on LDA model, the PAM model was 
proposed to capture the correlations among topics by introducing DAG-structured 
mixture models (Li and McCallum, 2006). 

Among the above LDA-based applications, the two approaches proposed in  
Rosen-Zvi et al. (2004) are both concerned about discovering contextual author  
groups based on the semantic similarity of their publications. In such models, the 
evidence is the terms occurring in the documents. In contrast, the two topological 
community discovery approaches, SSN-LDA and GWN-LDA, attempt to discover flat 
communities from social networks (Zhang et al., 2007a, 2007b) by utilising  
only topological information in social networks. These two models encode the  
structural information of networks into profiles and discover community structures  
purely from these social connections among the nodes. With the only input information 
being the topological structure of a social network, these models can be easily  
extended to complex networks where no semantic information is available (Bar-Yossef et 
al., 2006). 

3 Single-level community structure discovery 

A typical social network G, as shown in Figure 1, is composed of a pair of sets, including 
the social actor set V = {v1, v2,..., vM} and social interaction set E(e1, e2,..., eN), together 
with a social interaction weight function: SIW: (V × V) → I, where I represents the 
integer set. The elements of social actor set V are the vertices of G and the elements of 
social interaction set E are the edges of G, representing the occurrence of social 
interactions between the corresponding social actors. The number of the social  
actors in the network is denoted as M. Each social interaction ei in set E is considered  
as a binary relation between two social actors, i.e., ei(vi1, vi2) and SIW function describes 
the strength of such interaction. Note that social interaction weight is specified as  
integer in order to be processed by the HSN-PAM model. Throughout this paper, terms 
node, vertex and social actor are used interchangeably, and so are edge and social 
interaction. 
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Figure 1 A typical social network (see online version for colours) 

 

Notes: Each node represents a social actor and each edge between two nodes represents 
their social interactions. The weight of an edge, i.e., social interaction weight 
information, implies the frequency and importance of social interactions between 
the pertaining social actors. 

A node vi’s neighbouring agents are encoded by vector lω
JJG

 and each element ij Vω ∈  in 

the vector represents node vi’s jth neighbour. The connectivity of vi in the network is 
characterised by its social interaction profile (SIP), which is defined as a sequence of all 
vi’s neighbours ( ).ijω  In this sequence, the frequency of a neighbour ijω  is set as the 

corresponding social interaction weight information ( ( , )).i ijSIW v ω  Formally, vi’s SIP is: 

1 1 2 2( , , , , , )
v vl i i i i iN iNs ω ω ω ω ω ω=
� �

JG
" " "  

where Ni is the number of vi’s neighbouring nodes and the count of a particular 
neighbouring node ls

JG
 in → is ( , ).i ijSIW v ω  Throughout this paper, the variables in 

sequence ls
JG

 is specified as sij, where .ij ls ω∈
JJG

 Note that we assume the social interaction 

elements in this profile are exchangeable and therefore their order will not be concerned. 
This exchangeability allows these graphical models be used in this application domain 
(Blei et al., 2003). 

Probabilistic graphical models such as Bayesian networks have been widely used as 
an important machine learning technique to represent dependency relations between 
visible and hidden random variables. Among others, document clustering is a well-known 
application of graphical models where words are modelled as visible variables and 
clusters are modelled as hidden variables. This paper applies graphical models to 
community discovery in complex networks. In our model, nodes connectivity information 
is modelled as visible variables while communities are modelled as hidden variables. 

The connections between nodes in social networks are seldom random or casual as 
there usually exist very manifest group structures in such networks. The essence of 
community detection using graphical models is to learn and discover relations among 
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hidden groups from social networks based on visible social interaction information. In 
these models, these groups are often modelled as latent variables and the dependency 
relations among groups and social interactions are captured by introducing a variety of 
graphical structures among these variables. Subsequently, the social network in question 
can be generated from a generative process based on such graphical structures. 

In particular, the recently proposed SSN-LDA model (Zhang et al., 2007b), as 
depicted in Figure 2, applies a hierarchical Bayesian network model, LDA model, to 
discover communities from large scale social networks. This model includes a hidden 
community layer which contains a set of community variables 1( , , ),kι ι ι ι∃  as well as a 

social actor layer, ,sι
JG

 which represents the occurrence of social actors in SIPs. Each 
social actor contributes a part, big or small to every community in the society. The 
community proportion variable θ is regulated by a Dirichlet distribution with a known 
parameter α. Meanwhile, each social actor belongs to every community with different 
probabilities and therefore its SIPs can be represented as random mixtures over latent 
communities’ variables. 

Figure 2 Graphical model for SSN-LDA 

 

The notation for all the variables in Figure 2 is listed in Table 1. The distribution of 
communities in SIPs and the social actors over communities are two multinomial 
distributions with two Dirichlet priors, whose hyperparameters are α

G  and β
G

 
respectively. The dimensionality K of the Dirichlet distribution, which is also the number 
of community component distributions, is assumed to be known and fixed. M is the 
number of social actors (SIPs) in the social network; and Ni is the number of social 
interactions in a SIP .sι

JG
 αG  is the hyperparameter(known) of the Dirichlet prior 

distribution of the mixing proportion; β
G

 is the Dirichlet prior hyperparameter (known) 
on the mixture component distributions for SSN-LDA. 
Table 1 Notation for symbols in SSN-LDA 

ι Hidden community variables 

ωij Social interaction variables in sι
JG

 

ιij Community assignment of sij 

θ
G

 ( ),jp sι
JJG

 community mixture proportion for sι
JG

 

k∅
JJG

 p(ski | ιk), the mixture component of community k 
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Figure 3 illustrates SSN-LDA approach in a more intuitive way with a tree-like structure, 
which consists of one root node at the top, a set of regular communities in the middle and 
a set of social actors at the bottom. 

Figure 3 Tree structure of SSN-LDA, including K communities and M social actors 

 

However, while the communities discovered by SSN-LDA capture co-occurrences among 
social actors, they do not explicitly model correlations among communities. This 
limitation arises because the community proportions for each SIP are regulated by a 
single Dirichlet distribution. Correspondingly, SSN-LDA has difficulties in modelling 
data in which some communities are closer to other communities. This paper presents an 
alternative graphical model, namely HSN-PAM, to represent and learn nested community 
correlations and identify hierarchical communities in large-scale social networks based 
on a DAG-based graphical model. 

4 Network encoding schemes 

The set of SIPs collectively determines the topological structure of a social network. The 
HSN-PAM model depends on the profile information to learn the graphical model and 
identify hidden communities in the pertaining social networks. In this paper, we explore 
two different encoding schemes, namely DNES and IDNES, to generate SIPs. 

In the DNES scheme, a social actor vi’s SIP contains all directly connected 
neighbours and the count of each neighbour in the profile is one. Hence, the SIPs of all 
the social actors constitute the adjacent matrix of the social network. Many previous 
studies on social networks use this simple representation (Freeman, 1977; Wilkinson and 
Huberman, 2004). More formally, the SIW function is defined as: 

1 2
1 2

1 ( , ) ;( , ) 0 otherwise
i i

D i i
e v v ESIW v v ∈⎧= ⎨

⎩
 (1) 

However, one of the disadvantages of the DNES scheme is that the SIPs give no 
consideration to those social actors that are close, but not directly connected to the node 
in question. The IDNES scheme addresses this problem by taking node’s indirect 
neighbours into account. This way, the SIPs reflect the proximity of the nodes in the 
network more accurately. Furthermore, the final matrix defined by the SIPs is less sparse 
which can improve the performance of the graphical models (Si and Jin, 2005). While 
theoretically, such encoding scheme can factor into any indirect neighbours that are 
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arbitrary hops away; in this paper, the IDNES approach only gives weights to a node’s 
direct neighbours and neighbours’ neighbours. The SIW function for IDNES is defined as 
follows: 

1

2

1 21 2

1 2

if ( , )1
And ( , )
And ( , )( , ) ;
if ( , )2
otherwise0

i in

in i

D i ii i

i i

e v v E
e v v E
e v v ESIW v v

e v v E

∈⎧
⎪ ∈⎪⎪ ∉= ⎨
⎪ ∈⎪
⎪⎩

 (2) 

5 HSN-PAM model 

In the hierarchical community structure that will be described in this section, namely 
HSN-PAM, the concept of communities is extended to include two different types of 
communities, namely regular communities and super communities. The two types of 
communities are denoted as sι  (super communities) and rι  (regular communities). A 
regular community is defined as a distribution on the social actor space while a super 
community is considered as a distribution on the regular communities or super 
communities. There can be arbitrary number of super community levels in HSN-PAM. In 
this section, we first introduce the generic HSN-PAM model in Section 5.1 and describe a 
simplified HSN-PAM model, namely TLC-HSN-PAM, with a two-level community 
structure. Finally, the Gibbs sampler for solving TLC-HSN-PAM model is presented in 
Section 5.3. 

5.1 Generic PAM model description 

The HSN-PAM model uses a direct acrylic graph (DAG) structure to represent and learn 
arbitrary-arity, nested and possibly sparse correlations among communities in social 
networks in contrast to the single-level hierarchy structure in SSN-LDA. In Figure 5, each 
community iι  is associated with a distribution 

i
gι  over its children. In general, 

i
gι  could 

be any distribution over discrete variables such as logistic normal. In this paper, we 
assume the distribution associated with communities is Dirichlet component 
multinomials (DCM) Dirι  (Minka and Lafferty, 2002). A DCM distribution is defined as 
a distribution hierarchy, including a multinomial distribution and a Dirichlet prior. 
Dirichlet is often used as the prior distributions for multinomial distributions in Bayesian 
statistics in order to obtain close-form solutions. In the context of HSN-PAM, this means 
that the SIP is generated by a multinomial distribution whose parameters are generated by 
its Dirichlet prior distribution. 

5.2 Two-level community HSN-PAM model 

This paper focuses on a simplified, two-level community HSN-PAM structure, which is 
shown in Figure 5. The two level community structure consists of two types of 
communities: super community 

11 2{ , , , }s s s s
kι ι ι ι=

JG
…  and regular community 
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11 2{ , , , }.r r rr
kι ι ι ι=

JG
…  Figure 5 demonstrates that the root community γ is connected to all 

super communities and all super communities are fully connected to regular 
communities. Finally, regular communities are fully connected to all the social actors in 
the social network. 
Table 2 Notation for quantities in HSN-PAM 

ι Hidden community variable 
ιSc Super community variable 
ιc Regular community variable 

θ
G

 ( ),jp sι
JJG

 community mixture proportion for js
JJG

 

k∅
JJG

 ( ),ki kp s ι  the mixture component of community k 

Figure 4 Graphical model for TLC-HSN-PAM 

 

Figure 5 Tree structure of a two-level community structure HSN-PAM model, including K2 super 
communities, K1 regular communities and M social actors (see online version for 
colours) 

 



   

 

   

   
 

   

   

 

   

    Graphical models based hierarchical probabilistic community discovery 105    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Two different types of distributions are used in this two-level community structure. We 
specify that the distributions of root and super communities are still DCM distribution 
while the distributions of regular communities are modelled with fixed multinomial 
distributions ,r

iι
∅  sampled once for the whole social network from a single Dirichlet 

distribution ( ).Dir β  The corresponding graphical model is shown in Figure 4 and the 
notations are listed in Table 2. 

The multinomials for the root and super communities are still sampled individually 
for each SIP. Each community iι  is associated with a Dirichlet distribution. 

Based on the graphical model in Figure 4, the generative process for a social actor’s 
SIP js

JJG
 is a two-step process: 

1 Sample j
rθ
JJG

 from the root ( ),t tDir α  where j
tθ
JJG

 is a multinomial distribution over  
super-communities. 

2 For each super-community ,s
iι  sample s

iι
θ
JJG

 from ( ),l iDir α  where s
iι

θ
JJG

 is a 

multinomial distribution over regular communities. 

3 For each social actor in the SIP, 

1 sample a super-community s
wι  from rθ

JJG
 

2 sample a regular community r
jι  from 

wιθ
JJG

 

3 sample a social actor ω from .r
ιι

∅
JJJG

 

The model structure and the generative process for this special setting are similar to  
SSN-LDA approach. The major difference is that it has one additional layer of  
super-topics modelled with Dirichlet multinomials, which are the key component 
capturing correlations among communities here. Another way to interpret this is that 
given the regular communities, each super-community is essentially an individual  
SSN-LDA structure. Therefore, this can be viewed as a mixture over a set of SSN-LDA 
models. 

Following this process, the joint probability of generating a SIP, the community 
assignment ι�  and the multinomial distribution θ

G
 is: 

1( , , , ) ( ) ( ) ( ( ) ( ) ( ( )))r
i w j

s r
t t i r r jP s P P P P P Pι ι ι ω ω ω ι ιι θ α φ θ α θ α ι θ ι θ ι θ ω== Π ×Π ∅

JG G G JJG JJG JJGG G
 (3) 

Integrating out and summing over, we calculate the marginal probability of a SIP as: 

1( , , ) ( ) ( ) ( ( ) ( ) ( ))r
i w j

s r
t t i r j lP s P P P P P d

ωι ι ι ω ι ω ια θ α θ α ι θ ι θ ω θ=Φ = Π ×Π Σ Φ∫
JG JJG JJG JJJGG G

 (4) 

The probability of generating the entire social network S
G

 is the product of the probability 
for every SIP ,Sι

G
 integrating out the multinomial distributions for regular communities Φ: 

( , ) ( ) ( , )r
j

j sP S P P s d
ι ιια β β α= Π ∅ Π Φ ∅∫ JG
JGG
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5.3 Gibbs samplers for HSN-PAM 

Exact inference is generally intractable for even the two-level community HSN-PAM 
model. There have been three major approximate approaches for solving this type of 
hierarchical Bayesian network models, including variational expectation maximisation 
(Blei et al., 2003), expectation propagation (Minka and Lafferty, 2002) and Gibbs 
sampling (Andrieu et al., 2003; Griffiths and Steyvers, 2004; Heinrich, 2004). Gibbs 
sampling is a special case of Markov-chain Monte Carlo (MCMC) simulation (MacKay, 
2002) where the dimension K of the distribution are sampled alternately one at a time, 
conditioned on the values of all other dimensions (Heinrich, 2004). We employ Gibbs 
sampling to learn HSN-PAM models because it often yields relatively simple algorithms 
for approximate inference in high-dimensional models. 

For an arbitrary DAG, we need to sample a community path for each social actor 
given other variable assignments enumerating all possible paths and calculating their 
conditional probabilities. In the two-level community structure HSN-PAM model, each 
path contains the root, a super-community and a regular community. Since the root is 
fixed, we only need to jointly sample the super-community and regular community 
assignments for each social actor based on their conditional probability given 
observations and other assignments, integrating out the multinomial distributions, Θ (thus 
the time for each sample is in the number of possible paths). The following equation 
shows the conditional probability given the assignment of other regular and super 
communities. For social actor ωj in SIP ,sι

JG
 we have: 

1

( )( )
1

2 2 3 3 ( ) ( )
' ' ' '1

( , , , , ) .
dd

kp pw wkk
d d

p m mk k p kpk

n nn
p k k D

nn n
α

ωω ω
α

α βα
ι ι ι α β

βα−
+ ++

= = ∝ × ×
+∑+∑ +∑

 

Here, we assume that the root community is k1, 2ωι  and 3ωι  correspond to super 
community and regular community assignments respectively. ωι−  is the community 

assignments or all other social actors. Excluding the current social actor, ( )d
xn  is the 

number of occurrences of community kx in social interaction profile sip; ( )d
xyn  is the 

number of times community ky is sampled from its parent kx in SIP; nx is the number of 
occurrences of regular-community kx in the whole network and nxw is the number of 
occurrences of social actor ω in regular-community kx. Furthermore, αxy is the yth 
component in αx and βw is the component for social actor ω in β. 

Note that in the Gibbs sampling equation, we assume that the Dirichlet parameters are 
given. While SSN-LDA can produce reasonable results with a simple uniform Dirichlet, 
we have to learn these parameters for the super-communities in TLD-HSN-PAM since 
they capture different correlations among regular-communities. As for the root, we 
assume a fixed Dirichlet parameter. To learn α, we could use maximum likelihood or 
maximum a posterior estimation. However, since there are no closed-form solutions for 
these methods and we wish to avoid iterative methods for the sake of simplicity and 
speed, we approximate it by moment matching. In each iteration of Gibbs sampling, we 
update 



   

 

   

   
 

   

   

 

   

    Graphical models based hierarchical probabilistic community discovery 107    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

( )

( )
1 ;

d
xy

xy dd
x

n

N n
μ = ∑  

2( )

( )
1 ;

d
xy

xy xydd
x

n

N n
σ μ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∑  

(1 )
1;xy xy

xy
xy

m
μ μ

σ
−

= −  

2

;

log( )1( ) exp .
5 1

y xy

y yx
xyy

x

m
s

α μ

α

∝

∑⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

∑
 

For each super-community kx and regular-community ky, we first calculate the sample 
mean μxy and sample covariance 2 .xyσ  ( )d

xyn  and ( )d
xn  are the same as defined above. Then 

we estimate αxy, the yth component in αx from sample mean and variance. N is the number 
of social actors and s2 is the number of regular communities. 

Smoothing is important when we estimate the Dirichlet parameters with moment 
matching. From the equations above, we can see that when one regular community y does 
not get sampled from super community x in one iteration, xyα  will become zero. 

Furthermore, from the Gibbs sampling equation, we know that this regular community 
will never have the chance to be sampled again by this super community. We introduce a 
prior in the calculation of sample means so that xyμ  will not be zero even if ( )d

xyn  is zero 

for every SIP. 

6 Experiments and evaluation 

We evaluate two-level community structure HSN-PAM on three social network data 
collections. The first network is Zachary club network, a well-studied case in traditional 
social network analysis and the other two are collaboration networks. The three networks 
are representative in terms of sizes, which range from extremely small (34 nodes) to very 
large (398,831 nodes). The evaluation for this model is conducted in both descriptive and 
quantitative ways. First, we demonstrate the exemplary communities discovered by the 
algorithms for three social networks and briefly discuss the results. Thereafter, we 
calculate the likelihood values for a set of community numbers. 

Throughout the experiments, we assume a fixed Dirichlet distribution with parameter 
0.01 for the root node. We can change this parameter to adjust the variance in the 
sampled multinomial distributions. We choose a small value so that the variance is high 
and each SIP contains only a small number of super communities, which tends to make 
the super communities more interpretable. We treat the regular communities in the same 
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way as SSN-LDA and assume that they are sampled once for the whole corpus from a 
given Dirichlet with parameter 0.01. So the only parameters we need to learn are the 
Dirichlet parameters for the super communities and multinomial parameters for the 
regular communities. 

6.1 Datasets 

6.1.1 Zachary – a toy data set 

The first dataset used in this paper is a small network, namely Zachary Karate Club 
Network, which has been used as a test case in a number of community discovery 
algorithms. Zachary’s Karate Club Network was created by Wayne Zachary and had as 
few as 34 nodes in the network. Over the course of two years in the early 1970s, Wayne 
Zachary observed social interactions between the members of a karate club at a US 
university (Zachary, 1977). He constructed networks of ties between members of the club 
based on their social interactions both within the club and away from it. By chance, a 
dispute arose during the course of his study between the club’s administrator and its 
principal karate teacher over whether to raise club fees, and as a result, the club 
eventually was split into two smaller clubs, centred on the administrator and the teacher. 

6.1.2 CiteSeer 

CiteSeer is a free public resource created by Kurt Bollacker, Lee Giles and Steve 
Lawrence in 1997–1998 at NEC Research Institute (now NEC Labs), Princeton, NJ. It 
contains rich information on the citation, co-authorship, semantic information for 
computer science literature. In this paper, we only consider the co-authorship information 
which constitutes a large-scale social network regarding academic collaboration with 
diversities spanning in time, research fields and countries. 

Table 3 lists the statistics for CiteSeer. CiteSeer contains unconnected subnetworks. 
In particular, CiteSeer has 31,998 subgraphs and the size of the largest connected 
subnetwork of CiteSeer is 249,866. In this paper, we are only interested in discovering 
communities in the two largest subnetworks. Therefore, unless specially specify, we 
always mean the two subnetworks when referring CiteSeer. 

Table 3 Statistics for datasets CiteSeer and NanoSCI 

Dataset Size PN EN AAP SLC 

CiteSeer 398,831 716,793 1,181,133 1.65 249,866 

NetSci 1,589 N/A 2741 N/A 1,589 

Notes: PN denotes the number of papers; EN denotes the number of edges; AAP denotes 
the average author number per paper and SLC denotes the size of the largest 
component. 

6.2 Empirical results 

10% of the original datasets is held out as test set and we run the Gibbs sampling process 
on the training set for i iterations. In particular, in generating the exemplary communities, 
we set the number of the communities as 50 and the iteration numbers i as 1,000. In 
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perplexity computation, i is set as 300 in order to shorten the computation time. In both 

cases, α is set as 1
k

 and β is set as 0.01, where K is the number of the communities. 

Figure 6 shows a consensus network structure extracted from Zachary’s observation 
before the split. Encoding this network with both DNES and IDNES schemes, the results 
are shown in Table 4. The administrator is represented by node 1 and the instructor is 
represented by node 33. 

Figure 6 The social interaction between the members of Zachary’s Karate Club 

 

Table 4 demonstrates the final four regular communities discovered from the Zachary 
club. In particular, regular communities 1

rι  and 4
rι  belong to the same super community 

1
sι  while regular communities 2

rι  and 3
rι  belong to the other super community 2 .sι  From 

Figure 6, super community 1
sι  corresponds to the cluster led by the administrator (node 1) 

while super community 2
sι  corresponds to the cluster led by the instructor (node 33). 

Note that there is only one node (node 10) that is misclassified by the TLC-HSN-PAM 
algorithm and node 9 is identified as a member for both super communities by the 
algorithm. 
Table 4 Four regular communities discovered in Zachary Club 

1
rι  1, 2, 3, 4, 5, 6, 10, 12 

2
rι  9, 15, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34 

3
rι  16, 19, 21, 23, 31 

4
rι  7, 8, 9, 11, 13, 14, 17, 20, 22 

Notes: The two super communities, 1
sι  is mainly composed of community 1

rι  and 4
sι  and 

2
sι  is mainly composed of community 2

rι  and 3 .rι  
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6.2.1 CiteSeer results 

Tables 5, 6 and 7 demonstrate some exemplary communities that are discovered by  
TLC-HSN-PAM algorithm for the CiteSeer dataset with SIPs being created using DNES 
encoding scheme. Each community is shown with the top five researchers that have the 
highest probability conditioned on the community. Note that CiteSeer dataset was 
crawled from web and some authors were not recovered correctly, we keep the results in 
an ‘as is’ fashion. In this dataset, the number of super communities is set as 50 while the 
number of regular communities is set as 200. 

These results illustrate that researchers from the regular communities that belong to 
the same super community are often interested in related subjects. For instance, the four 
top regular communities in 48 ,sι  as shown in Table 5, include researchers that are working 

on ‘signal processing’ 63( ),sι  ‘robot and learning’ 19( ),rι  ‘medical and image processing’ 

40( )rι  and ‘multimedia and learning’ 185( )rι  topics. Similarly, Table 6 lists four regular 

communities that belong to super community 36 ,sι  including four relevant areas such as 

‘gent and AI’ 179( ),rι  ‘algorithm theory’ 33( ),rι  ‘multi-agent and distributed systems’ 

165( )rι  and ‘multimedia and learning’ 185( ).rι  Table 7 demonstrates the four regular 

communities inside super community 46 ,sι  including four relevant areas such as ‘theory 

and distributed systems’ 71( ),rι  ‘distributed systems and cryptography theory’ 192( ),rι  

‘architecture and networks’ 149( )rι  and ‘spatial databases’ 136( ).rι  Note that a regular 
community can belong to many related super communities. For instance, regular 
community 185

rι  belongs to both super communities 48
sι  and 36.sι  

Table 5 An illustration of four regular communities that belong to the 48th super community  

48( )sι  for the CiteSeer dataset after 1,000 iterations 

Community 63  Community 19 
Signal processing  Learning, robot 
Marc Moonen  Manuela Veloso 
Robert W. Dutton  Peter Stone 
Brian L. Evans  Anthony Skjellum 
Thomas H. Lee  Boi Faltings 
Jung suk Goo  Edmund Burke 
Community 140  Community 185 
Medical, image  Multimedia, learning 
Ron Kikinis  Thomas S. Huang 
Ferenc A. Jolesz  Shih fu Chang 
Simon K. Warfield  Anoop Gupta 
Mark A. Musen  Gonzalo Navarro 
Martha Shenton  Kathleen R. Mckeown 

Notes: Each community is shown with the five researchers. The regular communities in 

48
sι  are largely on learning and signal processing. 
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Table 6 An illustration of four regular communities that belong to the 36th super community 
for the CiteSeer dataset after 1,000 iterations 

Community 179  Community 33 

Agent AI  Algorithm theory 

Nicholas R. Jennings  Micha Sharir 

Simon Parsons  Pankaj K. Agarwal 

Michael Wooldridge  John H. Reif 

Peter Mcburney  Boris Aronov 

Timothy J. Norman  Leonidas J. Guibas 

   

Community 165  Community 185 

Multi-agent, distributed  Multimedia, learning 

Victor Lesser  Thomas S. Huang 

Thomas Wagner  Shih fu Chang 

David Kotz  Anoop Gupta 

Michael Gerndt  Gonzalo Navarro 

Heinz Stockinger  Kathleen R. Mckeown 

Notes: Each community is shown with the five researchers. 

Table 7 An illustration of 4 regular communities that belong to the 46th super community for 
the CiteSeer dataset after 1000 iterations 

Community 71  Community 192 

Theory distributed  Distributed cryptography 

Nancy Lynch  Oded Goldreich 

Danny Dolev  Moti Yung 

John W. Lockwood  Manuel Hermenegildo 

Jason Cong  Mihir Bellare 

Riccardo Poli  Ran Canetti 

   

Community 149  Community 136 

Architecture network  Spatial database 

William J. Dally  Michael H. Bhlen 

Bernhard Steffen  Kristian Torp 

Tiziana Margaria  Christian S. Jensen 

Alon Y. Halevy  Heidi Gregersen 

Daniel S. Weld  Daniel Thalmann 

Notes: Each community is shown with the five researchers. 
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6.3 Likelihood analysis 

In addition to empirical analysis on discovered communities, we also provide quantitative 
measurements to compare HSN-PAM with SSN-LDA approach. In this experiment, we 
use the same CiteSeer dataset and split it into two subsets with 90% and 10% of the data 
respectively. Then we learn the models from the larger data set and calculate likelihood 
for the smaller set. This is a common criterion for measuring the performance of 
statistical models in information theory. It indicates the uncertainty in predicting the 
occurrence of a particular social interaction given the parameter settings, and hence it 
reflects the ability of a model to generalise unseen data. In Figure 7, SSN-LDA,  
S-4-HSNPAM and S-10-HSNPAM illustrate the likelihood for SSN-LDA and HSN-PAM 
models when the number of super communities is set as four and ten, respectively. The  
x-axis represents the number of regular communities. This figure demonstrates that in 
general HSN-PAM is able to produce higher likelihood value. These curves can be used 
to detect the approximate optimal regular communities given the number of super 
communities. 

Figure 7 Likelihood versus the number of communities (see online version for colours) 

 

7 Discussions and future work 

This paper focuses on two-level HSM-PAM model which indeed could be extended to 
arbitrary-level community scenario. Figure 8 demonstrates the DAG structure of an 
arbitrary level HSN-PAM model where each non-leaf interior node represents a 
community and a leaf node represents a social actor in social networks. The HSN-PAM 
model consists of two types of communities: regular communities and super 
communities. An interior node whose children are all leaves corresponds to a regular 
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community as in the SSN-LDA model. In addition to regular communities, the HSN-PAM 
model also includes super communities whose children contain interior nodes, or 
communities, thus representing a mixture over communities. With introduction of ‘super 
communities’, the HSN-PAM model is able to capture the correlation among social actors 
as well as correlations among communities. Community path is defined as a sequence of 
community ιs of length H from the root to any regular community following the tree 
structure specified in Figure 8, 

1 2
: , , , .

L
L

ωω ω ω ωι ι ι…  
1ωι  is always the root and 

2ωι  

through 
Lωωι  are community nodes. 

iωι  is a child of 
( 1)

.
iωι −

 

Figure 8 Tree structure of arbitrary DAG-based HSN-PAM model, including arbitrary levels of 
super communities, one level of regular communities, and M social actors (see online 
version for colours) 

 

To generate a SIP using DCM model, a sample is first drawn from the Dirichlet to get a 
multinomial distribution, then social actors in the SIPs are iteratively drawn based on the 
multinomial distribution. Each Dirichlet prior distribution Dir

ιι�  in the DCM hierarchy is 

parameterised with a vector ,p
ιι

α
�

 which has the same dimension as the number of 

children in ιi. Based on the graphical model in Figure 8, the generative process for a 
social actor’s SIP js

JJG
 is a two-step process. The first step of the process is to sample the 

multinomial distribution for js
JJG

 based on the community variables’ Dirichlet prior 

distributions. Subsequently, for each social interaction variable sjk in ,js
JJG

 sample a 

potential community path leading from root node to the leaf node and then sample the 
social actor from the leaf node. Specifically, the process is described as follows: 

1 Sampling multinomial distribution: Sample 1 2, , , Nι ι ιθ θ θ
JJG JJG JJJG

…  from Dir1(α1), 

Dir2(α2),..., DirN(αN), where ιιθ
JJG

 is a multinomial distribution of community ιi over its 
children. 
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2 For each social actor sk in the community: 

1 Sample a community path ιω of length 
1 2

: , , , .
L

L
ωω ω ω ωι ι ι…  

1ωι  is always the 

root and 
2ωι  through 

Lωωι  are community nodes. 
iωι  is a child of 

( 1)iωι −
 and it is 

sampled according to the multinomial distribution 
( 1)

( ) .
i

j
ωι

θ
−

 

2 Sample social actor sk from ( ) .
sLs

j
ιθ  

Following this generative process, the joint probability of generating a SIP ,js
JJG

 the 

community assignments ιj and the multinomial distributions θ(j) is 

1 2 ( 1)( , , , ) ( ) ( ( ) ( ( ))
i s Hj j

K H
j j j i i i si i jks k sP s P P P S

ωι ι ιι θ α θ α ι θ θ= = −∈= Π ×Π ΠJJG
JJG JG JJG JJJJGG G

 

Integrating out θ(j) and summing over ιj, we calculate the marginal probability of a SIP 

js
JJG

 as: 

1 ( 1)2( ) ( ) ( ( ) ( ( ))
i

LK
Lj i i s i iiP s P P P dω
ωω ωι ι ω ια θ α ι θ ω θ θ= −== Π ×Π Σ Π∫

JJG JG G GG G
 (5) 

Finally, the likelihood of generating the complete network 1{ }M
m mS ω −=

JG JJJG
 is determined by 

the product of the likelihoods of the independent nodes: 

( ) ( )
j

j
s

P S sα α=∏JJG
JJG JGG

 

8 Conclusions 

Real-world social networks, while disparate in nature, often comprise of a set of loose 
clusters (a.k.a. communities), in which members are better connected to each other than 
to the rest of the network. In addition, such community structures are often hierarchical, 
reflecting the fact that some communities are composed of a few smaller  
sub-communities. Discovering the complicated hierarchical community structure can 
gain us deeper understanding about the networks and the pertaining community 
structures. This paper describes a hierarchical Bayesian model based scheme, namely 
HSN-PAM, for discovering probabilistic, hierarchical communities in social networks. 
This scheme is powered by a previously developed hierarchical Bayesian model. In this 
scheme, communities are classified into two categories: super communities and regular 
communities. Two different network encoding approaches are explored to evaluate this 
scheme on research collaborative networks, including CiteSeer. The experimental results 
demonstrate that HSN-PAM is effective for discovering hierarchical community 
structures in large-scale social networks. 



   

 

   

   
 

   

   

 

   

    Graphical models based hierarchical probabilistic community discovery 115    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

References 
Andrieu, C., Freitas, N., de Doucet, A. and Jordan, M.I. (2003) ‘An introduction to MCMC for 

machine learning’, Machine Learning, Vol. 50, Nos. 1–2, pp.5–43. 
Bar-Yossef, Z., Guy, I., Lempel, R., Maarek, Y.S. and Soroka, V. (2006) ‘Cluster ranking with an 

application to mining mailbox networks’, in ICDM ’06: Proceedings of the Sixth International 
Conference on Data Mining, pp.63–74. 

Blei, D.M., Ng, A.Y. and Jordan. M.I. (2003) ‘Latent dirichlet allocation’, Journal of Machine 
Learning Research, Vol. 3, pp.993–1022. 

Börner, K., Maru, J.T. and Goldstone, R.L. (2004) The Simultaneous Evolution of Author and 
Paper Networks. 

Clauset, A., Newman, M.E.J. and Moore, C. (2004) ‘Finding community structure in very large 
networks’, Physical Review E, Vol. 70, p.066111. 

Flake, G.W., Lawrence, S. and Giles, C.L. (2000) ‘Efficient identification of web communities’, in 
KDD’00: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, pp.150–160. 

Flake, G.W., Tarjan, R.E. and Tsioutsiouliklis, K. (2004) ‘Graph clustering and minimum cut 
trees’, Internet Mathematics, Vol. 1, No. 4, pp.385–408. 

Freeman, L. (1977) ‘A set of measures of centrality based upon betweenness’, Sociometry,  
pp.35–41. 

Garey, M.R. and Johnson, D.S. (1979) Computers and Intractability: A Guide to the Theory of  
NP-Completeness, W.H. Freeman & Co., New York, NY, USA. 

Girvan, M. and Newman, M.E. (2002) ‘Community structure in social and biological networks’, 
Proc Natl Acad Sci USA, Vol. 99, No. 12, pp.7821–7826. 

Griffiths, T. and Steyvers, M. (2004) ‘Finding scientific topics’, Proceedings of the National 
Academy of Sciences. 

Heinrich, G. (2004) ‘Parameter estimation for text analysis’, Technical report. 
Hopcroft, J., Khan, O., Kulis, B. and Selman, B. (2004) ‘Tracking evolving communities in large 

linked networks’, Proc Natl Acad Sci USA, Vol. 101, No. 1, pp.5249–5253. 
Jing, L., Li, J., Ng, M.K., Cheung, Y.M. and Huang, J. (2009) ‘Smart: a subspace clustering 

algorithm that automatically identifies the appropriate number of clusters’, International 
Journal of Data Mining, Modelling and Management, Vol. 1, pp.149–177. 

Krichel, T. and Bakkalbasi, N. (2006) ‘A social network analysis of research collaboration in the 
economics community’, in the International Workshop on Webometrics, Informetrics and 
Scientometrics & Seventh COLLNET Meeting, 10–12 May 2006, Nancy, France. 

Li, W. and McCallum, A. (2006) ‘Pachinko allocation: DAG-structured mixture models of topic 
correlations’, in ICML, pp.577–584. 

MacKay, D.J.C. (2002) Information Theory, Inference & Learning Algorithms, Cambridge 
University Press, New York, NY, USA. 

Minka, T. and Lafferty, J. (2002) ‘Expectation-propagation for the generative aspect model’. 
Newman, M.E. (2004a) ‘Coauthorship networks and patterns of scientific collaboration’, Proc Natl 

Acad Sci USA, Vol. 101, No. 1, pp.5200–5205. 
Newman, M.E. (2004b) ‘Fast algorithm for detecting community structure in networks’, Physical 

Review E, Vol. 69, p.066133. 
Palla, G., Derenyi, I., Farkas, I. and Vicsek, T. (2005) ‘Uncovering the overlapping community 

structure of complex networks in nature and society’, Nature, pp.435–814. 
Rosen-Zvi, M., Griffiths, T., Steyvers, M. and Smyth, P. (2004) ‘The author-topic model for 

authors and documents’, in AUAI’04: Proceedings of the 20th Conference on Uncertainty in 
Artificial Intelligence, pp.487–494, Arlington, Virginia, United States. 

 



   

 

   

   
 

   

   

 

   

   116 H. Zhang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Scott, J.P. (2000) Social Network Analysis: A Handbook, SAGE Publications. 
Si, L. and Jin, R. (2005) ‘Adjusting mixture weights of Gaussian mixture model via regularized 

probabilistic latent semantic analysis’, in PAKDD, pp.622–631. 
Wang, X. and McCallum, A. (2006) ‘Topics over time: a non-Markov continuous-time model of 

topical trends’, in KDD, pp.424–433. 
Wilkinson, D.M. and Huberman, B.A. (2004) ‘A method for finding communities of related genes’, 

Proc Natl Acad Sci USA, Vol. 101, No. 1, pp.5241–5248. 
Zachary, W. (1977) ‘An information flow model for conflict and fission in small groups’, Journal 

of Anthropological Research, pp.452–473. 
Zhang, H., Giles, C.L., Foley, H.C. and Yen, J. (2007a) ‘Probabilistic community discovery using 

hierarchical latent Gaussian mixture model’, in AAAI, pp.663–668. 
Zhang, H., Qiu, B., Giles, C.L., Foley, H.C. and Yen, J. (2007b) ‘An LDA-based community 

structure discovery approach for large-scale social networks’, in IEEE International 
Conference on Intelligence and Security Informatics, pp.200–207. 

Zhang, J., Ackerman, M.S. and Adamic, L. (2007c) ‘Expertise networks in online communities: 
structure and algorithms’, in WWW’07: Proceedings of the 16th International Conference on 
World Wide Web, pp.221–230, New York, NY, USA. 


