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Abstract

Real-world social networks are often hierarchical, re-
flecting the fact that some communities are composed of
a few smaller, sub-communities. This paper describes a
hierarchical Bayesian model based scheme, namely HSN-
PAM (Hierarchical Social Network-Pachinko Allocation
Model), for discovering probabilistic, hierarchical com-
munities in social networks. This scheme is powered by
a previously developed hierarchical Bayesian model. In
this scheme, communities are classified into two categories:
super-communities and regular-communities. Two differ-
ent network encoding approaches are explored to evaluate
this scheme on research collaborative networks, including
CiteSeer and NanoSCI. The experimental results demon-
strate that HSN-PAM is effective for discovering hierarchi-
cal community structures in large-scale social networks.

1 Introduction

Social networks have been studied for decades. In recent
years, this line of research has gained even more momen-
tum with the prevalence of online social networking sys-
tems, such as MySpace, LiveJournal, Friendster and instant
messaging systems. Despite the vast number of nodes, the
heterogeneity of the user bases, and the variety of interac-
tions among the members, most of these networks exhibit
some common properties, such as the small-world property,
power-law degree distribution, and community structures.
An important task in these emerging networks is commu-
nity discovery, which is to identify subsets of networks such
that connections within each subset are dense and connec-

tions among different subsets are relatively sparse. Since
large-scale complex networks based applications exist in
many disciplines, community discovery is appealing to re-
searchers from a variety of areas such as computer science,
biology, social science and so on.

Although a wide array of approaches have been devel-
oped over years for finding communities, the current dom-
inant community discovery algorithms tend to define vari-
ous distance-based measures and cluster networks accord-
ingly. However, such strategies fail to capture the overlap
among communities, identify the multiple membership phe-
nomenon, and discover inherent hierarchical communities.
In order to address the aforementioned problems, we de-
velop an HSN-PAM(Hierarchical Social Network-Pachinko
Allocation Model) scheme by applying the Pachinko Allo-
cation Model(PAM) [3], a DAG-structured mixture models,
to identify and discover probabilistic hierarchical communi-
ties in complex, large-scale social networks. This technique
is aligned with two previously developed graphical model
approaches, namely SSN-LDA (Simple Social Network-
Latent Dirichlet Allocation) [9] and GWN-LDA(Generic
Weighted Network-Latent Dirichlet Allocation) [8], which
discover hidden correlations among social actors using hi-
erarchical Bayesian network models. However, the HSN-
PAM model is able to discover not only correlations among
social actors in networks but also correlations among hid-
den groups, thus making it possible to uncover complicated,
hierarchical community structures.

In the rest of this paper, Section 2 introduces related stud-
ies; Section 3 introduces related terminology and notations
for the HSN-PAM model and its corresponding learning pro-
cedures; Section 4 describes experimental results; Section 5
concludes the paper.
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2 Related Work

Probabilistic graphical models such as Bayesian net-
works have been widely used as an important machine
learning technique to represent dependency relations be-
tween visible and hidden random variables. As a well-
received probabilistic graphical model, LDA(Latent Dirich-
let Allocation) model was first introduced by Blei for mod-
eling the generative process of a document corpus [1]. Its
ability of modeling topics using latent variables has at-
tracted significant interests and it has been applied to many
domains such as document modeling [1], text classification
[1], collaborative filtering [1], topic models detection [7, 6],
and community discovery [9, 8]. The two topological com-
munity discovery approaches, SSN-LDA [9] and GWN-LDA
[8], attempt to discover flat communities from social net-
works by utilizing only topological information in social
networks. These two models encode the structural infor-
mation of networks into profiles and discover community
structures purely from these social connections among the
nodes. With the only input information being the topologi-
cal structure of a social network, these models can be easily
extended to complex networks where no semantic informa-
tion is available. PAM is DAG-structured mixture model
that was proposed to capture the correlations among topics
by introducing a DAG-structured mixture models [3]. This
paper describes a community discovery approach, HSN-
PAM, based on this hierarchical graphical model.

3 HSN-PAM model

In the hierarchical community structure that will be de-
scribed in this section, namely HSN-PAM, the concept of
communities is extended to include two different types of
communities, namely regular communities and super com-
munities. The two types of communities are denoted as ιs

(super communities), and ιr (regular communities). A reg-
ular community is defined as a distribution on the social ac-
tor space while a super community is considered as a dis-
tribution on the regular communities or super communities.
There can be arbitrary number of super community levels in
HSN-PAM. In this section, we introduce related terminology
and network encoding schemes for social networks in Sec-
tions 3.1 and 3.2 respectively and then describe a simplified
HSN-PAM model, namely TLC-HSN-PAM, with a two-level
community structure. Finally, the Gibbs sampler for solving
TLC-HSN-PAM model is presented in Section 3.4.

3.1 Terminology and definitions

A typical social network G, as shown in Figure 1,
is composed of a pair of sets, including the social ac-
tor set V = {v1, v2, ..., vM} and social interaction
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Figure 1. A typical social network

set E(e1, e2, ..., eN ), together with a Social Interaction
Weight function: SIW : (V × V ) → I, where I repre-
sents the integer set. The elements of social actor set V are
the vertices of G and the elements of social interaction set
E are the edges of G, representing the occurrence of social
interactions between the corresponding social actors. The
number of the social actors in the network is denoted as M .
Each social interaction ei in set E is considered as a bi-
nary relation between two social actors, i.e. ei(vi1 , vi2 ) and
SIW function describes the strength of such interaction.
Note that social interaction weight is specified as integer in
order to be processed by the HSN-PAM model. Through-
out this paper, terms node, vertex, and social actor are used
interchangeably, and so are ; edge and social interaction.

A node vi’s neighboring agents are encoded by vector
~ωi and each element ωij ∈ V in the vector represents
node vi’s jth neighbor. The connectivity of vi in the net-
work is characterized by its social interaction profile (SIP),
which is defined as a sequence of all vi’s neighbors(ωij).
In this sequence, the frequency of a neighbor ωij is set
as the corresponding social interaction weight information
(SIW (vi, ωij)). Formally, vi’s social interaction profile is:

~si = (ωi1, · · · , ωi1, ωi2, · · · , ωi2, · · · , ωiNi
, · · · , ωiNi

)

where Ni is the number of vi’s neighboring nodes and
the count of a particular neighboring node ωij in ~si is
SIW (vi, ωij). Throughout this paper, the variables in se-
quence ~si is specified as sij , where sij ∈ ~ωi ⊆ V . Note
that we assume the social interaction elements in this profile
are exchangeable and therefore their order will not be con-
cerned. This exchangeability allows these graphical models
be used in this application domain [1].

3.2 Network encoding scheme

The set of social interaction profiles collectively deter-
mines the topological structure of a social network. The
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Table 1. Notation for quantities in HSN-PAM
ι hidden community variable
ιs super community variable
ιr regular community variable
γ the root node
ιi,j community for the jth social interaction in ~si

~θ p(ι|~sj)community mixture proportion for ~sj

~φk p(ski|ιk) the mixture component of community k

HSN-PAM model depends on the profile information to
learn the graphical model and identify hidden communities
in the pertaining social networks. In this paper we explore
a straightforward encoding scheme, namely DNES , to gen-
erate social interaction profiles. In the DNES scheme, a so-
cial actor vi’s social interaction profile contains all directly
connected neighbors and the count of each neighbor in the
profile is 1. Hence, the social interaction profiles of all the
social actors constitute the adjacent matrix of the social net-
work. More formally, the SIW function is defined as:

SIWD(vi1 , vi2) =

{

1 if e(vi1 , vi2) ∈ E;
0 otherwise. (1)

No

β

ω

M

φ

K2

K1

θc

θsc

ιc

ι

super communities

regular communities

αsc ιsc

αc

Figure 2. Graphical Model for TLC-HSN-PAM

3.3 TLC-HSN-PAM Model

This paper focuses on a simplified, two-level commu-
nity structure, i.e TLC-HSN-PAM model, which is shown
in Figure 3. The two level community structure con-
sists of two types of communities: super communities
~ιs = {ιs1, ι

s
2, ..., ι

s
k1
} and regular communities ~ιr =

{ιr1, ι
r
2, ..., ι

r
k2
}. Figure 3 demonstrates that the root com-

munity γ is connected to all super communities and all su-
per communities are fully connected to regular communi-
ties. Finally, regular communities are fully connected to
all the social actors in the social network. associated with
communities are Dirichlet component multinomials(DCM),

Dirιi
[5]. A DCM distribution is defined as a distribu-

tion hierarchy, including a multinomial distribution and a
Dirichlet prior. Dirichlet is often used as the prior distri-
butions for multinomial distributions in Bayesian statistics
in order to obtain close-form solutions. In the context of
HSN-PAM, This means that the social interaction profile is
generated by a multinomial distribution whose parameters
are generated by its Dirichlet prior distribution.

Two different types of distributions are used in this two-
level community structure. We specify that the distribu-
tions of root and super communities are Dirichlet compo-
nent multinomial (DCM) distributions while the distribu-
tions of regular communities are modeled with fixed multi-
nomial distributions φιr

i
, sampled once for the whole so-

cial network from a single Dirichlet distribution Dir(β). A
DCM distribution is defined as a distribution hierarchy, in-
cluding a multinomial distribution and a Dirichlet prior [5].
Dirichlet is often used as the prior distributions for multi-
nomial distributions in Bayesian statistics in order to obtain
close-form solutions. The corresponding graphical model
is shown in Figure 2; The multinomials for the root and su-
per communities are sampled individually for each social
interaction profile. Each community ιi is associated with a
Dirichlet distribution.

Based on the graphical model in Figure 2, the generative
process for a social actor’s social interaction profile ~sj is a
two-step process:

1. Sample ~
θ

j
r from the root Dirt(αt), where ~θ

j
t is a multi-

nomial distribution over super-communities.

2. For each super-community ιsi , sample ~θιs
i

from
Diri(αi), where ~θιs

i
is a multinomial distribution over

regular communities.

3. For each social actor in the social interaction profile,

(a) Sample a super-community ιω from ~θr;
(b) Sample a regular community ιrj from ~θιω

;

(c) Sample word ω from ~φιr
j
.

The model structure and the generative process for this
special setting are similar to SSN-LDA approach. The ma-
jor difference is that it has one additional layer of super-
topics modeled with Dirichlet multinomials, which is the
key component capturing correlations among communities
here. Another way to interpret this is that given the regular
communities, each super-community is essentially an indi-
vidual SSN-LDA structure. Therefore, this can be viewed
as a mixture over a set of SSN-LDA models. Following this
process, the joint probability of generating a social interac-
tion profile, the community assignment ~ι, and the multino-
mial distribution ~θ is:
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P (~si,~ι, ~θ|α, φ) = P (~θt|αt)

s
∏

i=1

P (~θιi
|αi) ×

∏

ω

(P (ιω |~θr)P (ιrj |
~θιω

)P (ω|φιr
j
)) (2)

Integrating out ~θ and summing over ~ι, we calculate the
marginal probability of a social interaction profile as:

P (~si|α, Φ) =

∫

P (~θt|αt)

s
∏

i=1

P ( ~θιi
|αi)

×
∏

ω

∑

ιω

(P (ιω |~θt)P (ιrj |
~θιs

ω
)P (ω|Φιr

j
)d~θ (3)

The probability of generating the entire social network ~S

is the product of the probability for every social interaction
profile ~si, integrating out the multinomial distributions for
regular communities Φ:

P (~S|α, β) =

∫

∏

j

P (φιr
j
|β)

∏

~si

P (~si|α, Φ)dφ
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Figure 3. Tree structure of a two-level com-
munity structure TLC-HSN-PAM model, includ-
ing K2 super communities, K1 regular com-
munities, and M social actors.

3.4 Gibbs Samplers for HSN-PAM

Exact inference is generally intractable for even the two-
level community HSN-PAM model. We employ Gibbs sam-
pling to learn HSN-PAM models because it often yields rela-
tively simple algorithms for approximate inference in high-
dimensional models. Gibbs sampling is a special case of
Markov-chain Monte Carlo (MCMC) simulation [4] where
the dimension K of the distribution are sampled alternately
one at a time, conditioned on the values of all other dimen-
sions [2].

For an arbitrary DAG, we need to sample a community
path for each social actor given other variable assignments
enumerating all possible paths and calculating their con-
ditional probabilities. In the two-level community struc-
ture HSN-PAM model, each path contains the root, a super-
community, and a regular community. Since the root is
fixed, we only need to jointly sample the super-community
and regular community assignments for each social actor,
based on their conditional probability given observations
and other assignments, integrating out the multinomial dis-
tributions. Θ; (thus the time for each sample is in the num-
ber of possible paths). The following equation shows the
conditional probability given the assignment of other reg-
ular and super communities. For social actor ωj in social
interaction profile ~si, we have:

p(ιw2 = k2, ιw3 = k3|D, ι
−w, α, β) ∝

n
(d)
1k + αak

n
(d)
1 + Σk

′ α1k
′

∗
n(d) + αkp

n
(d)
k + Σp

′ αkp
′

∗
npw + βw

np + Σmβm

.

Here we assume that the root community is k1, ιw2 and
ιw3 correspond to super community and regular commu-
nity assignments respectively. ι

−w is the community as-
signments for all other social actors. Excluding the current
social actor, n

(d)
x is the number of occurrences of commu-

nity kx in social interaction profile sip; n
(d)
xy is the number

of times community ky is sampled from its parent kx in
social interaction profile; nx is the number of occurrences
of regular-community kx in the whole network and nxw

is the number of occurrences of social actor ω in regular-
community kx. Furthermore, αxy is the yth component in
αx and βw is the component for social actor ω in β.

Note that in the Gibbs sampling equation, we assume
that the Dirichlet parameters are given. While SSN-LDA
can produce reasonable results with a simple uniform
Dirichlet, we have to learn these parameters for the super-
communities in TLD-HSN-PAM since they capture different
correlations among regular-communities. As for the root,
we assume a fixed Dirichlet parameter. To learn α, we could
use maximum likelihood or maximum a posterior estima-
tion. However, since there are no closed-form solutions for
these methods and we wish to avoid iterative methods for
the sake of simplicity and speed, we approximate it by mo-
ment matching. In each iteration of Gibbs sampling, we
update

µxy =
1

N
∗ Σd

n
(d)
xy

n
(d)
x

;

σxy =
1

N
∗ Σd(

nd
xy

n
(d)
x

− µxy)2;
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mxy =
µxy ∗ (1 − µxy)

σxy

− 1;

αxy ∝ µxy;

Σy(αxy) =
1

5
∗ exp(

Σylog(mxy)

s2 − 1
).

For each super-community kx and regular-community
ky, we first calculate the sample mean µxy and sample vari-
ance σxy. n

(d)
xy and n

(d)
x are the same as defined above. Then

we estimate αxy, the yth component in αx from sample
mean and variance. N is the number of social actors and
s2 is the number of regular communities.

Smoothing is important when we estimate the Dirich-
let parameters with moment matching. From the equations
above, we can see that when one regular-community y does
not get sampled from super-community x in one iteration,
αxy will become 0. Furthermore, from the Gibbs sam-
pling equation, we know that this regular-community will
never have the chance to be sampled again by this super-
community. We introduce a prior in the calculation of sam-
ple means so that µxy will not be 0 even if n

(d)
xy is 0 for every

social interaction profile sip.

4 Experiments and Evaluation

We evaluate two-level community structure HSN-PAM
on CiteSeer. CiteSeer is a free public resource created by
Kurt Bollacker, Lee Giles, and Steve Lawrence in 1997-
98 at NEC Research Institute (now NEC Labs), Prince-
ton, NJ. It contains rich information on the citation, co-
authorship, semantic information for computer science lit-
erature. In this paper we only consider the co-authorship
information which constitutes a large-scale social network
regarding academic collaboration with diversities spanning
in time, research fields, and countries. CiteSeer contain
unconnected subnetworks and the size of the largest con-
nected subnetwork of CiteSeer is 249866. In this paper, we
are only interested in discovering communities in the two
largest subnetworks. Therefore, unless specially specify, we
always mean the two subnetworks when referring CiteSeer.

Throughout the experiments, we assume a fixed Dirich-
let distribution with parameter 0.01 for the root node. We
can change this parameter to adjust the variance in the sam-
pled multinomial distributions. We choose a small value so
that the variance is high and each document contains only
a small number of super communities, which tends to make
the super communities more interpretable. We treat the reg-
ular communities in the same way as SSN-LDA and assume
that they are sampled once for the whole corpus from a
given Dirichlet with parameter 0.01. So the only parame-
ters we need to learn are the Dirichlet parameters fro the
super communities and multinomial parameters for the reg-
ular communities. For cross-validation purposes, 10% of

Table 2. An illustration of 4 regular communi-
ties that belong to the 48th super community
(ιs48)

.

Community 63 Community 19
Signal Processing Learning,Robot

Marc Moonen Manuela Veloso
Robert W Dutton Peter Stone

Brian L Evans Anthony Skjellum
Thomas H Lee Boi Faltings
Jung suk Goo Edmund Burke

Community 140 Community 185
Medical,Image Multimedia, learning

Ron Kikinis Thomas S Huang
Ferenc A. Jolesz Shih fu Chang

Simon K. Warfield, Anoop Gupta
Mark A. Musen Gonzalo Navarro
Martha Shenton Kathleen R Mckeown

the original datasets is held out as test set and we run the
Gibbs sampling process on the training set for i iteration. In
particular, in generating the exemplary communities, we set
the number of the communities as 50, the iteration times i

as 1000. α is set as 1
K

and β is set as 0.01, where K is the
number of the communities.

Tables 2, 3 demonstrate some exemplary communities
that are discovered by TLC-HSN-PAM algorithm for the
CiteSeer dataset with social interaction profiles being cre-
ated using DNES enconding scheme. Each community is
shown with the top 5 researchers that have the highest prob-
ability conditioned on the community. Note that CiteSeer
dataset was crawled from Web and some authors were not
recovered correctly, we keep the results in an “as is” fash-
ion. In this dataset, the number of super communities is
set as 50 while the number of regular communities is set
as 200. These results illustrate that researchers from the
regular communities that belong to the same a super com-
munity are often interested in related subjects. For instance,
the four top regular communities in ιs48, as shown in Fig-
ure 2, include researchers that are working on “Signal pro-
cessing” (ιr63), “Robot and learning” (ιr19), “Medical and
image processing” (ιr140), and “Multimedia and learning”
(ιr185) topics. Similarly, Figure 3 lists four regular commu-
nities that belong to super community ιs36, including four
relevant areas such as “Agent and AI” (ιr179), “Algorithm
theory” (ιr33), “Multi-Agent and distributed systems” (ιr165),
and “Multimedia and learning” (ιr185). Note that a regular
community can belong to many related super communities.
For instance, regular community ιr185 belongs to both super
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Table 3. An illustration of 4 regular communi-
ties that belong to the 36th super community

Community 179 Community 33
Agent AI Algorithm Theory

Nicholas R Jennings Micha Sharir
Simon Parsons Pankaj K Agarwal

Michael Wooldridge John H Reif
Peter Mcburney Boris Aronov

Timothy J. Norman Leonidas J Guibas
Community 165 Community 185

Multi-Agent, distributed Multimedia, Learning
Victor Lesser Thomas S Huang

Thomas Wagner Shih fu Chang
David Kotz Anoop Gupta

Michael Gerndt Gonzalo Navarro
Heinz Stockinger Kathleen R Mckeown

community ιs48 and ι36.
In addition to empirical analysis on discovered commu-

nities, we also provide quantitative measurements to com-
pare HSN-PAM with SSN-LDA approach. In Figure 4,
SSNLDA, S-4-HSNPAM, and S-10-HSNPAM illustrate the
likelihood for SSN-LDA and HSN-PAM models when the
number of super communities is set as 4 and 10 respec-
tively. Likelihood values indicate the uncertainty in predict-
ing the occurrence of a particular social interaction given
the parameter settings, and hence they reflect the ability of
a model to generalize unseen data. The x axis represents the
number of regular communities. This figure demonstrates
that in general HSN-PAM is able to produce better higher
likelihood value. These curves can be used to detect the ap-
proximate optimal regular communities given the number
of super communities.
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-9000
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lih
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d
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Likelihood versus number of regular communities

SSNLDA
S-4-HSNPAM

S-10-HSNPAM

Figure 4. Likelihood versus the number of
communities.

5 Conclusions and Future Work

Real-world social networks are often hierarchical, re-
flecting the fact that some communities are composed of a
few smaller, sub-communities. This paper describes a hier-
archical Bayesian model based scheme, namely HSN-PAM
(Hierarchical Social Network-Pachinko Allocation Model),
for discovering probabilistic, hierarchical communities in
social networks. In this scheme, communities are classi-
fied into two categories: super-communities and regular-
communities. Two different network encoding approaches
are explored to evaluate this scheme on research collabo-
rative networks, including CiteSeer and NanoSCI. The ex-
perimental results demonstrate that HSN-PAM is effective
for discovering hierarchical community structures in large-
scale social networks.
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