Nevode's Theorem

A binary relation \(R \subseteq S \times S \) is an equivalence relation iff

1. \(\forall s \in S \ [s \mathrel{Rs}] \)
2. \(\forall s, t \in S \ [sRt \Rightarrow t \mathrel{Rs}] \)
3. \(\forall r, s, t \in S \ [(r \mathrel{Rs} \& s \mathrel{Rt}) \Rightarrow r \mathrel{RT}] \)

An equivalence relation \(R \subseteq S \times S \) partitions \(S \) into disjoint subsets called equivalence classes. Two elements elements \(a, b \in S \) are in the same equivalence class iff \(a \mathrel{R} b \). The equivalence class of \(a \) will be denoted by \([a] \), i.e. \([a] = \{ b \mid b \mathrel{Ra} \} \). For any \(a \) and \(b \) in \(S \), either

\([a] = [b] \) or \([a] \) and \([b] \) are disjoint. The index of an equivalence relation is the number of equivalence classes.
Example: \(R = \{(x, y) \in \mathbb{N}^2 \mid x \text{ and } y \text{ have the same remainder when divided by 3}\}. \) Is \(R \) an equivalence relation? What are the equivalence classes? What is the index of \(R \)?

Let \(E \) be an equivalence relation on \(\Sigma^* \), then \(E \) is right invariant iff \(\forall u, v, w [u E v \Rightarrow u w E v w] \).

Theorem The following statements are equivalent:

1. \(L \) is accepted by a DFA;
2. \(L \) is the union of some equivalence classes of a right invariant equivalence relation of finite index.
3. Let the equivalence relation \(R \) be defined by \(x R y \text{ iff for all } z \in \Sigma^* \)
$x \in L$ iff $y \in L$. Then R is of finite index.

Proof

$(1) \Rightarrow (2)$ Let $L = T(M)$ where $M = (S, \Sigma, \delta, s_0, F)$. Define an equivalence relation E on Σ^* by $u \ E v$ iff $\delta(s_0, u) = \delta(s_0, v)$.

Now show that E is right invariant.

\[\delta(s_0, v) = \delta(s_0, v) \Rightarrow \delta(s_0, uw) = \delta(s_0, vw). \]

Hence $u \ E v \Rightarrow uw \ E vw$.

What are the equivalence classes of E? Why does E have finite index?
Show that \(L = \bigcup_{t \in F} \{ w \mid \delta(s_0, w) = t \} \)

(2) \(\Rightarrow\) (3) Any \(E \) satisfying (2) must be a refinement of \(R \), i.e., each equivalence class of \(E \) is contained entirely within some equivalence class of \(R \). Consequently, if \(E \) has finite index over \(R \).

(3) \(\Rightarrow\) (1) Define a DFA \(M' \) as follows:
\[
M' = (\{ [w] \mid w \in \Sigma^* \}, \Sigma, \lambda, \delta, \{ [w] \mid w \in L3 \})
\]
Let \(\delta([w], x) = [wx] \). Show \(T(M') = L \).

Reduced Automata

Theorem: \(M' \) constructed in (3) \(\Rightarrow\) (1) above is the DFA with the minimum number of states such that \(T(M') = L \).
proof Given M such that \(T(M) = L \).
construct E as in the proof of
(1) \(\Rightarrow \) (2) above. From the proof of
(2) \(\Rightarrow \) (3) we know that E is a
refinement of R.

Theorem If M and M' are two
minimal finite automata accepting
the same language L, then \(|S| = |S'| \) and M' can be obtained
from M by simply relabelling the
states of M (M & M' are isomorphic).

Proof

How can d determine which state
of M' corresponds to a given
state of M?