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ABSTRACT
In this work we try to bridge the gap often encountered
by researchers who find themselves with few or no labeled
examples from their desired target domain, yet still have ac-
cess to large amounts of labeled data from other related, but
distinct source domains, and seemingly no way to transfer
knowledge from one to the other. Experimentally, we focus
on the problem of extracting protein mentions from aca-
demic publications in the field of biology, where the source
domain data are abstracts labeled with protein mentions,
and the target domain data are wholly unlabeled captions.
We mine the large number of such full text articles freely
available on the Internet in order to supplement the lim-
ited amount of annotated data available. By exploiting
the explicit and implicit common structure of the differ-
ent subsections of these documents, including the unlabeled
full text, we are able to generate robust features that are
insensitive to changes in marginal and conditional distri-
butions of classes and data across domains. We supple-
ment these domain-insensitive features with automatically
obtained high-confidence positive and negative predictions
on the target domain to learn extractors that generalize well
from one section of a document to another. Finally, lack-
ing labeled target testing data, we employ comparative user
preference studies to evaluate the relative performance of
the proposed methods with respect to existing baselines.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
J.3 [Computer Applications]: Life and Medical Sciences;
M.4 [Knowledge Management]: Knowledge modeling
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1. INTRODUCTION
The desire to exploit information attained from previous

effort, and not to start each new endeavor de novo is perhaps
part of human nature, and certainly a maxim of the scientific
method. Nevertheless, due to the difficulty of integrating
knowledge from distinct, but related, experimental domains,
it is common practice in most machine learning studies to
focus on training and tuning a model to a single, particular
domain, at the expense of all others. Often, once work has
completed on one domain, the researcher begins afresh on
the next, carrying over only the techniques and experience
learned, but often not the data itself.

In this work we try to address this issue by providing
methods to facilitate the adaptation of data from one do-
main (called the source) to problems defined on another
related domain (called the target). This type of problem
is generally referred to as domain adaptation [13] in the
literature and constitutes a subproblem in the broader field
of transfer learning, which has been studied as such for
at least the past ten years [26, 4].

For the rest of this paper we will focus on the specific
problem of learning to extract protein names from articles
published in biological journals. In the named entity res-
olution (NER) formalism, a document is segmented into a
sequence of tokens, with each of these tokens then being clas-
sified as belonging to one of a set of possible label classes –
in our case, the binary set {PROTEIN, NON PROTEIN}.
A standard technique for this kind of problem is to gather
a corpus of documents drawn from the domain on which
you will eventually be evaluated. These documents then
need to be painstakingly hand-labeled by a domain expert
in order to identify which tokens in the document represent
proteins, and which do not. The ‘expertise’ of this domain
specialist should not be underestimated, since such biologi-
cal distinctions are subtle and often elude all but the most
experienced annotators. The work is therefore slow, and the
resulting annotated datasets are often relatively small and
expensive.

We have access to such a corpus of protein-labeled ab-
stracts from biological articles. Several techniques have been
proposed for building protein-name extractors over these ab-
stracts and their performances have been evaluated with re-



spect to extracting new proteins from other, previously un-
seen abstracts drawn from a similar distribution of articles
[14]. In our work, however, we are interested in identify-
ing proteins, not in abstracts, but in the captions of papers
(we use this information to create a structured search en-
gine of images and captions from biological articles [19]).
To this end we have downloaded tens of thousands of open-
access, full text articles from the Internet. Unfortunately,
all of these documents are wholly unlabeled and we do not
have the resources to label them ourselves. Thus, our prob-
lem is: given labeled abstracts (source training domain) and
unlabeled captions and full text (source auxiliary training
data), how can we train a model that will extract proteins
well from unseen captions (target test domain). This is at
once a semi-supervised learning problem (due to the unla-
beled auxiliary training data) [28], and a domain adaptation
problem (due to the difference in domains from which the
source and target data are drawn).

In §1.1 we formally define the problem of domain adapta-
tion and provide some context from related work in trans-
fer and semi-supervised learning. Section 2.2 introduces a
key insight into the structure of documents that allows us
to link the source, target, and auxiliary domains. Given
this perspective, our problem, stated generally as domain
adaption from the abstract (source domain) to the captions
(target domain) of a paper, can be viewed more specifically
as learning to transfer information from one part of a struc-
tured document to another, allowing us to overcome the
‘domain-brittleness’ of the commonly used lexical features,
described in §2.1.

Sections 2.3 and 2.4 introduce three new techniques that
leverage this structure to produce models that are able to
exploit the unlabeled auxiliary data while at the same time
being robust to shifts between train and test domains. Sec-
tion 3 explains the particulars of the data and experiments
we used to validate these new techniques, while §4 offers a
summary of the paper with views towards future work.

1.1 Domain adaptation
The standard discriminative statistical machine learning

classification task is, given an example x and a class label
y, to assign a probability, p(y|x), to x of belonging to class
y. In the supervised setting, the data is usually segmented
into two disjoint subsets: the training set (Xtrain, Ytrain) =
{(x1, y1) · · · , (xN , yN )}, which can be used for training, and
the test set Xtest = (x1, · · · , xM ), for which labels are not
available at training time. In the semi-supervised setting
[28], the training data is supplemented with a set of auxil-
iary data, Xaux = (x1, · · · , xP ), for which no corresponding
labels are provided.

In the normal, non-transfer setting Xtest and Xtrain are
both assumed to have been drawn from the same distribu-
tion, D. In the semi-supervised domain adaptation setting,
however, we allow the distribution from which the test ex-
amples are drawn to differ from that of both the training
and auxiliary examples. More formally, we propose two
different, but related, distributions, Dsource and Dtarget,
and posit that the training examples (Xsource

train , Y source
train ) are

drawn from Dsource, while the test examples, Xtarget
test , will

be drawn from Dtarget. We do not specify from which dis-
tribution the auxiliary data is drawn.

Domain adaptation is distinct from other forms of transfer
learning (such as multitask learning [1, 9, 24, 27]) because

we are assuming that the set of possible labels, Y , remains
constant across the various domains, while allowing the dis-
tribution of X and, most importantly, Y |X to change. In
our setting, the labels, Y , are members of the binary set
{PROTEIN, NON PROTEIN}, while the instances, X, are
the tokens of the documents themselves.

In prior work, different researchers have made different
assumptions about the relationship between the source and
target domain, a defining characteristic of domain adapta-
tion. In the supervised setting, one can directly compare
both the marginal and conditional distributions of the data
in both domains, looking for patterns of generalizability
across domains [13, 17, 12], as well as examining the common
structure of related problems [5, 22, 3, 6]. There is likewise
work that tries to quantify these inter-domain relationships
in the unsupervised [2], semi-supervised [16, 7], and trans-
ductive learning settings [25]. Similarly, in the biological do-
main, there has been work on using semi-supervised machine
learning techniques to extract protein names by combining
dictionaries with large, full-text corpora [23], but without
the explicit modeling of differences between data domains
that we attempt in this paper. In our work, we take ad-
vantage of the fact that the source and target domains are
different sections of the same structured document and use
this fact to develop features that are robust across those
different domains.

2. METHODS

2.1 Lexical features
Most modern information extraction systems rely on some

kind of representation, usually a set of features, that dis-
tills the document into a form the algorithm can interpret
and manipulate. The exact form of these features is a vital
component of the overall system, balancing the complexity
of a rich representation with the parsimony of an insightful
view of the domain and problem being solved. For named
entity recognition, lexical features, which try to capture
patterns of words within the text of a document, are one of
the most common, and intuitive, types of these representa-
tions. Generally, a lexical feature is a function of a word
and its context. The specific definition of this function may
vary widely across domains and implementations. In our
setting, each lexical feature is a boolean function over a to-
ken in a document representing the value and morphology
of that token and its neighbors. For example, given the sen-
tence fragment from a caption of a biological paper: ‘Figure
4: Tyrosine phosphorylation...’, some lexical features for the
token ‘Tyrosine’ would look like:

CurrentToken.isWord.Tyrosine
CurrentToken.charPattern.Xx
CurrentToken.endsWith.ine
Right1Token.endsWith.ation
Left1Token.isWord.:
Left3Token.isWord.Figure

Table 1: Lexical features for token ‘Tyrosine’ in sam-
ple caption: ‘Figure 4: Tyrosine phosphorylation...’.

Notice that, although these features are defined with re-
spect to a certain current token, ‘Tyrosine’, they also take



into account the context of that word in the document.
In this example, if we knew that this occurrence of ‘Ty-
rosine’ was labeled as a protein, the fact that the token
immediately to the left of the current token was a semi-
colon (Left1Token.isWord.:) might be useful in predicting
whether other, heretofore unseen tokens besides ‘Tyrosine’,
that also happen to be preceded by a semi-colon, might also
be proteins.

Since each word in one’s vocabulary may constitute a fea-
ture (e.g., CurrentToken.isWord.A, CurrentToken.isWord.B,
...), it is not uncommon to have tens or even hundreds of
thousands of such binary lexical features defined in one’s
feature space. The benefit of this is that such a large fea-
ture space can richly represent most any training set. The
examples in Table 1 also include domain-specific features
such as ‘CurrentToken.endsWith.ine’ (a common suffix for
amino-acids). These custom features allow the researcher to
bias his feature space towards specific features that he feels
might be more informative with respect to his particular
problem domain. While this specificity may be advanta-
geous for an expert dealing with a limited domain, it can
become a liability when that domain is uncertain, or even
variable, as is the case in our transfer learning setting.

For instance, while the occurrence of a semi-colon or the
word ‘Figure’ may be very informative in terms of identifying
words as proteins in the captions of papers, if our extractor
is trained only on abstracts it may never see those types of
features. Indeed, since lexical features are merely functions
of the specific sections of text seen during training, they are
unable to capture information residing in other sections of
the document which may prove useful. Even in the semi-
supervised case where the learning algorithm has access to
unlabeled target domain data, lexical features are unable to
take advantage of this information since there is no way to
relate the unlabeled tokens to the labeled ones.

Lexical features thus provide a valuable, but brittle, rep-
resentation of the training data. Our work tries to augment
these rich, though domain-specific, lexical features with other
non-lexical features based on the internal structure of a doc-
ument, contributing another view of the data that is more
robust to changes in the domain. We hope to show that
combining these types of domain-specific and domain-robust
features produces a classifier that performs well across do-
mains.

2.2 Document structure
We begin by highlighting the common observation that

most documents are written with some kind of internal struc-
ture. For instance, the biological papers we studied in this
experiment (like most academic papers) can be divided into
roughly three sections:

• Abstract: summarizing, at a high level, the main
points of the paper such as the problem, contribution,
and results.

• Caption: summarizing the figure it is attached to.
These are especially important in biological papers where
most important results are represented graphically. Un-
like computer science papers, which usually have brief
captions, in our corpus the average caption was over
125 words long thus supporting our belief that they
might contain useful information for our NER task.

• Full text: the main text of a paper, that is, everything
else besides the abstract and captions.

An example of such a structured document is provided in
Figure 1. In this figure we see the various ways a protein
can be referred to throughout the sections of a document.
Notice how the distribution of these types of occurrences
varies across the structure of the document. For instance,
full name references (red) do not appear in the caption, while
non-protein parentheticals (brown) do not appear in the ab-
stract. Here we see the importance of explicitly modeling
the difference between the source and target domains: if one
were to näıvely train a purely lexical feature based extrac-
tor on the abstracts and try to apply it to the captions, the
extractor might be confused by the non-protein parentheti-
cals, having never seen them in its training data. Likewise,
it might waste significant probability mass on features rep-
resenting the unabbreviated form of protein names which
it might never see in its caption test data. It is important
to note that in order to support this interpretation of the
data we have to make the so-called one-sense-per-discourse
assumption [15], namely, that tokens in one section of a doc-
ument have the same meaning as identical tokens in other
sections of the same document. In this way we are able to
link references across the source and target domains.

Since we have no labeled target domain data, however,
it is not obvious how we might amend or supplement our
source domain training data so as to avoid these problems.
The key insight is the fact that these domains, while dis-
tinct, are nevertheless related by the overarching structure
of the documents in which they reside. For instance, while
unabbreviated protein names never appear in the caption,
and non-protein parentheticals never appear in the abstract,
both of these occur in the full text of the paper. Thus, our
goal is to find some class of features that can relate these
different types of occurrences together across the differing
subsections of a document’s structure. We will achieve this
by leveraging the one-sense-per-discourse assumption and
our knowledge about our documents’ structure to create two
new types of features:

• Structural frequency features: Informative with
respect to protein extraction, but make repeated oc-
currences of the same token in different sections look
similar.

• Snippets: Pseudo-examples that push a learned clas-
sifier towards being consistent with the one-sense-per-
discourse assumption.

2.3 Structural frequency features
Structural frequency features, like lexical features, are

simply functions of tokens in context. Unlike purely lexi-
cal features, however, structural frequency features are able
to leverage the occurrence of tokens across all sections of
a document, including the unlabeled captions and full text.
The idea is to leverage the fact that different types of tokens
(e.g., unabbreviated protein names, non-protein parenthet-
icals, etc.) occur with different frequencies in different sec-
tions of a document. In the example from Figure 1 in §2.2,
we noticed that non-protein parentheticals occurred quite
often in the caption, but not at all in the abstract. While
this seems informative, in our setting, unfortunately, we do
not have labels for the caption data. We are therefore un-
able to make a distinction between protein and non-protein



Figure 1: Sample biology paper. Each black box represents a different subsection of the document’s structure:
abstract, caption and full text. Each highlighted box represents a different type of information: full protein
name (red), abbreviated protein name (green), parenthetical abbreviated protein name (blue), non-protein
parentheticals (brown).

parentheticals in the caption section of the document. We
can, however, make such a distinction in the abstract section
of the same document, for which we do have labels. Thus, if
we see a parenthesized token in a caption, and see the same
token parenthesized in the abstract, we might be able to
transfer that abstract token’s label to the unlabeled caption
occurrence. In this respect, these structural frequency fea-
tures provide the links necessary to perform a kind of label
propagation across the subsections of a document [29].

Given our previously stated one-sense-per-discourse as-
sumption, we now have a means of transferring our labels
across the different unlabeled sections of a document and
may have a useful, non-transfer, semi-supervised learning
model. Our ultimate goal, however, is semi-supervised do-
main adaptation, and these structural features, as described
thus far, still lack a way of ensuring they will be robust across
shifts in domain. The key to addressing that issue is to con-
sider the occurrence of tokens not in isolation within each
subsection of a document, but rather jointly across sections.
For instance, in Figure 1 we see the token ‘(lane *)’ occurs
quite often in the caption, but never in the full text. In fact,
there are many such non-proteins that only ever appear in
the caption section of the document. In contrast, the token
’M-CSF’ occurs with high frequency across all three sections
of the document. Indeed, there are relatively few proteins
that do not occur in the abstract of a paper. It seems we can
use the relative distribution of tokens across the different sec-
tions of a document, in and of itself and without any lexical
information, as a signal of that token’s likelihood of being
a protein. This makes sense, since authors are conveying
different kinds of information, in different ways, across the
various sections of a document and so are not equally likely
to mention a protein, in the same particular way, across the
entire document.

Specifically, for each unique word-type in a document, we
counted the number of times it appeared in each of the differ-
ent sections of that document (for example, the word-type
‘M-CSF’ occurs three times in the abstract, four times in
the full text, and three times in the caption of the example
in Figure 1). We then normalized these counts by the total
number of tokens in a given section to come up with an em-
pirical probability of a word-type occurring in a particular
section. We also computed the conditional forms of these
features, that is, we counted the number of times a token
appeared in section x, given that it also appeared in section
y, again normalizing to form an empirical probability dis-
tribution. Continuing our example, the token ‘macrophage’
never occurs in the caption and thus, although the token
does occur in the abstract, p(word occurring in caption |
word occurs in abstract) is still zero (see Table 2 for more
examples). These conditional structural frequency features
allow us to characterize the particular distribution patterns
that different types of words have across the sections of a
document. In particular, we might be interested in model-
ing things like p(word is a protein | word appears in caption
but not in abstract). Figures 2 and 3 show the distribution
of two such features across our training data.

Figure 2 shows a histogram of the number of times words
labeled in the abstract as proteins (left) and non-proteins
(right) occurred with a given log normalized probability in
the document’s full text, given that it also appeared (at least
once) in the same document’s abstract section. Since these
probabilities are plotted on the log scale, any zero values
(i.e., words that appear in abstracts but never in the full
text), will be assigned to the bin at negative infinity. The
lack of instances at negative infinity in the left plot is evi-
dence that, if a protein is in an abstract, it is also always in
the full text at least once. But this is not so for non-proteins



Times in: Total tokens in : Log prob. of occurring in: Log conditional prob.:
Word A C F A C F C|A F|A A C F P(in C|in A) P(in F|in A)

‘M-CSF’ 3 3 4 206 121 4,971 47 53 -1.84 -1.61 -3.10 -1.20 -1.12
‘macrophage’ 2 0 1 206 121 4,971 47 53 -2.01 -Inf -3.70 -Inf -1.72

‘(M-CSF)’ 1 0 1 206 121 4,971 47 53 -2.30 -Inf -3.70 -Inf -1.72
‘PU.1’ 5 2 0 206 121 4,971 47 53 -1.61 -1.78 -Inf -1.37 -Inf
‘kDa’ 0 0 1 206 121 4,971 47 53 -Inf -Inf -3.70 Never in A Never in A

Table 2: Sample structural frequency features for tokens in example paper from Figure 1, as distributed
across the (A)bstract, (C)aptions and (F)ull text.

Figure 2: Histogram of the number of occurrences
of protein (left) and non-protein (right) words with
the given log normalized probability of appearing in
full text, given that they also appear in an article’s
abstract.

– the large spike on the left side of the right plot shows a large
number of non-proteins that appear in abstracts but never
in the full text. Also notice the general right-shift of the en-
tire distribution in the left plot, indicating an overall higher
proportion of proteins occurring in full-text, given that they
appear in an abstract, as compared to non-proteins.

Figure 3 shows a similar distribution, only this time the
conditional structural frequency feature is measuring the
likelihood of a word occurring in the captions of a paper,
given that it appeared in the abstract. Notice, again, the
left spike in the non-protein histogram on the right, indi-
cating that a large number of non-proteins never appear in
article’s captions, despite appearing in its abstract. In con-
trast, the higher peaks to the right of the protein plot on the
left show a much higher proportion of proteins appearing in
captions, given they also appear in the abstract.

These plots clearly demonstrate a significant difference in
the distribution of protein and non-protein tokens across
the various subsections (abstract, captions, and full text)
of a document’s structure and suggest these structural fre-
quency features may be informative with respect to iden-
tifying and extracting proteins. Thus, at training time, we
compute these structural frequency features for each token in
our labeled training abstracts. Since counting token occur-
rences across document sections, however, does not require
labels itself, we can freely use all the unlabeled text from
the papers we have to calculate the features. Likewise, by
leveraging the one-sense-per-discourse assumption, we can
attach the word-type’s label (found in the abstract) to each
of these features defined across the various sections of the

Figure 3: Histogram of the number of occurrences
of protein (left) and non-protein (right) words with
the given log normalized probability of appearing in
captions, given that they also appear in an article’s
abstract.

document. In the end, we are left with a semi-supervised
intra-document representation of the labeled abstract data
that is, due to its cross structural nature robust to shifts
across the various document section domains.

2.4 Snippets
Although structural frequency features provide domain-

robust signals to our extractor, they do not directly amelio-
rate the domain-brittleness of the lexical features discussed
in §2.1. To address this issue, we introduce a kind of pseudo-
data we call snippets. Snippets are tokens or short phrases
taken from one of the unlabeled sections of the document
and added to the training data, having been automatically
positively or negatively labeled by some high confidence
method.

2.4.1 Positive snippets
Positive snippets (i.e., snippets automatically labeled

as positive examples) are an attempt to leverage the overlap
between and across domains, by taking high confidence ex-
amples from one domain and transferring them to the other.
In this sense, it is related to co-training [8]. Specifically,
positive snippets leverage the one-meaning-per-discourse as-
sumption (which we again rely upon due to our lack of la-
beled target data). The unlabeled target sections of a doc-
ument are searched for tokens that match positively labeled
tokens from the labeled source sections. Any matching in-
stances are copied, along with a bit of neighboring context,
into the training data, with the matching tokens labeled
positive, and their context (where it does not match a pro-



tein name observed in the abstract) labeled negative, the
idea being that this surrounding context will help inform
the extractor of the differences in the distribution of lexical
features in the target domain. Since our goal is to train an
extractor that will be robust to shifts from source to target
domain, we would like to introduce some examples of the
target domain into the source domain training data to make
it look more like the target domain. Since we don’t have
labels for the target domain, however, we have to rely on
this high-confidence token matching heuristic.

2.4.2 Negative snippets
Similarly, negative snippets (i.e., snippets automati-

cally labeled as negative examples) provide examples of to-
kens which may appear to be proteins when viewed with
respect to the source domain, but are in fact not proteins in
the target domain. These must rely on some form of prior
knowledge about the target domain for their high-confidence
automatic labeling, perhaps some kind of extractor previ-
ously trained for the target domain. For example, a re-
searcher may have previously trained an extractor to iden-
tify tokens in captions that refer to specific panel locations
in the accompanying image (e.g., the token ‘(B)’ in Figure
1’s caption). We call these types of references image point-
ers [11]. Although this kind of token pattern may look like
a parenthetical protein mention if seen in an abstract, since
we have an existing extractor able to identify it as an im-
age pointer in captions (and thus, by mutual exclusion, not
a protein), we are able to add all occurrences in a paper’s
captions of similarly identified image pointers (labeled as
negative) to that paper’s labeled training data.

In this way, snippets allow us to use our unlabeled target
data not just to add new inter-domain information (as with
structural frequency features), but also, perhaps as impor-
tantly, to adjust and augment the distribution of existing
source domain derived lexical features to make them more
in accord with the target domain, ultimately producing ex-
tractors that are more robust to changes between training
and test domains.

2.5 Conditional random fields
When it comes to actually training a model, we need a

learning algorithm that can integrate and balance the vari-
ety of features and disparate sources of information we are
trying to exploit. We used conditional random fields
(CRF’s) [18], a generalization of the common maximum en-
tropy model from the i.i.d. case (where each token is classi-
fied in isolation), to the sequential case (where each token’s
classification influences the classification of its neighbors).
This attribute is especially useful in a setting such as domain
adaptation, where we would like to spread high-confidence
predictions made on examples resembling the source domain
to lower-confidence predictions of less familiar target domain
instances. Similarly, like maximum entropy models, CRF’s
allow great flexibility with respect to the definition of the
model’s features, freeing us from worrying about the rela-
tive independence of specific features.

3. INVESTIGATION

3.1 Data
Our training data was drawn from two sources:

• GENIA: a corpus of Medline abstracts with each token
annotated as to whether it is a protein names or not
[21]

• PubMed Central (PMC): a free, on-line archive of bi-
ological publications [20]

Since our methods rely on having access to a document’s
labeled abstract along with the unlabeled captions and full
text, and GENIA only provided labeled abstracts, we had to
search PMC for the corresponding full text, where available.
Of GENIA’s 1,999 labeled abstracts, we were able to find
the corresponding full article text (in PDF format) for 303
of them on PMC. These PDF’s were (noisily) converted to
text1 and segmented into abstract, captions, and full text
using automated tools. Figure 1 shows an example of one
such segmented PDF.

Of these 303 papers, consisting of abstracts labeled with
protein names along with corresponding unlabeled captions
and full text, 218 (consisting of over 1.5 million tokens) were
used for training, and 85 (almost 640,000 tokens) were used
for testing.

3.2 Experiment
Experimentally, we used ablation studies to assess the

amount of information our novel features:

• Structural frequency features (FREQ)

• Positive snippets (POS)

• Negative snippets (NEG)

each contribute to the task of protein name extraction, both
in the non-transfer (abstract to abstract) and domain adap-
tation (abstract to caption) setting. In each case, we trained
an extractor on a version of the training data constructed
with the appropriate set of features. In all experiments we
used the Minorthird toolkit to construct the lexical features
and perform the CRF training [10].

3.3 Results

3.3.1 Structural frequency features
Figure 4 compares the performance on held-out abstracts

(in terms of precision and recall) of extractors training only
on lexical features (LEX of §2.1), only on structural fre-
quency features (FREQ of §2.2), and on a combination of
both types of features (LEX+FREQ).

We can observe that, while the lexically trained model al-
ways outperforms the strictly structural frequency informed
model (LEX dominates FREQ), the FREQ model never-
theless produces a competitive precision-recall curve despite
having no access to any lexical information. This supports
the intuition developed from observing the difference be-
tween protein and non-protein distributions in Figures 2 and
3.

1e-PDF PDF to Text Converter v2.1: http://www.e-
pdfconverter.com
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Figure 4: Precision versus recall of extractors
trained on only lexical features (LEX), only struc-
tural frequency features (FREQ), and both sets of
features (LEX+FREQ).

Similarly, the fact that the combined model LEX+FREQ
dominates each constituent model (LEX and FREQ individ-
ually) demonstrates that each type of feature (lexical and
structural) is contributing a share of unique information,
not represented by the other. This supports the connec-
tion with co-training proposed in §2.4 by indicating that
the feature sets are somewhat independent with respect to
identifying protein names (the fact that their effect in the
combined model is not completely additive suggests they are
not wholly independent either).

3.3.2 Non-transfer: abstract to abstract
Table 3 shows the performance of seven different extrac-

tors (sorted by F1), each trained on a unique combination
of our proposed features: positive snippets (POS), negative
snippets (NEG), and structural frequency features (FREQ),
all along with the standard lexical features (LEX). A check
mark in a feature’s column means that row’s extractor was
provided with that column’s features at train-time. In this
non-transfer experiment, our model labeled tokens of held-
out abstracts as protein or not, and these predictions were
automatically evaluated with respect to token-level preci-
sion, recall and F1 measure using the held-out GENIA labels
for those abstracts.

Model name POS NEG FREQ Prec Rec F1

FULL X X X .738 .673 .704
FREQ X .744 .640 .688
POS FREQ X X .727 .637 .679
POS X .760 .555 .641
POS NEG X X .760 .547 .636
BASE .753 .550 .636
NEG FREQ X X .751 .535 .625

Table 3: Summary of ablation study results for ex-
tractors trained on full papers and evaluated on ab-
stracts.

From this table we can notice a number of trends. With
respect to the baseline model (BASE) trained only on lexi-
cal features, adding positive snippets (POS) doesn’t seem

to help precision or recall much, while adding structural
frequency features (FREQ) improves recall (and thus F1)
dramatically. This makes sense, since positive snippets were
proposed as a method of increasing domain-robustness, and
these results are for the non-transfer setting. On the other
hand, structural frequency features were proposed as a gen-
eral purpose method of using an article’s internal structure
to help extract useful information from the unsupervised
sections of the document. In this respect, FREQ features
might be expected to aid in even the non-transfer setting, as
they do here. Interestingly, although in isolation, and even
in combination, POS and NEG snippets themselves don’t
seem to improve on the baseline model in the non-transfer
setting, when combined with FREQ features (FULL) they
do seem to provide another boost to recall. This may be due
to the fact the inter-domain information implicitly incorpo-
rated by the structural frequency features allows the model
to better make use of the cross-domain snippets.

We should note that, although this non-transfer, abstract
to abstract setting is convenient (since we can get precise
evaluation numbers) and the results encouraging, it is un-
clear what they might indicate about performance in the
transfer setting.

3.3.3 Transfer: abstract to caption, full vs. baseline
Finally, we present the results of a user study in the do-

main adaptation setting. We trained extractors on various
combinations of features computed on the training data, and
compared them to the full model trained on lexical, struc-
tural, positive and negative snippets, evaluating each with
respect to the proteins they predicted in the held-out cap-
tions. Unlike the non-transfer setting, however, since we had
no labels for any captions, we could not perform automatic
evaluation. Instead, we employed human experts to manu-
ally compare the predictions made by variously constructed
extractors and evaluate which they preferred. Using this
method we found that our proposed model (FULL, the joint
combination of all three new feature types: POS, NEG and
FREQ) was preferred by users significantly more often (p
< .01, see Table 4) than the baseline model trained only on
lexical features.

Figure 5: Screenshot of application used to compare
various protein extractors’ performance on captions
in the face of no labeled data.

Figure 5 shows a screenshot of the tool we used to perform
these evaluations. In the top-right, two extractors are being
compared: 1A in yellow and 1B in blue (their names have
been blinded from the evaluator). The top-left panel shows



the captions of a particular test article with each extractor’s
positive (protein) predictions highlighted in its color, with
green highlights representing tokens on which both extrac-
tors predict positive. The bottom panel shows two columns
of buttons: 1A’s predictions are on the left, and 1B’s on
the right. Since we are evaluating user preference, only the
predictions where the extractors disagree are shown. For
each row (corresponding to a disagreement between extrac-
tors) the human expert clicks the cell of the prediction he
prefers: clicking an empty cell in one column means the user
believes the other column’s extractor made a type I (false
positive) error, while clicking a non-empty cell implies the
other column’s extractor made a type II (false negative) er-
ror. Each of these judgments can be viewed as the outcome
of a paired trial, and by using a paired t-test, we can assess
how the extractors differ along with which the user prefers,
but can’t exactly quantify by how much one has improved
with respect to the other.

Evaluation is an important consideration in semi-supervised
domain adaptation, since, by definition, no labeled test (tar-
get domain) data is available. The type of comparative
evaluation we performed could be instrumented into vari-
ous end-user applications (for example, click-through logs
from protein name search engines such as SLIF2) to auto-
matically extract the necessary user-preference information,
thus obviating the need of a special evaluator.

3.3.4 Transfer: abstract to caption, full vs. ablated
Having established that a model based on a combina-

tion of our new features (incorporated in the FULL model)
improved user preference over the baseline, purely lexical
model, we then performed an ablation study to ascertain
which of these new features (structural frequency (FREQ),
positive snippets (POS), or negative snippets (NEG)) were
responsible for the improvements observed. Table 4 summa-
rizes these results for each ablation considered. In each such
study comparing the full model to a degraded model, the
full model was preferred significantly more often than the
ablated model (one-sided paired t-test, p<.01), indicating
that our proposed features are, in fact, useful for unsuper-
vised domain adaptation.

Model Compared to p-value # user labels

FULL BASE 3.6 E-4 182
FULL NEG FREQ 9.9 E-9 78
FULL POS NEG 1.8 E-4 120
FULL POS FREQ 1.1 E-4 46

Table 4: Summary of transfer results for extractors
trained on full papers and evaluated on captions.
The preferred model is in bold.

From these results we can further observe that adding
POS snippets seems to have a noticeable effect on user pref-
erence. This is a nice complement to the result from §3.3.2
which indicated that POS snippets are not as useful in the
non-transfer setting. Indeed, it is the ability of POS snippets
to shape the labeled training source data to look more like
the target data that allows the extractors so trained to be ro-
bust across shifts in domains. Similar user preference is seen

2http://slif.cbi.cmu.edu/

for the contribution of NEG snippets and FREQ features,
indicating that they too aid in domain-adaptation, both by
leveraging unlabeled training data and by helping to inform
the training data with some target domain attributes.

4. CONCLUSIONS & FUTURE WORK
In this work we have shown how exploiting structure, in

the form of frequency features and positive and negative
snippets, can help in the problem of semi-supervised do-
main adaptation. We have defined a new set of features
based on structural frequency statistics and demonstrated
their utility in representing inter-domain information drawn
from both supervised and unsupervised sources, in a man-
ner somewhat orthogonal to the traditional lexically based
feature sets. Similarly, we have defined a technique for in-
troducing high-confidence positively and negatively labeled
pseudo examples (snippets) from the target domain into the
source domain, and shown that these too provide a conve-
nient, and effective, method for producing an extractor that
is robust to domain shifts between training and testing data
sets.

Finally, through a comparative analysis of each new fea-
ture’s contribution to same-domain and inter-domain infor-
mation extraction performance, we have discovered an in-
triguing relationship between a feature’s utility in the non-
transfer and transfer settings. We hope to exploit this re-
lationship to help more systematically assess the relative
domain-specificity of certain classes and combinations of fea-
tures.

More generally, we would like to further examine and char-
acterize the particular relationships between features and
models that facilitate good transfer learning, along with the
more abstract quality of robustness. In particular, we would
like to develop more automated techniques for finding fea-
tures and representations that are generally robust to shifts
in domain and feature spaces.
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