Practice Questions for Midterm - 10-605

Oct 14, 2015 (version 1)

10-605 Fall 2015
Sample Questions Andrew ID:
Time Limit: n/a

Name:_____________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>

Grade Table (for teacher use only)
Review questions from previous years

Parallel learning methods

1. (6 points) Recall that iterative parameter mixing (IPM) algorithm for perceptrons works as follows: First, divide the data into s shards, and initialize a weight vector \mathbf{w}^0 to zero. Then, in each iteration t, run, in parallel, a perceptron for one pass over a single shard, starting with weight vector \mathbf{w}^{t-1}; and average the final weight vectors for each shard to create the next weight vector \mathbf{w}^t. Assume that the average is unweighted, i.e., uniform mixing.

Mark the statements as true or false.

- The mistake bound for IPM for perceptrons shows that the number of iterations needed to converge does not depend on the number of shards.

- If the original perceptron algorithm makes at most m mistakes while training on the data, and there are s shards, then IPM for perceptrons will proveably make at most m mistakes during training.

- If the original perceptron algorithm makes at most m mistakes while training on the data, and there are s shards, then IPM for perceptrons will proveably make at most $s \times m$ mistakes during training.

2. (6 points) Recall that the AllReduce operation combines a reduce operation with a broadcast operation.

 (a) AllReduce is useful in iterative parameter mixing (IPM). In one sentence, what part of IPM would it be useful for?
(b) AllReduce typically communicates information along a k-ary spanning tree of worker nodes. In one or two sentences, what are the advantages of this, rather than communicating from each worker to a single central node?

3. (15 points) In the following scenarios, how will you perform the perceptron updates on given training data?
 (a) Number of training instances = 10,000 and dimension of feature vector = 20.
 (b) Number of training instances = 10,000,000 and dimension of feature vector = 20.
 (c) Number of training instances = 1,000 and dimension of feature vector = 10,000.

Hashing and Stochastic gradient

4. (6 points) Mark the statements as true or false.
 - Using stochastic gradient descent on logistic regression with a hashing trick is a way to learn classifiers that are not linearly separable, because feature hashing is a type of kernel.
 - The hashing trick reduces the memory required to store a classifier.
 - The hashing trick makes it faster to apply a classifier to an instance.

5. (4 points) Mark the statements as true or false.
 - DSGD for matrix factorization is an approximate version of matrix factorization using SGD.
 - We cannot use the DSGD algorithm for matrix factorization if the entries in the matrix are negative (e.g. movie ratings from -5 to 5).
6. (5 points) You joined a company which works on finding similar images. You started out with working on a cosine similarity based approach between the image pixel vectors. During this experiment, you found that it takes a lot of time to do this. Can you optimize on the time taken?

Map-reduce

7. (4 points) In the default setting of Hadoop MapReduce jobs, which of the following are true for the input of a reducer?

 - The values associated with a key appear in sorted order: i.e. each value is strictly larger than the previous value.
 - Neither the keys nor values are in any predictable order.
 - The keys given to a reducer are sorted but the values associated with each key are in no predictable order.

8. (4 points) In a MapReduce job with M mappers and N reducers, which is a better guess as to how many pairs of machines will transfer data? (Pick one)

 - M+N: data will be copied from the M mappers to the head node, then from the head node to the N reducers.
 - M*N: data will be transferred directly from each mapper to each reducer.

9. (8 points) Map-reduce implementation.

 Briefly describe how to use MapReduce pattern to compute the left Outer Join of two tables A, B by column c. Recall that the result of a left outer join for tables A and B always contains all records of the "left" table (A), even if the join-condition does not find any matching record in the "right" table (B).

 You can assume that c is a primary key—i.e., for any value of "c", there is either no tuple in A such that tuple.c has that value, or only one tuple in A that has that value. You can also assume that the mapper’s input includes all tuples in A and B, that in each call to the mapper, the value will hold a tuple, and that the function fromTableA(tuple) is true iff tuple is from table A.

 Mapper:
Reducer: