Kernels: Key Points

- Many learning tasks are framed as optimization problems
- Primal and Dual formulations of optimization problems
- Dual version framed in terms of dot products between x's
- Kernel functions $k(x,y)$ allow calculating dot products $<\Phi(x),\Phi(y)>$ without bothering to project x into $\Phi(x)$
- Leads to major efficiencies, and ability to use very high dimensional (virtual) feature spaces
Simple Kernel Based Classifier

- Consider finding the centres of mass of positive and negative examples and classifying a test point by measuring which is closest

\[h(x) = \text{sgn} \left(\| \phi(x) - \phi_{S-} \|^2 - \| \phi(x) - \phi_{S+} \|^2 \right) \]

- we can express as a function of kernel evaluations

\[h(x) = \text{sgn} \left(\frac{1}{m_+} \sum_{i=1}^{m_+} k(x, x_i) - \frac{1}{m_-} \sum_{i=m_++1}^{m} k(x, x_i) - b \right) \]

where

\[b = \frac{1}{2m_+^2} \sum_{i,j=1}^{m_+} k(x_i, x_j) - \frac{1}{2m_-^2} \sum_{i,j=m_++1}^{m} k(x_i, x_j) \]

[slide from John Shawe-Taylor]
Linear classifiers – which line is better?

Pick the one with the largest margin!
Parameterizing the decision boundary

\[w^T x + b > 0 \quad w^T x + b < 0 \]

Labels \(y_i \in \{-1, +1\} \quad \text{class} \)

SVM: Maximize the margin

Margin = Distance of closest examples from the decision line/hyperplane

\[\text{margin} = \gamma = a/\|w\| \]
Maximizing the margin

Margin = Distance of closest examples from the decision line/hyperplane

Margin = \(\gamma = a/\|w\| \)

\[
\begin{align*}
\max & \quad \gamma = a/\|w\| \\
& \text{s.t. } (w^T x_j + b) y_j \geq a \quad \forall j
\end{align*}
\]

Note: ‘a’ is arbitrary (can normalize equations by a)

Support Vector Machine (primal form)

Primal form:

\[
\begin{align*}
\min & \quad w^T w \\
& \text{s.t. } (w^T x_j + b) y_j \geq 1 \quad \forall j
\end{align*}
\]

Solve efficiently by quadratic programming (QP)
- Well-studied solution algorithms
We can solve either primal or dual forms

Primal form: solve for \(w, b \)

\[
\min_{w, b} \quad w^T w \\
\text{s.t.} \quad y_l(w^T x_l + b) \geq 1 \quad \forall l \in \text{training examples}
\]

Classification test for new \(x \): \(w^T x + b > 0 \)

Dual form: solve for \(\alpha_1 \ldots \alpha_M \)

\[
\max_{\alpha_1 \ldots \alpha_M} \quad \sum_{l=1}^{M} \alpha_l - \frac{1}{2} \sum_{j=1}^{M} \sum_{k=1}^{M} \alpha_j \alpha_k y_j y_k \langle x_j, x_k \rangle \\
\text{s.t.} \quad \alpha_l \geq 0 \quad \forall l \in \text{training examples} \\
\sum_{l=1}^{M} \alpha_l y_l = 0
\]

Classification test for new \(x \): \(\sum_{l \in \text{SVs}} \alpha_l y_l \langle x, x_l \rangle + b > 0 \)

Both are QP problems with a single local optimum!

What is quadratic programming?

A way to solve optimization problems of the form:

\[
\text{Minimize } f(x) = cx + \frac{1}{2} x^T Q x \\
\text{subject to } Ax \leq b \text{ and } x \geq 0
\]

Where \(Q \) is symmetric matrix.

If \(f(x) \) is strictly convex for all feasible points (e.g., \(Q \) is positive definite)
then there is only one local minimum, which is global min.
Support Vectors

\[\sum_{l \in SVs} \alpha_l y_l \langle x, x_l \rangle + b > 0 \]

Linear hyperplane defined by "support vectors" *

\[\sum_{l \in SVs} \alpha_l y_l \langle x, x_l \rangle + b < 0 \]

Moving other points a little doesn’t effect the decision boundary

\[w^T x + b > 0 \]

only need to store the support vectors to predict labels of new points

How many support vectors in linearly separable case, given d dimensions?

\[\leq d + 1 \]

* KKT conditions on optimization problem assure other \(\alpha = 0 \)

Kernel SVM

And because the dual form depends only on inner products, we can apply the kernel trick to work in a (virtual) projected space \(\Phi : X \rightarrow F \)

Primal form: solve for \(w, b \) in the projected higher dim. space

\[
\begin{align*}
\min_{w,b} & \quad w^T w \\
\text{s.t.} & \quad y_l(w^T \Phi(x_l) + b) \geq 1 \quad \forall l \in \text{training examples}
\end{align*}
\]

Classification test for new \(x \) \(w^T \Phi(x) + b > 0 \)

Dual form: solve for \(\alpha_1 \ldots \alpha_M \) in the original low dim. space

\[
\begin{align*}
\max_{\alpha_1 \ldots \alpha_M} & \quad \sum_{l=1}^{M} \alpha_l - \frac{1}{2} \sum_{j=1}^{M} \sum_{k=1}^{M} \alpha_j \alpha_k y_j y_k \kappa(x_j, x_k) \\
\text{s.t.} & \quad \alpha_l \geq 0 \quad \forall l \in \text{training examples} \\
& \quad \sum_{l=1}^{M} \alpha_l y_l = 0
\end{align*}
\]

Classification test for new \(x \) \(\sum_{l \in SVs} \alpha_l y_l \kappa(x, x_l) + b > 0 \)
SVM Decision Surface using Gaussian Kernel

\[
\hat{f}(x) = w^T \Phi(x) + b
\]

Circled points are the support vectors: training examples with non-zero \(\alpha_l \)

Points plotted in original 2-D space.

Contour lines show constant \(\hat{f}(x) \)

\[
\hat{f}(x) = b + \sum_{i=1}^{M} \alpha_i y_i \kappa(x, x_i) = b + \sum_{i=1}^{M} \alpha_i y_i \exp\left(-\|x - x_i\|^2/2\sigma^2\right)
\]

What if data is not linearly separable?

Use features of features of features of features.. .

\[x_1^2, x_2^2, x_1x_2, \ldots, \exp(x_1)\]

But run risk of overfitting!
What if data is still not linearly separable?

Allow “error” in classification

\[
\begin{align*}
\min_{w,b} & \quad w^T w + C \sum_j \xi_j \\
\text{s.t.} & \quad (w^T x_j + b) y_j \geq 1 - \xi_j, \quad \forall j \\
& \quad \xi_j \geq 0, \quad \forall j
\end{align*}
\]

\(\xi_j\) - “slack” variables
- \(= (>1 \text{ if } x_j \text{ misclassified})\)
- pay linear penalty if mistake

C - tradeoff parameter (chosen by cross-validation)

Support Vector Machine with soft margins

Allow “error” in classification

Maximize margin and minimize # mistakes on training data

C - tradeoff parameter

Not QP 😞

0/1 loss (doesn’t distinguish between near miss and bad mistake)
Primal and Dual Forms for Soft Margin SVM

Primal form: solve for w, b in the projected higher dim. space

$$\min_{w,b} \frac{1}{2}w^Tw + C \sum_{l=1}^{M} \xi_l$$

s.t. $y_l(w^T\Phi(x_l) + b) \geq 1 - \xi_l \quad \forall l \in \text{training examples}$

$$\xi_l \geq 0 \quad \forall l \in \text{training examples}$$

Dual form: solve for $\alpha_1...\alpha_M$ in the original low dim. space

$$\max_{\alpha_1...\alpha_M} \sum_{l=1}^{M} \alpha_l - \frac{1}{2} \sum_{j=1}^{M} \sum_{k=1}^{M} \alpha_j \alpha_k y_j y_k \kappa(x_j, x_k)$$

s.t. $0 \leq \alpha_l \leq C \quad \forall l \in \text{training examples}$

$$\sum_{l=1}^{M} \alpha_l y_l = 0$$

both are QP problems with a single local optimum

SVM Soft Margin Decision Surface using Gaussian Kernel

Circed points are the support vectors: training examples with non-zero α_l

Points plotted in original 2-D space.

Contour lines show constant $\hat{f}(x)$

$$\hat{f}(x) = b + \sum_{l=1}^{M} \alpha_l y_l \kappa(x, x_l) = b + \sum_{l=1}^{M} \alpha_l y_l \exp(-\|x - x_l\|^2/2\sigma^2)$$
What about multiple classes?

One against all

Could try to learn 3 separate classifiers:
Class k vs. rest

$(w_k, b_k)_{k=1,2,3}$

$y = \arg \max_k w_k^T x + b_k$

But w_k's might not be on the same scale.
Note: $(aw)x + (ab)$ is also a solution
Learn single, Multi-class SVM

Simultaneously learn 3 sets of weights

\[w^{(y_j)} x_j + b^{(y_j)} \geq w^{(y')} x_j + b^{(y')} + 1, \quad \forall y' \neq y_j, \forall j \]

Margin = gap between correct class and nearest other class

Classification rule:

\[y = \arg \max_k w^{(k)} x + b^{(k)} \]

Learn single Multi-class SVM

Simultaneously learn 3 sets of weights

\[\text{minimize}_{w,b} \sum_y w(y), w(y) + C \sum_j \sum_{y' \neq y_j} \xi_j^{(y')} \]

such that:

\[w^{(y_j)} x_j + b^{(y_j)} \geq w^{(y)} x_j + b^{(y)} + 1 - \xi_j^{(y)}, \quad \forall y \neq y_j, \forall j \]

\[\xi_j^{(y)} \geq 0 \]

Classification rule:

\[y = \arg \max_k w^{(k)} x + b^{(k)} \]

Joint optimization: \(w \)'s are on the same scale.
SVM Summary

• Objective: maximize margin between decision surface and data
• Primal and dual formulations
 – dual represents classifier decision in terms of support vectors
• Kernel SVM’s
 – learn linear decision surface in high dimension space, working in original low dimension space
• Handling noisy data: soft margin “slack variables”
 – again primal and dual forms
• SVM algorithm: Quadratic Program optimization
 – single global optimum

Maximizing Margin as an Objective Function

• We’ve talked about many learning algorithms, with different objective functions
 • 0-1 loss
 • sum sq error
 • maximum log data likelihood
 • MAP
 • maximum margin

How are these all related?
Slack variables – Hinge loss

Complexity penalization
\[
\xi_j = \text{loss}(f(x_j), y_j)
\]
\[
f(x_j) = \text{sgn}(w \cdot x_j + b)
\]
\[
\xi_j = (1 - (w \cdot x_j + b)y_j)_+
\]

\[
\min_{w,b} w^T w + C \sum_j \xi_j
\]
\[
\text{s.t. } (w^T x_j + b) y_j \geq 1 - \xi_j \quad \forall j
\]
\[
\xi_j \geq 0 \quad \forall j
\]

SVM vs. Logistic Regression

SVM: Hinge loss
\[
\text{loss}(f(x_j), y_j) = (1 - (w \cdot x_j + b)y_j)_+
\]

Logistic Regression: Log loss (negative log conditional likelihood)
\[
\text{loss}(f(x_j), y_j) = -\log P(y_j \mid x_j, w, b) = \log(1 + e^{-(w \cdot x_j + b)y_j})
\]
SVM: PAC Results?

VC dimension: examples

What is VC dimension of

- $H_2 = \{ (w_0 + w_1x_1 + w_2x_2) > 0 \Rightarrow y=1 \}$
 - $VC(H_2) = 3$
- For $H_n = \text{linear separating hyperplanes in } n \text{ dimensions}$, $VC(H_n) = n+1$

$$m \geq \frac{1}{\epsilon}(4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$
Margin-based PAC Results

Consider a fixed distribution D on pairs (x, y) with $x \in \mathbb{R}^d$ satisfying $||x|| = 1$ and $y \in \{-1, 1\}$. We are interested in finding a weight vector w with $||w|| = 1$ such that the sign of $w \cdot x$ predicts y. For $\gamma > 0$ the error rate of w on distribution D relative to safety margin γ, denoted $\ell_{\gamma}(w, D)$ is defined as follows.

$$\ell_{\gamma}(w, D) = \mathbb{P}_{(x, y) \sim D}[(w \cdot x)y \leq \gamma]$$

Let S be a sample of m pairs drawn IID from the distribution D. The sample S can be viewed as an empirical distribution on pairs. We are interested in bounding $\ell_0(w, D)$ in terms of $\ell_{\gamma}(w, S)$ and the margin γ. Bartlett and Shawe-Taylor use fat shattering arguments [2] to show that with probability at least $1 - \delta$ over the choice of the sample S we have the following simultaneously for all weight vectors w with $||w|| = 1$ and margins $\gamma > 0$.

$$\ell_0(w, D) \leq \ell_{\gamma}(w, S) + 27.18\sqrt{\frac{\log^2 m + 84}{m\gamma^2}} + O\left(\sqrt{\frac{\ln \frac{1}{\delta}}{m}}\right)$$

(1)

recall:

$$\text{error}_{\text{true}}(h) < \text{error}_{\text{train}}(h) + \sqrt{\frac{VC(H)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}$$

Perceptron Algorithm

Perceptron Algorithm: learn $\hat{y} = h(x) = \text{sign}(\hat{w} \cdot \hat{x})$, where $\hat{x} = < 1, x_1, \ldots, x_n >$, $\hat{w} = < w_0, w_1 \ldots, w_n >$, $y \in \{-1, +1\}$

Input: $\{< \hat{x}_1, y_1 > \ldots < \hat{x}_m, y_m >\}$

Initialize $\hat{w} = 0$;

repeat

• for $i = 1$ to m

 - if $y_i \neq \text{sign}(\hat{w} \cdot \hat{x}_i)$

 then $\hat{w} \leftarrow \hat{w} + y_i\hat{x}_i$;

until converged
Mistake Bounds for Perceptron

When data is linearly separable:

Theorem 1 (Block, Novikoff) Let \(((x_1, y_1), \ldots, (x_m, y_m)) \) be a sequence of labeled examples with \(||x_i|| \leq R \). Suppose that there exists a vector \(u \) such that \(||u|| = 1 \) and \(y_i(u \cdot x_i) \geq \gamma \) for all examples in the sequence. Then the number of mistakes made by the online perceptron algorithm on this sequence is at most \((R/\gamma)^2 \).
Mistake Bounds for Perceptron

When data is linearly separable:

Theorem 1 (Block, Novikoff) Let \(\{(x_1, y_1), \ldots, (x_m, y_m)\} \) be a sequence of labeled examples with \(||x_i|| \leq R \). Suppose that there exists a vector \(u \) such that \(||u|| = 1 \) and \(y_i(u \cdot x_i) \geq \gamma \) for all examples in the sequence. Then the number of mistakes made by the online perceptron algorithm on this sequence is at most \((R/\gamma)^2 \).

When not linearly separable: [Freund & Schapire]

Theorem 2 Let \(\{(x_1, y_1), \ldots, (x_m, y_m)\} \) be a sequence of labeled examples with \(||x_i|| \leq R \). Let \(u \) be any vector with \(||u|| = 1 \) and let \(\gamma > 0 \). Define the deviation of each example as

\[
d_i = \max\{0, \gamma - y_i(u \cdot x_i)\},
\]

and define \(D = \sqrt{\sum_{i=1}^{m} d_i^2} \). Then the number of mistakes of the online perceptron algorithm on this sequence is bounded by

\[
\left(\frac{R + D}{\gamma} \right)^2.
\]

What you should know

Primal and Dual optimization problems
Kernel functions
Support Vector Machines
 - Maximizing margin
 - Kernel SVM’s
 - Noise, slack variables and hinge loss
 - Relationship between SVMs and logistic regression
 - 0/1 loss
 - Hinge loss
 - Log loss
Theory shows overfitting, mistakes depends on margin size