Today:
- Ensemble learning
- Weighted majority algorithm
- Boosting
- AdaBoost and Logistic Regr.

Recommended reading:
- Shapire's tutorial on Boosting: see Piazza syllabus

some slides courtesy of Maria Balcan
some slides courtesy of Rob Shapire
some slides courtesy of Ziv Bar-Joseph

Mistake Bounds

So far: how many examples needed to learn?
What about: how many mistakes before convergence?

Let’s consider similar setting to PAC learning:
- Instances drawn at random from X according to distribution D
- Learner must classify each instance before receiving correct classification from teacher
- Can we bound the number of mistakes learner makes before converging?
Weighted Majority Algorithm

\(a_i \) denotes the \(i \)th prediction algorithm in the pool \(A \) of algorithms. \(w_i \) denotes the weight associated with \(a_i \).

- For all \(i \) initialize \(w_i \leftarrow 1 \)
- For each training example \(\langle x, c(x) \rangle \)
 * Initialize \(q_0 \) and \(q_1 \) to 0
 * For each prediction algorithm \(a_i \)
 - If \(a_i(x) = 0 \) then \(q_0 \leftarrow q_0 + w_i \)
 If \(a_i(x) = 1 \) then \(q_1 \leftarrow q_1 + w_i \)
 * If \(q_1 > q_0 \) then predict \(c(x) = 1 \)
 * If \(q_0 > q_1 \) then predict \(c(x) = 0 \)
 * If \(q_1 = q_0 \) then predict 0 or 1 at random for \(c(x) \)
 * For each prediction algorithm \(a_i \) in \(A \) do
 - If \(a_i(x) \neq c(x) \) then \(w_i \leftarrow \beta w_i \)

Weighted Majority

[Relative mistake bound for Weighted-Majority] Let \(D \) be any sequence of training examples, let \(A \) be any set of \(n \) prediction algorithms, and let \(k \) be the minimum number of mistakes made by any algorithm in \(A \) for the training sequence \(D \). Then the number of mistakes over \(D \) made by the Weighted-Majority algorithm using \(\beta = \frac{1}{2} \) is at most

\[
2.4(k + \log_2 n)
\]
Boosting

- Weighted Majority algorithm learns weight for each predictor
 - It's an example of an ensemble method: combines predictions of *multiple* hypotheses

- Boosting learns weight, and also the hypotheses

- Leads to one of the most popular learning methods in practice: Decision Forests
Boosting: Key Idea

• Use a learner that produces better-than-chance \(h(x) \)’s
• Train it multiple times, on reweighted training examples
 – Each time, upweight the incorrectly classified examples, downweight the correctly classified examples
• Final prediction: weighted vote of the multiple \(h_i(x) \)’s

• Practically useful
• Theoretically interesting

AdaBoost Algorithm

Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)

Initialize \(D_1(i) = 1/m\).

For \(t = 1, \ldots, T\):

• Train weak learner using distribution \(D_t\).
• Get weak hypothesis \(h_t : X \rightarrow \{-1, +1\}\) with error
 \[\epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i].\]
• Choose \(\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)\).
• Update:
 \[D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases} = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}\]
 where \(Z_t\) is a normalization factor (chosen so that \(D_{t+1}\) will be a distribution).

Output the final hypothesis:
\[H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).\]
AdaBoost: A toy example

Weak classifiers: vertical or horizontal half-planes (a.k.a. decision stumps)

[Rob Shapire]
AdaBoost: A toy example

Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)
Initialize \(D_t(i) = 1/m\).
For \(t = 1, \ldots, T\):

- Train weak learner using distribution \(D_t\).
- Get weak hypothesis \(h_t : X \rightarrow \{-1, +1\}\) with error

\[
\epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i].
\]

- Choose \(\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)\).
- Update:

\[
D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases}
 e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\
 e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i
\end{cases}
= \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is a normalization factor (chosen so that \(D_{t+1}\) will be a distribution).

Output the final hypothesis:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).
\]
Training Error

Training error of final classifier is bounded by:

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i))
\]

Where \(f(x) = \sum_{t} \alpha_t h_t(x); H(x) = \text{sign}(f(x)) \)

Theoretical Result 1: Training Error

Training error of final classifier is bounded by:

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = \prod_{t} Z_t
\]

Where \(f(x) = \sum_{t} \alpha_t h_t(x); H(x) = \text{sign}(f(x)) \)

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_i y_i h_t(x_i))
\]
Theoretical Result 1: Training Error

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_i \exp(-y_i f(x_i)) = \prod_t Z_t$$

Where

$$f(x) = \sum_t \alpha_t h_t(x); H(x) = sign(f(x))$$

If we minimize $\prod_t Z_t$ we minimize our training error.

We can tighten this bound greedily, by choosing α_t and h_t on each iteration to minimize Z_t:

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

Theoretical Result 1: Training Error

We can minimize this bound by choosing α_t on each iteration to minimize Z_t:

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Where:

$$\epsilon_t = \sum_{i=1}^{m} D_t(i) \delta(h_t(x_i) \neq y_i)$$
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)

Initialize \(D_1(i) = 1/m\).

For \(t = 1, \ldots, T:\)

- Train weak learner using distribution \(D_t\).
- Get weak hypothesis \(h_t : X \rightarrow \{-1, +1\}\) with error
 \[\epsilon_t = \Pr_{x \sim D_t} [h_t(x) \neq y].\]
- Choose \(\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)\).
- Update:
 \[D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases} = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}\]

where \(Z_t\) is a normalization factor (chosen so that \(D_{t+1}\) will be a distribution).

Output the final hypothesis:
\[H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).\]

Analyzing the training error

- **Theorem:**
 - write \(\epsilon_t\) as \(1/2 - \gamma_t\)
 - then
 \[
 \text{training error}(H_{\text{final}}) \leq \prod_{t} \left[2 \sqrt{\epsilon_t(1 - \epsilon_t)} \right] = \prod_{t} \left[1 - 4 \gamma_t^2 \right] \leq \exp \left(-2 \sum_{t} \gamma_t^2 \right)
 \]
 - so: if \(\forall t : \gamma_t \geq \gamma > 0\)
 then \(\text{training error}(H_{\text{final}}) \leq e^{-2\gamma^2 T}\)

- **AdaBoost is adaptive:**
 - does not need to know \(\gamma\) or \(T\) a priori
 - can exploit \(\gamma_t \gg \gamma\)

[Rob Shapire]
Bound on True Error

[Freund & Shapire, 1999]

With high probability:

\[
\text{error}_{\text{true}} \left(\text{sign} \left(\sum_t \alpha_t h_t(x) \right) \right) \leq \text{error}_{\text{train}} \left(\text{sign} \left(\sum_t \alpha_t h_t(x) \right) \right) + O \left(\sqrt{\frac{T \cdot V C \text{dim}(H)}{m}} \right)
\]

Actual Typical Run

- test error does not increase, even after 1000 rounds
 - (total size > 2,000,000 nodes)
- test error continues to drop even after training error is zero!

<table>
<thead>
<tr>
<th># rounds</th>
<th>5</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>train error</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>test error</td>
<td>8.4</td>
<td>3.3</td>
<td>3.1</td>
</tr>
</tbody>
</table>

[Rob Shapire]
Figure 3: Comparison of C4.5 versus boosting stumps and boosting C4.5 on a set of 27 benchmark problems as reported by Freund and Schapire [21]. Each point in each scatterplot shows the test error rate of the two competing algorithms on a single benchmark. The y-coordinate of each point gives the test error rate (in percent) of C4.5 on the given benchmark, and the x-coordinate gives the error rate of boosting stumps (left plot) or boosting C4.5 (right plot). All error rates have been averaged over multiple runs.
A Better Story: Theory of Margins [with Freund, Bartlett & Lee]

- key idea:
 - training error only measures whether classifications are right or wrong
 - should also consider confidence of classifications
- recall: H_{final} is weighted majority vote of weak classifiers
- measure confidence by margin = strength of the vote
 $= (\text{fraction voting correctly}) - (\text{fraction voting incorrectly})$

Empirical Evidence: The Margin Distribution

- margin distribution
 $= \text{cumulative distribution of margins of training examples}$

<table>
<thead>
<tr>
<th># rounds</th>
<th>5</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>train error</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>test error</td>
<td>8.4</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>% margins ≤ 0.5</td>
<td>7.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>minimum margin</td>
<td>0.14</td>
<td>0.52</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Bounds on Generalization Error in Boosting

[Freund & Shapire, 1999]
With high probability

$$
\text{error}_{true}\left(\text{sign}\left(\sum_{t} \alpha_t h_t(x)\right)\right) \leq \text{error}_{\text{train}}\left(\text{sign}\left(\sum_{t} \alpha_t h_t(x)\right)\right) + O\left(\sqrt{\frac{T \cdot \text{VCdim}(H)}{m}}\right)
$$

[Shapire, et al., 1999]
For all $\theta > 0$, with high probability:

$$
\text{error}_{true}\left(\text{sign}\left(\sum_{t} \alpha_t h_t(x)\right)\right) \leq \text{P}_{\text{train}}[\text{margin}_f(x, y) \leq \theta] + O\left(\sqrt{\frac{\text{VCdim}(H)}{m \theta^2}}\right)
$$

Margin based: Independent of T !!

Boosting and Logistic Regression

Logistic regression assumes:

$$
P(Y = 1|X) = \frac{1}{1 + \exp(f(x))}
$$

And tries to maximize data likelihood:

$$
P(D|H) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_i f(x_i))}
$$

Equivalent to minimizing log loss

$$
\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))
$$
Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss
\[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]

Boosting minimizes similar loss function!!
\[\frac{1}{m} \sum_i \exp(-y_if(x_i)) = \prod_t Z_t \]

Both smooth approximations of 0/1 loss!

Logistic regression and Boosting

Logistic regression:
- Minimize loss fn
 \[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]
- Define
 \[f(x) = \sum_j w_j x_j \]
 where \(x_j \) predefined

Boosting:
- Minimize loss fn
 \[\sum_{i=1}^{m} \exp(-y_if(x_i)) \]
- Define
 \[f(x) = \sum_t \alpha_t h_t(x) \]
 where \(h_t(x_i) \) defined dynamically to fit data
 (not a linear classifier)
- Weights \(\alpha_t \) learned incrementally
What You Should Know

• Ensemble methods

• Weighted Majority
 – Learns weights for a given pool of hypotheses
 – Mistake bound relative to best hypothesis in the pool
 – …

• Boosting
 – Learns weights and hypotheses
 – Theory: training error, true error, correspondence to Log. Regression
 – Practice: Boosted decision trees (and stumps) very popular!

• Many variants of ensemble methods
 – Resample training data to generate variety
 – Randomize learning algorithm to generate variety
 – Active learning – choose examples where vote is closest to tie