Decision Problems

- A specific set of computations are classified as decision problems.
- An algorithm describes a decision problem if its output is simply YES or NO, depending on whether a certain property holds for its input.
- Example:
 Given a set of N shapes, can these shapes be arranged into a rectangle?
The Monkey Puzzle

• Given:
 – A set of N square cards whose sides are imprinted with the upper and lower halves of colored monkeys.
 – N is a square number, such that \(N = M^2 \).
 – Cards cannot be rotated.

• Problem:
 – Determine if an arrangement of the N cards in an \(M \times M \) grid exists such that each adjacent pair of cards display the upper and lower half of a monkey of the same color.

Example
Algorithm

Simple brute-force algorithm:
• Pick one card for each cell of M X M grid.
• Verify if each pair of touching edges make a full monkey of the same color.
• If not, try another arrangement until a solution is found or all possible arrangements are checked.
• Answer "YES" if a solution is found. Otherwise, answer "NO" if all arrangements are analyzed and no solution is found.

Analysis

If there are N = 9 cards (M = 3):
- To fill the first cell, we have 9 card choices.
- To fill the second cell, we have 8 card choices left.
- To fill the third cell, we have 7 card choices remaining.
 etc.

The total number of unique arrangements for N = 9 cards is:
Analysis (cont’d)

For N cards, the number of arrangements to examine is N! (N factorial)

If we can analyze one arrangement in a microsecond:

<table>
<thead>
<tr>
<th>N</th>
<th>Time to analyze all arrangements</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>362,880 µs</td>
</tr>
<tr>
<td>16</td>
<td>20,922,789,888,000 µs</td>
</tr>
<tr>
<td>25</td>
<td>15,511,210,043,330,985,984,000,000 µs</td>
</tr>
</tbody>
</table>

Classifications

- Algorithms that are $O(N^k)$ for some fixed k are **polynomial-time** algorithms.
 - $O(1)$, $O(\log N)$, $O(N)$, $O(N \log N)$, $O(N^2)$
 - reasonable, **tractable**
- All other algorithms are **super-polynomial-time** algorithms.
 - $O(2^N)$, $O(N^N)$, $O(N!)$
 - unreasonable, **intractable**
Traveling Salesperson

- Given: a weighted graph of nodes representing cities and edges representing flight paths (weights represent cost)
- Is there a route that takes the salesperson through every city and back to the starting city with cost no more than K?
 - The salesperson can visit a city only once (except for the start and end of the trip).

Is there a route with cost at most 52? YES (Route above costs 50.)
Is there a route with cost at most 48? YES? NO?
Analysis

• If there are N cities, what is the maximum number of routes that we might need to compute?
• Worst-case: There is a flight available between every pair of cities.
• Compute cost of every possible route.
 – Pick a starting city
 – Pick the next city (N-1 choices remaining)
 – Pick the next city (N-2 choices remaining)
 – ...
• Maximum number of routes: ___________

Map Coloring

• Given a map of N territories, can the map be colored using K colors such that no two adjacent territories are colored with the same color?
• K=4: Answer is always yes. (See Chap 5)
• K=2: Only if the map contains no point that is the junction of an odd number of territories.
Map Coloring

• Given a map of N territories, can the map be colored using 3 colors such that no two adjacent territories are colored with the same color?

Analysis

• Given a map of N territories, can the map be colored using 3 colors such that no two adjacent territories are colored with the same color?
 – Pick a color for territory 1 (3 choices)
 – Pick a color for territory 2 (3 choices)
 – ...
• There are _________ possible colorings.
Satisfiability

• Given a Boolean formula with N variables using the operators AND, OR and NOT:
 – Is there an assignment of boolean values for the variables so that the formula is true (satisfied)?
 Example: (A AND B) OR (NOT C AND A)
 – Truth assignment: A = True, B = True, C = False.

• How many assignments do we need to check for N variables?
 – Each symbol has 2 possibilities ___ assignments

The Big Picture

• Intractable problems are solvable if the amount of data (N) that we’re processing is small.
• But if N is not small, then the amount of computation grows exponentially and the solutions quickly become intractable (i.e. out of our reach).
• Computers can solve these problems if N is not small, but it will take far too long for the result to be generated.
 – We would be long dead before the result is computed.
What’s Next

• For a specific decision problem, is there single tractable (polynomial-time) algorithm to solve any instance of this problem?
• If one existed, can we use it to solve other decision problems?
• What is one of the big computational questions to be answered in the 21st century?