Randomness

• Some computations are based on randomness.
 – games, encryption, simulations
• A sequence is *random* if, for any value in the sequence, the next value in the sequence is totally independent of the current value.
Random numbers in Ruby

• To generate random numbers in Ruby, we can use the `rand` function.

• The `rand` function takes a positive integer argument (n) and returns an integer between 0 and n-1.

```ruby
>> rand(15110)
=> 1239
>> rand(15110)
=> 7320
>> rand(15110)
=> 84
```

Is `rand` truly random?

• The function `rand` uses some algorithm to determine the next integer to return.

• If we knew what the algorithm was, then the numbers generated would not be truly random.

• We call `rand` a pseudo-random number generator (PRNG) since it generates numbers that appear random but are not truly random.
Creating a PRNG

• Consider a pseudo-random number generator `prng1` that takes an argument specifying the length of a random number sequence and returns an array with that many “random” numbers.

```python
>> prng1(9)
=> [0, 7, 2, 9, 4, 11, 6, 1, 8]
```

• Does this sequence look random to you?

Let’s run `prng1` again:

```python
>> prng1(15)
=> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7, 2]
```

• Now does this sequence look random to you?
• What do you think the 16th number in the sequence is?
Another PRNG

• Let’s try another PRNG function:
 => prng2(15)
 >> [0, 8, 4, 0, 8, 4, 0, 8, 4, 0,
 8, 4, 0, 8, 4]
• Does this sequence appear random to you?
• What do you think is the 16th number in this sequence?

PRNG Period

• Let’s define the PRNG period as the number of values in a pseudo-random number generator sequence before the sequence repeats.
 [0, 7, 2, 9, 4, 11, 6, 1, 8, 3,
 10, 5, 0, 7, 2]
 period = 12

 [0, 8, 4, 0, 8, 4, 0, 8, 4, 0,
 8, 4, 0, 8, 4]
 period = 3
Looking at prng1

def prng1(n):
 seq = [0] ; seed (starting value)
 for i in 1..n-1 do
 seq << (seq.last + 7) % 12
 end
 return seq
end

>> prng1(15)
==> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7, 2]

Looking at prng2

def prng2(n):
 seq = [0] ; seed (starting value)
 for i in 1..n-1 do
 seq << (seq.last + 8) % 12
 end
 return seq
end

>> prng2(15)
==> [0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4]
Linear Congruential Generator (LCG)

• A more general version of the PRNG used in these examples is called a linear congruential generator.

• Given the current value x_i of PRNG using the linear congruential generator method, we can compute the next value in the sequence, x_{i+1}, using the formula $x_{i+1} = (a \times x_i + c) \mod m$

 where a, c, and m are pre-determined constants.

 - prng1: $a = 1$, $c = 7$, $m = 12$
 - prng2: $a = 1$, $c = 8$, $m = 12$

Picking the constants a, c, m

• If we choose a large value for m, and appropriate values for a and c that work with this m, then we can generate a very long sequence before numbers begin to repeat.

 – Ideally, we could generate a sequence with a maximum period of m.
Picking the constants a, c, m

- The LCG will have a period of m for all seed values if and only if:
 - c and m are relatively prime (i.e. the only positive integer that divides both c and m is 1)
 - $a-1$ is divisible by all prime factors of m
 - if m is a multiple of 4, then $a-1$ is also a multiple of 4

- Example: prng1 ($a = 1$, $c = 7$, $m = 12$)
 - Factors of c: 1, 7
 - Factors of m: 1, 2, 3, 4, 6, 12
 - 0 is divisible by all prime factors of 12 → true
 - if 12 is a multiple of 4, then 0 is also a multiple of 4 → true

Example

$$x_{i+1} = (a \times x_i + c) \bmod m$$

$x_0 = 4$, $a = 5$, $c = 3$, $m = 8$

- Compute x_1, x_2, \ldots, for this LCG formula.

- What is the period of this formula?
 - If the period is maximum, does it satisfy the three properties for maximal LCM?
LCMs in the Real World

- **glibc** (used by the c compiler gcc):
 \[a = 1103515245, \ c = 12345, \ m = 2^{32} \]

- **Numerical Recipes** (popular book on numerical methods and analysis):
 \[a = 1664525, \ c = 1013904223, \ m = 2^{32} \]

- **Random class in Java**:
 \[a = 25214903917, \ c = 11, \ m = 2^{48} \]

- The PRNG built into Ruby has a period of \(2^{19937}\).

Using RubyLabs for Random Numbers

```ruby
>> include RandomLab
 => Object
>> p = PRNG.new(1, 7, 12)
 => #<RandomLab::PRNG a: 1 c: 7 m: 12>
>> p.seed(0)
 => 0
>> p.advance
 => 7
>> p.advance
 => 2
>> p.state
 => 2
```