Randomness

- Some computations are based on randomness.
 - games, encryption, simulations
- A sequence is **random** if, for any value in the sequence, the next value in the sequence is totally independent of the current value.
Random numbers in Ruby

- To generate random numbers in Ruby, we can use the `rand` function.
- The `rand` function takes a positive integer argument (n) and returns an integer between 0 and n-1.
  ```ruby
  >> rand(15110)
  => 1239
  >> rand(15110)
  => 7320
  >> rand(15110)
  => 84
  ```

Is `rand` truly random?

- The function `rand` uses some algorithm to determine the next integer to return.
- If we knew what the algorithm was, then the numbers generated would not be truly random.
- We call `rand` a pseudo-random number generator (PRNG) since it generates numbers that appear random but are not truly random.
Creating a PRNG

• Consider a pseudo-random number generator \texttt{prng1} that takes an argument specifying the length of a random number sequence and returns an array with that many “random” numbers.

\begin{verbatim}
>> prng1(9)
=> [0, 7, 2, 9, 4, 11, 6, 1, 8]
\end{verbatim}

• Does this sequence look random to you?

Let’s run \texttt{prng1} again:

\begin{verbatim}
>> prng1(15)
=> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7, 2]
\end{verbatim}

• Now does this sequence look random to you?
• What do you think the 16th number in the sequence is?
Another PRNG

• Let’s try another PRNG function:
 => prng2(15)
 >> [0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4]

• Does this sequence appear random to you?
• What do you think is the 16th number in this sequence?

PRNG Period

• Let’s define the PRNG period as the number of values in a pseudo-random number generator sequence before the sequence repeats.
 [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7, 2]
 period = 12

 [0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4]
 period = 3
Looking at **prng1**

```python
def prng1(n):
    seq = [0] ; seed (starting value)
    for i in 1..n-1 do
        seq << (seq.last + 7) % 12
    end
    return seq
end
```

```
>> prng1(15)
=> [0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 0, 7, 2]
```

Looking at **prng2**

```python
def prng2(n):
    seq = [0] ; seed (starting value)
    for i in 1..n-1 do
        seq << (seq.last + 8) % 12
    end
    return seq
end
```

```
>> prng2(15)
=> [0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4]
```
Linear Congruential Generator (LCG)

- A more general version of the PRNG used in these examples is called a linear congruential generator.
- Given the current value \(x_i \) of PRNG using the linear congruential generator method, we can compute the next value in the sequence, \(x_{i+1} \), using the formula
 \[
 x_{i+1} = (a \times x_i + c) \mod m
 \]
 where \(a, c, \) and \(m \) are pre-determined constants.

 - prng1: \(a = 1, c = 7, m = 12 \)
 - prng2: \(a = 1, c = 8, m = 12 \)

Picking the constants \(a, c, m \)

- If we choose a large value for \(m \), and appropriate values for \(a \) and \(c \) that work with this \(m \), then we can generate a very long sequence before numbers begin to repeat.
 - Ideally, we could generate a sequence with a maximum period of \(m \).
Picking the constants a, c, m

• The LCG will have a period of m for all seed values if and only if:
 – c and m are relatively prime (i.e. the only positive integer that divides both c and m is 1)
 – $a-1$ is divisible by all prime factors of m
 – if m is a multiple of 4, then $a-1$ is also a multiple of 4

• Example: prng1 ($a = 1$, $c = 7$, $m = 12$)
 – Factors of c: 1, 7 Factors of m: 1, 2, 3, 4, 6, 12
 – 0 is divisible by all prime factors of 12 → true
 – if 12 is a multiple of 4, then 0 is also a multiple of 4 → true

Example

\[x_{i+1} = (a \times x_i + c) \mod m \]

\[x_0 = 4 \quad a = 5 \quad c = 3 \quad m = 8 \]

• Compute $x_1, x_2, ..., $ for this LCG formula.

• What is the period of this formula?

 – If the period is maximum, does it satisfy the three properties for maximal LCM?
LCMs in the Real World

- glibc (used by the c compiler gcc):
 \[a = 1103515245, \ c = 12345, \ m = 2^{32} \]

- *Numerical Recipes* (popular book on numerical methods and analysis):
 \[a = 1664525, \ c = 1013904223, \ m = 2^{32} \]

- Random class in Java:
 \[a = 25214903917, \ c = 11, \ m = 2^{48} \]

- The PRNG built into Ruby has a period of \(2^{19937}\).

Using RubyLabs for Random Numbers

```ruby
>> include RandomLab
=> Object
>> p = PRNG.new(1, 7, 12)
=> #<RandomLab::PRNG a: 1 c: 7 m: 12>
>> p.seed(0)
=> 0
>> p.advance
=> 7
>> p.advance
=> 2
>> p.state
=> 2
```