Hashing

- Data records are stored in a hash table.
- The position of a data record in the hash table is determined by its key.
- A hash function maps keys to positions in the hash table.
- If a hash function maps two keys to the same position in the hash table, then a collision occurs.
Example

- Let the hash table be an 11-element array.
- If k is the key of a data record, let $H(k)$ represent the hash function, where $H(k) = k \mod 11$.
- Insert the keys 83, 14, 29, 70, 10, 55, 72:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Goals of Hashing

- An insert without a collision takes $O(1)$ time.
- A search also takes $O(1)$ time, if the record is stored in its proper location (without a collision).
- The hash function can take many forms:
 - If the key k is an integer:
 $$k \mod \text{tablesize}$$
 - If key k is a String (or any Object):
 $$k\text{.hashCode()} \mod \text{tablesize}$$
 - Any function that maps k to a table position!
- The table size should be a prime number.
Linear Probing

- During insert of key k to position p:
 If position p contains a different key, then examine positions p+1, p+2, etc.* until an empty position is found and insert k there.

- During a search for key k at position p:
 If position p contains a different key, then examine positions p+1, p+2, etc.* until either the key is found or an unused position is encountered.

 *wrap around to beginning of array if p+i > tables

Linear Probing Example

- Example: Insert additional keys 72, 36, 65, 48 using H(k) = k mod 11 and linear probing.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>14</td>
<td>70</td>
<td>83</td>
<td>29</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Linear Probing can form clusters in the hash table.
Special consideration

- If we remove a key from the hash table, can we get into problems?

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>14</td>
<td>70</td>
<td>36</td>
<td>29</td>
<td></td>
<td>72</td>
<td>48</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remove 83. Now search for 48. We can’t find 48 due to the gap in position 6! How can we solve this problem?

Efficiency using Linear Probing

- Insert & Search for a hash table with \(n \) elements:
 - Expected (Average) Time: \(O(\text{____}) \)
 - Worst Case time \(O(\text{____}) \)
Chained Hashing

- The maximum number of elements that can be stored in a hash table implemented using an array is the table size.
- We can store more elements than the table size by using chained hashing.
 - Each array position in the hash table is a head reference to a linked list of keys (a "bucket").
 - All colliding keys that hash to an array position are inserted to that bucket.
- `HashMap` and `HashSet` use chained hashing.

Chaining

```
  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
  | null |

  55 null
  36 48
  72 null
  14 70
  83 null
```
Hash codes and `Object`

- `Object` implements `equals` and `hashCode` methods, so each class we write inherits these.
 - `Object` calculates an object's hash code based on its address in memory.
 - Thus if two `Objects` are equal, their hash codes are equal also.
- If you override `equals` for a class, you should also override `hashCode` such that:
 - If `obj1.equals(obj2)` then `obj1.hashCode() == obj2.hashCode()`

Hash Codes for Strings

- Each character in a string has a unicode (int) value.
 - 'A'=65 'B'=66 'C'=67, ..., 'a'=97, 'b'=98, 'c'=99, ...
- Summing up the int values of the characters can lead to a lot of collisions:
 - "Act" "Cat" "Ads" sum of char codes = 280
- The `hascode` method of the `String` class returns
 \[
 s_0 \times 31^{n-1} + s_1 \times 31^{n-2} + \ldots + s_{n-1}
 \]
 for the string `s_0s_1...s_{n-1}`

<table>
<thead>
<tr>
<th>String</th>
<th>"Act"</th>
<th>"Cat"</th>
<th>"Ads"</th>
</tr>
</thead>
<tbody>
<tr>
<td>hashcode:</td>
<td>65650</td>
<td>67510</td>
<td>67602</td>
</tr>
</tbody>
</table>
Birthday Paradox:
A Hashing Function

- Let k be a birthday.
 - Hash each birthday into a table of size 365 (one cell for each day of the year).
- Probability that n people don't have the same birthday: \(p = \frac{364}{365} \times \frac{363}{365} \times \ldots \times \frac{365-n+1}{365} \)
 - When \(n \geq 24 \), \(p < 0.5 \).
 - This means when \(n \geq 24 \), chances are better that at least two people share the same birthday!
- For any hashing problem of reasonable size, we are almost certain to have collisions.

Load Factor

- The load factor \(\alpha \) of a hash table with \(n \) elements is given by the following formula:
 \[\alpha = \frac{n}{\text{table.length}} \]
- Thus, \(0 \leq \alpha \leq 1 \) for linear probing.
 (\(\alpha \) can be greater than 1 for other collision resolution methods)
- For linear probing, as \(\alpha \) approaches 1, the number of collisions increases
Reducing Collisions

- The probability of a collision increases as the load factor increases.
- We cannot just double the size of the table and copy the elements from the original table to the new table.
 - Why?

Rehashing

- Algorithm:
 - Allocate a new hash table twice the size of the original table.
 - Reinsert each element of the old table into the new table (using the hash function).
 - Reference the new table as the hash table.
- `HashMap` and `HashSet` use a default load factor of 0.75 and an initial capacity of 16.
Average Search Time

- In open-addressing, the average number of table elements examined in a successful search is approximately:

\[
\frac{1 + \frac{1}{1-\alpha}}{2}
\]

using linear probing*

\[
1 + \frac{\alpha}{2}
\]

using chained hashing

*assuming a non-full hash table with no removals
Example

- If we have 60000 items to store in a hash table using open addressing (linear probing) and we desire a load factor of 0.75, how big should the hash table be?

Example (cont'd)

- If we have 60000 items to store in a hash table using open addressing (linear probing) and we have a load factor of 0.75, what is the expected number of comparisons to search for a key?
Example (cont'd)

- How large should the table size t be if we use chaining and desire the same expected number of comparisons as with the linear probing from the previous example?

Example (cont'd)

- How much memory is used in each case if each table holds 60000 keys with a load factor of 0.75?