Advanced Optimization

(10-801: CMU)

Lecture 21
Incremental methods; Stochastic Optimization

02 Apr 2014

Suvrit Sra
Incremental gradient methods

$$\min \ F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$
Incremental gradient methods

$$\min F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

We saw incremental gradient methods

$$x_{k+1} = x_k - \frac{\eta_k}{m} \nabla f_{i(k)}(x_k), \quad k \geq 0.$$
Incremental gradient methods

\[
\min \quad F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)
\]

- We saw incremental gradient methods

\[
x_{k+1} = x_k - \frac{\eta_k}{m} \nabla f_i(k)(x_k), \quad k \geq 0.
\]

- View as gradient-descent with perturbed gradients

\[
x_{k+1} = x_k - \frac{\eta_k}{m} (\nabla F(x_k) + e_k)
\]
Incremental gradient methods

\[
\min F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)
\]

We saw incremental gradient methods

\[
x_{k+1} = x_k - \eta_k \frac{m}{m} \nabla f_i(x_k), \quad k \geq 0.
\]

View as gradient-descent with perturbed gradients

\[
x_{k+1} = x_k - \eta_k \frac{m}{m} (\nabla F(x_k) + e_k)
\]

Perturbation slows down rate of convergence. Typically \(\eta_k = O(1/k)\); convergence rate also \(O(1/k)\) (sublinear).
Incremental gradient methods

\[
\min \ F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)
\]

- We saw incremental gradient methods

\[
x_{k+1} = x_k - \frac{\eta_k}{m} \nabla f_i(x_k), \quad k \geq 0.
\]

- View as gradient-descent with perturbed gradients

\[
x_{k+1} = x_k - \frac{\eta_k}{m} \left(\nabla F(x_k) + e_k \right)
\]

- Perturbation slows down rate of convergence. Typically \(\eta_k = O(1/k) \); convergence rate also \(O(1/k) \) (sublinear).

- Can we reduce impact of perturbation to speed up?
Stochastic gradients

\[
\min F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)
\]
Stochastic gradients

\[
\min F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)
\]

The incremental gradient method (IGM)

- Let \(x_0 \in \mathbb{R}^n \)
- For \(k \geq 0 \)
Stochastic gradients

\[\min F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x) \]

The incremental gradient method (IGM)

- Let \(x_0 \in \mathbb{R}^n \)
- For \(k \geq 0 \)
 1. Pick \(i(k) \in \{1, 2, \ldots, m\} \) uniformly at random
 2. \(x_{k+1} = x_k - \eta_k \nabla f_{i(k)}(x_k) \)

\[g \equiv \nabla f_{i(k)}(x_k) \] may be viewed as a stochastic gradient, where \(e \) is mean-zero noise:

\[E[e] = 0 \]
Stochastic gradients

\[
\min F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)
\]

The incremental gradient method (IGM)

- Let \(x_0 \in \mathbb{R}^n \)
- For \(k \geq 0 \)
 1. Pick \(i(k) \in \{1, 2, \ldots, m\} \) uniformly at random
 2. \(x_{k+1} = x_k - \eta_k \nabla f_{i(k)}(x_k) \)

\[g \equiv \nabla f_{i(k)} \text{ may be viewed as a stochastic gradient} \]
Stochastic gradients

\[
\min F(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)
\]

The incremental gradient method (IGM)

► Let \(x_0 \in \mathbb{R}^n \)

► For \(k \geq 0 \)
 1. Pick \(i(k) \in \{1, 2, \ldots, m\} \) uniformly at random
 2. \(x_{k+1} = x_k - \eta_k \nabla f_{i(k)}(x_k) \)

\[g \equiv \nabla f_{i(k)} \] may be viewed as a stochastic gradient

\[g := g^{\text{true}} + e, \text{ where } e \text{ is mean-zero noise: } \mathbb{E}[e] = 0 \]
Stochastic gradients

- Index \(i(k) \) chosen uniformly from \(\{1, \ldots, m\} \)
- Thus, \textbf{in expectation}:
 \[
 \mathbb{E}[g] = \sum_{i=1}^{m} \nabla f_i(x) = \nabla F(x)
 \]

- Alternatively, \(\mathbb{E}[g - g_{true}] = \mathbb{E}[e] = 0 \).
- We call \(g \) an unbiased estimate of the gradient.

Here, we obtained \(g \) in a two step process:
- \textit{Sample:} pick an index \(i(k) \) uniformly at random
- \textit{Oracle:} Compute a stochastic gradient based on \(i(k) \).
Stochastic gradients

- Index $i(k)$ chosen uniformly from \{1, \ldots, m\}
- Thus, **in expectation:**

\[
\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)]
\]
Stochastic gradients

- Index $i(k)$ chosen uniformly from $\{1, \ldots, m\}$
- Thus, in expectation:

\[
\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)] = \sum_i \frac{1}{m} \nabla f_i(x) =
\]
Index $i(k)$ chosen uniformly from $\{1, \ldots, m\}$

Thus, in expectation:

$$
\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)] = \sum_i \frac{1}{m} \nabla f_i(x) = \nabla F(x)
$$
Index $i(k)$ chosen uniformly from $\{1, \ldots, m\}$

Thus, **in expectation:**

$$\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)] = \sum_i \frac{1}{m} \nabla f_i(x) = \nabla F(x)$$

Alternatively, $\mathbb{E}[g - g^\text{true}] = \mathbb{E}[e] = 0$.
Index $i(k)$ chosen uniformly from $\{1, \ldots, m\}$

Thus, in expectation:

$$\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)] = \sum_i \frac{1}{m} \nabla f_i(x) = \nabla F(x)$$

Alternatively, $\mathbb{E}[g - g^{\text{true}}] = \mathbb{E}[e] = 0$.

We call g an unbiased estimate of the gradient.
Stochastic gradients

- Index $i(k)$ chosen uniformly from $\{1, \ldots, m\}$
- Thus, in expectation:

$$\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)] = \sum_i \frac{1}{m} \nabla f_i(x) = \nabla F(x)$$

- Alternatively, $\mathbb{E}[g - g^{\text{true}}] = \mathbb{E}[e] = 0$.
- We call g an unbiased estimate of the gradient
- Here, we obtained g in a two step process:
 - **Sample**: pick an index $i(k)$ unif. at random
 - **Oracle**: Compute a stochastic gradient based on $i(k)$
Stochastic gradients – more generally

\[x_{k+1} = x_k - \eta_k g_k(x_k, \xi_k), \]

where \(\xi_k \) is a rv such that

\[\mathbb{E}_{\xi_k} [g_k(x_k, \xi_k) | x_k] = \nabla F(x_k). \]
Stochastic gradients — more generally

\[x_{k+1} = x_k - \eta_k g_k(x_k, \xi_k), \]

where \(\xi_k \) is a rv such that

\[\mathbb{E}_{\xi_k}[g_k(x_k, \xi_k)|x_k] = \nabla F(x_k). \]

▶ That is, \(g_k \) is a **stochastic gradient**.
Stochastic gradients – more generally

\[x_{k+1} = x_k - \eta_k g_k(x_k, \xi_k), \]

where \(\xi_k \) is a rv such that

\[\mathbb{E}_{\xi_k} [g_k(x_k, \xi_k)|x_k] = \nabla F(x_k). \]

That is, \(g_k \) is a **stochastic gradient**.

Example: IGM with \(g_k = \nabla f_i(k)(x_k) \) uses \(\xi_k = i(k) \).
\[x_{k+1} = x_k - \eta_k g_k(x_k, \xi_k), \]

where \(\xi_k \) is a rv such that

\[\mathbb{E}_{\xi_k} [g_k(x_k, \xi_k)|x_k] = \nabla F(x_k). \]

- That is, \(g_k \) is a **stochastic gradient**.

Example: IGM with \(g_k = \nabla f_{i(k)}(x_k) \) uses \(\xi_k = i(k) \)

- \(g_k \) equals \(\nabla F \) only in expectation
- Individual values can **vary** a lot
Stochastic gradients – more generally

\[x_{k+1} = x_k - \eta_k g_k(x_k, \xi_k), \]

where \(\xi_k \) is a rv such that

\[\mathbb{E}_{\xi_k} [g_k(x_k, \xi_k) | x_k] = \nabla F(x_k). \]

That is, \(g_k \) is a **stochastic gradient**.

Example: IGM with \(g_k = \nabla f_{i(k)}(x_k) \) uses \(\xi_k = i(k) \)

- \(g_k \) equals \(\nabla F \) only in expectation
- Individual values can vary a lot
- This variance (\(\mathbb{E}[\|g - \nabla F\|^2] \)) influences rate of convergence.
Controlling variance

Instead of using $g_k = \nabla f_{i(k)}(x_k)$, correct it by using true gradient every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$).
Controlling variance

Instead of using $g_k = \nabla f_{i(k)}(x_k)$, correct it by using true gradient every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$)

Reduces variance of $g_k(x_k, \xi_k)$; speeds up convergence
Controlling variance

- Instead of using $g_k = \nabla f_{i(k)}(x_k)$, correct it by using **true gradient** every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$)
- Reduces variance of $g_k(x_k, \xi_k)$; speeds up convergence

\[
\nabla F(\bar{x}) = \frac{1}{m} \sum_i f_i(\bar{x})
\]

\[
x_{k+1} = x_k - \eta_k \left[\nabla f_{i(k)}(x_k) - \nabla f_{i(k)}(\bar{x}) + \nabla F(\bar{x}) \right]
\]

$g_k(x_k, \xi_k)$
Controlling variance

▶ Instead of using $g_k = \nabla f_{i(k)}(x_k)$, correct it by using true gradient every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$)

▶ Reduces variance of $g_k(x_k, \xi_k)$; speeds up convergence

\[
\nabla F(\bar{x}) = \frac{1}{m} \sum_i f_i(\bar{x}) \\
x_{k+1} = x_k - \eta_k [\nabla f_{i(k)}(x_k) - \nabla f_{i(k)}(\bar{x}) + \nabla F(\bar{x})]
\]

▶ Thus, with $\xi_k = i(k)$, $\mathbb{E}_{\xi}[g_k|x_k] = \nabla F(x_k)$
Controlling variance

▶ Instead of using $g_k = \nabla f_{i(k)}(x_k)$, correct it by using true gradient every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$)

▶ Reduces variance of $g_k(x_k, \xi_k)$; speeds up convergence

$$\nabla F(\bar{x}) = \frac{1}{m} \sum_i f_i(\bar{x})$$

$$x_{k+1} = x_k - \eta_k \left[\nabla f_{i(k)}(x_k) - \nabla f_{i(k)}(\bar{x}) + \nabla F(\bar{x}) \right]$$

▶ Thus, with $\xi_k = i(k)$, $\mathbb{E}_{\xi} [g_k|x_k] = \nabla F(x_k)$

Same expectation, lower variance
Controlling variance

▶ Instead of using $g_k = \nabla f_{i(k)}(x_k)$, correct it by using true gradient every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$)

▶ Reduces variance of $g_k(x_k, \xi_k)$; speeds up convergence

$$
\nabla F(\bar{x}) = \frac{1}{m} \sum_i f_i(\bar{x})
$$

$$
x_{k+1} = x_k - \eta_k [\nabla f_{i(k)}(x_k) - \nabla f_{i(k)}(\bar{x}) + \nabla F(\bar{x})]
$$

▶ Thus, with $\xi_k = i(k)$, $\mathbb{E}_{\xi} [g_k | x_k] = \nabla F(x_k)$

Same expectation, lower variance

Say $\bar{x}, x_k \to x^*$. Then $\nabla F(\bar{x}) \to 0$.
Controlling variance

▶ Instead of using $g_k = \nabla f_i(k)(x_k)$, correct it by using true gradient every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$)

▶ Reduces variance of $g_k(x_k, \xi_k)$; speeds up convergence

\[
\nabla F(\bar{x}) = \frac{1}{m} \sum_i f_i(\bar{x})
\]

\[
x_{k+1} = x_k - \eta_k [\nabla f_i(k)(x_k) - \nabla f_i(k)(\bar{x}) + \nabla F(\bar{x})]
\]

▶ Thus, with $\xi_k = i(k)$, $\mathbb{E}_\xi [g_k|x_k] = \nabla F(x_k)$

| Same expectation, lower variance |

Say $\bar{x}, x_k \to x^*$. Then $\nabla F(\bar{x}) \to 0$. Thus, if $\nabla f_i(\bar{x}) \to \nabla f_i(x^*)$, then
Controlling variance

- Instead of using $g_k = \nabla f_{i(k)}(x_k)$, correct it by using true gradient every m steps (recall: $F = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$)

- Reduces variance of $g_k(x_k, \xi_k)$; speeds up convergence

\[
\nabla F(\bar{x}) = \frac{1}{m} \sum_i f_i(\bar{x})
\]

\[
x_{k+1} = x_k - \eta_k \left[\nabla f_{i(k)}(x_k) - \nabla f_{i(k)}(\bar{x}) + \nabla F(\bar{x}) \right]
\]

- Thus, with $\xi_k = i(k)$, $\mathbb{E}_\xi [g_k | x_k] = \nabla F(x_k)$

Same expectation, lower variance

Say $\bar{x}, x_k \to x^*$. Then $\nabla F(\bar{x}) \to 0$. Thus, if $\nabla f_i(\bar{x}) \to \nabla f_i(x^*)$, then

\[
\nabla f_i(x_k) - \nabla f_i(\bar{x}) + \nabla F(\bar{x}) \to \nabla f_i(x_k) - \nabla f_i(x^*) \to 0.
\]
For $s \geq 1$:

1. $\bar{x} \leftarrow \bar{x}_{s-1}$
2. $\bar{g} \leftarrow \nabla F(\bar{x})$
 (full gradient computation)
SG with variance reduction

For $s \geq 1$:

1. $\bar{x} \leftarrow \bar{x}_{s-1}$
2. $\bar{g} \leftarrow \nabla F(\bar{x})$ (full gradient computation)
3. $x_0 = \bar{x}$; $t \leftarrow \text{RAND}(1, m)$ (randomized stopping)

Theorem

Assume each $f_i(x)$ is smooth convex and $F(x)$ is strongly-convex. Then, for sufficiently large n, there is $\alpha < 1$ s.t.

$$E[F(\bar{x}_s) - F(x^*)] \leq \alpha [F(\bar{x}_0) - F(x^*)]$$

Rmk:
Typically for stochastic methods we make stmts of the form

$$E[F(x_k) - F(x^*)] \leq O\left(\frac{1}{k}\right)$$
For $s \geq 1$:

1. $\bar{x} \leftarrow \bar{x}_{s-1}$
2. $\bar{g} \leftarrow \nabla F(\bar{x})$ (full gradient computation)
3. $x_0 = \bar{x}; \quad t \leftarrow \text{RAND}(1, m)$ (randomized stopping)
4. For $k = 0, 1, \ldots, t - 1$
 - Randomly pick $i(k) \in [1..m]$
 - $x_{k+1} = x_k - \eta_k (\nabla f_{i(k)}(x_k) - \nabla f_{i(k)}(\bar{x}) + \bar{g})$
SG with variance reduction

For $s \geq 1$:

1. $\bar{x} \leftarrow \bar{x}_{s-1}$
2. $\bar{g} \leftarrow \nabla F(\bar{x})$ (full gradient computation)
3. $x_0 = \bar{x}; \quad t \leftarrow \text{RAND}(1, m)$ (randomized stopping)
4. For $k = 0, 1, \ldots, t - 1$
 - Randomly pick $i(k) \in [1..m]$
 - $x_{k+1} = x_k - \eta_k (\nabla f_{i(k)}(x_k) - \nabla f_{i(k)}(\bar{x}) + \bar{g})$
5. $\bar{x}_s \leftarrow x_t$

Theorem

Assume each $f_i(x)$ is smooth convex and $F(x)$ is strongly-convex. Then, for sufficiently large n, there is $\alpha < 1$ s.t.

$$E[F(\bar{x}_s) - F(x^\ast)] \leq \alpha [F(\bar{x}_0) - F(x^\ast)]$$

Rmk:

Typically for stochastic methods we make stmts of the form

$$E[F(x_k) - F(x^\ast)] \leq O(1/k)$$
For $s \geq 1$:

1. $\bar{x} \leftarrow \bar{x}_{s-1}$
2. $\bar{g} \leftarrow \nabla F(\bar{x})$ (full gradient computation)
3. $x_0 = \bar{x}$; $t \leftarrow \text{RAND}(1, m)$ (randomized stopping)
4. For $k = 0, 1, \ldots, t - 1$
 - Randomly pick $i(k) \in [1..m]$
 - $x_{k+1} = x_k - \eta_k (\nabla f_i(x_k) - \nabla f_{i(k)}(\bar{x}) + \bar{g})$
5. $\bar{x}_s \leftarrow x_t$

Theorem Assume each $f_i(x)$ is smooth convex and $F(x)$ is strongly-convex. Then, for sufficiently large n, there is $\alpha < 1$ s.t.

$$E[F(\bar{x}_s) - F(x^*)] \leq \alpha^s [F(\bar{x}_0) - F(x^*)]$$
SG with variance reduction

For $s \geq 1$:

1. $\bar{x} \leftarrow \bar{x}_{s-1}$
2. $\bar{g} \leftarrow \nabla F(\bar{x})$ (full gradient computation)
3. $x_0 = \bar{x}; \quad t \leftarrow \text{RAND}(1, m)$ (randomized stopping)
4. For $k = 0, 1, \ldots, t - 1$
 - Randomly pick $i(k) \in [1..m]$
 - $x_{k+1} = x_k - \eta_k (\nabla f_{i(k)}(x_k) - \nabla f_{i(k)}(\bar{x}) + \bar{g})$
5. $\bar{x}_s \leftarrow x_t$

Theorem Assume each $f_i(x)$ is smooth convex and $F(x)$ is strongly-convex. Then, for sufficiently large n, there is $\alpha < 1$ s.t.

$$
\mathbb{E}[F(\bar{x}_s) - F(x^*)] \leq \alpha^s [F(\bar{x}_0) - F(x^*)]
$$

Rmk: Typically for stochastic methods we make stmts of the form

$$
\mathbb{E}[F(x_k) - F(x^*)] \leq O(1/k)
$$
Stochastic Optimization
Stochastic optimization – example

Stochastic LP

\[
\begin{align*}
\text{min} & \quad x_1 + x_2 \\
\omega_1 x_1 + x_2 & \geq 10 \\
\omega_2 x_1 + x_2 & \geq 5 \\
x_1, x_2 & \geq 0,
\end{align*}
\]

where \(\omega_1 \sim \mathcal{U}[1, 5] \) and \(\omega_2 \sim \mathcal{U}[1/3, 1] \)
Stochastic optimization – example

Stochastic LP

\[\begin{align*}
\min & \quad x_1 + x_2 \\
\omega_1 x_1 + x_2 & \geq 10 \\
\omega_2 x_1 + x_2 & \geq 5 \\
x_1, x_2 & \geq 0,
\end{align*} \]

where \(\omega_1 \sim \mathcal{U}[1, 5] \) and \(\omega_2 \sim \mathcal{U}[1/3, 1] \)

- The constraints are not deterministic!
- But we have an idea about what randomness is there
Stochastic optimization – example

Stochastic LP

\[
\begin{align*}
\text{min} & \quad x_1 + x_2 \\
\omega_1 x_1 + x_2 & \geq 10 \\
\omega_2 x_1 + x_2 & \geq 5 \\
x_1, x_2 & \geq 0,
\end{align*}
\]

where \(\omega_1 \sim U[1, 5] \) and \(\omega_2 \sim U[1/3, 1] \)

▶ The constraints are not deterministic!
▶ But we have an idea about what randomness is there
▶ How do we solve this LP?
Stochastic optimization – example

Stochastic LP

\[
\begin{align*}
\text{min} & \quad x_1 + x_2 \\
\omega_1 x_1 + x_2 & \geq 10 \\
\omega_2 x_1 + x_2 & \geq 5 \\
x_1, x_2 & \geq 0,
\end{align*}
\]

where \(\omega_1 \sim \mathcal{U}[1, 5] \) and \(\omega_2 \sim \mathcal{U}[1/3, 1] \)

- The constraints are not deterministic!
- But we have an idea about what randomness is there
- How do we solve this LP?
- What does it even mean to solve it?
Stochastic optimization – example

Stochastic LP

\[
\begin{align*}
\text{min} & \quad x_1 + x_2 \\
\omega_1 x_1 + x_2 & \geq 10 \\
\omega_2 x_1 + x_2 & \geq 5 \\
x_1, x_2 & \geq 0,
\end{align*}
\]

where \(\omega_1 \sim U[1, 5] \) and \(\omega_2 \sim U[1/3, 1] \)

- The constraints are not deterministic!
- But we have an idea about what randomness is there
- How do we solve this LP?
- What does it even mean to solve it?
- If \(\omega \) has been observed, problem becomes deterministic, and can be solved as a usual LP (aka *wait-and-watch*)
But we cannot “wait-and-watch” —
Stochastic optimization – example

- But we cannot “wait-and-watch” — we need to decide on x before knowing the value of ω
Stochastic optimization – example

- But we cannot “wait-and-watch” — we need to decide on x before knowing the value of ω
- What to do without knowing exact values for ω_1, ω_2?
Stochastic optimization – example

- But we cannot “wait-and-watch” — we need to decide on x before knowing the value of ω

- What to do without knowing exact values for ω_1, ω_2?

- Some ideas
 - Guess the uncertainty
 - Probabilistic / Chance constraints
 - ...
Stochastic optimization – modeling

Some guesses

♠ Unbiased / Average case: Choose \textit{mean values} for each r.v.
♠ Robust / Worst case: Choose \textit{worst case} values
♠ Explorative / Best case: Choose \textit{best case} values
♠ None of these: \textit{Sample…}
Stochastic optimization – example

\[
\begin{align*}
\text{min} & \quad x_1 + x_2 \\
\omega_1 x_1 + x_2 & \geq 10 \\
\omega_2 x_1 + x_2 & \geq 5 \\
x_1, x_2 & \geq 0,
\end{align*}
\]

where \(\omega_1 \sim \mathcal{U}[1, 5] \) and \(\omega_2 \sim \mathcal{U}[1/3, 1] \)

Unbiased / Average case:

\[
\mathbb{E}[\omega_1] = 3, \quad \mathbb{E}[\omega_2] = 2/3
\]

\[
\begin{align*}
\text{min} & \quad x_1 + x_2 \\
3x_1 + x_2 & \geq 10 \\
(2/3)x_1 + x_2 & \geq 5 \\
x_1, x_2 & \geq 0,
\end{align*}
\]

\[
x_1^* + x_2^* = 5.7143... \\
(x_1^*, x_2^*) \approx (15/7, 25/7).
\]
Stochastic optimization – example

\[
\begin{align*}
\text{min} & \quad x_1 + x_2 \\
\omega_1 x_1 + x_2 & \geq 10 \\
\omega_2 x_1 + x_2 & \geq 5 \\
x_1, x_2 & \geq 0,
\end{align*}
\]

where \(\omega_1 \sim \mathcal{U}[1, 5] \) and \(\omega_2 \sim \mathcal{U}[\frac{1}{3}, 1] \)

Worst case:

\(\omega_1 = 1, \quad \omega_2 = \frac{1}{3} \)

\[
\begin{align*}
\text{min} & \quad x_1 + x_2 \\
1x_1 + x_2 & \geq 10 \\
(\frac{1}{3})x_1 + x_2 & \geq 5 \\
x_1, x_2 & \geq 0,
\end{align*}
\]

\(x_1^* + x_2^* = 10 \)

\((x_1^*, x_2^*) \approx (\frac{41}{12}, \frac{79}{12}) \).
Stochastic optimization – example

\[
\begin{align*}
\min & \quad x_1 + x_2 \\
\omega_1 x_1 + x_2 & \geq 10 \\
\omega_2 x_1 + x_2 & \geq 5 \\
x_1, x_2 & \geq 0,
\end{align*}
\]

where \(\omega_1 \sim \mathcal{U}[1, 5] \) and \(\omega_2 \sim \mathcal{U}[1/3, 1] \)

Best case:

\[
\begin{align*}
\omega_1 &= 5, \quad \mathbb{E}[\omega_2] = 1 \\
\min & \quad x_1 + x_2 \\
5x_1 + x_2 & \geq 10 \\
x_1 + x_2 & \geq 5 \\
x_1, x_2 & \geq 0,
\end{align*}
\]

\[
x_1^* + x_2^* = 5 \\
x_1^* + x_2^* \approx (17/8, 23/8).
\]
Stochastic optimization via sampling

\[
\min F(x) := \mathbb{E}_\xi[f(x, \xi)]
\]

- \(\xi\) follows some **known** distribution
Stochastic optimization via sampling

\[
\begin{align*}
\min F(x) & := \mathbb{E}_\xi[f(x, \xi)] \\
\end{align*}
\]

- \(\xi \) follows some \textbf{known} distribution
- Previous example, \(\xi \) took values in a \textbf{discrete set} of size \(m \)
 (might as well say \(\xi \in \{1, \ldots, m\} \))
Stochastic optimization via sampling

\[
\min F(x) := \mathbb{E}_\xi[f(x, \xi)]
\]

- \(\xi\) follows some **known** distribution
- Previous example, \(\xi\) took values in a **discrete set** of size \(m\) (might as well say \(\xi \in \{1, \ldots, m\}\))
- so that \(f(x, \xi) = f_{\xi}(x)\); so assuming uniform distribution, we had \(F(x) = \mathbb{E}_\xi f(x, \xi) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)\)
Stochastic optimization via sampling

\[
\min F(x) := \mathbb{E}_\xi[f(x, \xi)]
\]

- \(\xi\) follows some **known** distribution
- Previous example, \(\xi\) took values in a **discrete set** of size \(m\) (might as well say \(\xi \in \{1, \ldots, m\}\))
- so that \(f(x, \xi) = f_\xi(x)\); so assuming uniform distribution, we had \(F(x) = \mathbb{E}_\xi f(x, \xi) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)\)
- But \(\xi\) can be **non-discrete**; we won’t be able to compute the expectation in closed form, since

\[
F(x) = \int f(x, \xi)dP(\xi),
\]

is a difficult high-dimensional integral.
Stochastic optimization – setup

\[\min_{x \in X} F(x) := \mathbb{E}_\xi[f(x, \xi)] \]

Setup and Assumptions

1. \(X \subset \mathbb{R}^n \) compact convex set
Stochastic optimization – setup

\[\min_{x \in \mathcal{X}} F(x) := \mathbb{E}_\xi[f(x, \xi)] \]

Setup and Assumptions

1. \(\mathcal{X} \subset \mathbb{R}^n \) compact convex set
2. \(\xi \) is a random vector whose probability distribution \(P \) is supported on \(\Omega \subset \mathbb{R}^d \); so \(f : \mathcal{X} \times \Omega \to \mathbb{R} \)
Stochastic optimization – setup

\[
\min_{x \in \mathcal{X}} F(x) := \mathbb{E}_\xi[f(x, \xi)]
\]

Setup and Assumptions

1. \(\mathcal{X} \subset \mathbb{R}^n \) compact convex set
2. \(\xi \) is a random vector whose probability distribution \(P \) is supported on \(\Omega \subset \mathbb{R}^d \); so \(f : \mathcal{X} \times \Omega \rightarrow \mathbb{R} \)
3. The expectation

\[
\mathbb{E}[f(x, \xi)] = \int_{\Omega} f(x, \xi) dP(\xi)
\]

is well-defined and finite valued for every \(x \in \mathcal{X} \).
Stochastic optimization – setup

\[
\min_{x \in \mathcal{X}} F(x) := \mathbb{E}_\xi[f(x, \xi)]
\]

Setup and Assumptions

1. \(\mathcal{X} \subset \mathbb{R}^n \) compact convex set
2. \(\xi \) is a random vector whose probability distribution \(P \) is supported on \(\Omega \subset \mathbb{R}^d \); so \(f : \mathcal{X} \times \Omega \rightarrow \mathbb{R} \)
3. The expectation

\[
\mathbb{E}[f(x, \xi)] = \int_\Omega f(x, \xi) dP(\xi)
\]

is well-defined and finite valued for every \(x \in \mathcal{X} \).

4. For every \(\xi \in \Omega \), \(f(\cdot, \xi) \) is convex.

Convex stochastic optimization problem
Stochastic optimization – setup

- Cannot compute expectation in general

Assumption 1: Possible to generate independent identically distributed (iid) samples \(\xi_1, \xi_2, \ldots \)

Assumption 2: For pair \((x, \xi)\) \(\in X \times \Omega\), oracle yields stochastic gradient \(g(x, \xi)\), i.e.,

\[
G(x) := \mathbb{E}[g(x, \xi)]
\]

subject to \(G(x) \in \partial F(x)\).

Theorem: Let \(\xi \in \Omega\); If \(f(\cdot, \xi)\) is convex, and \(F(\cdot)\) is finite valued in a neighborhood of \(x\), then

\[
\partial F(x) = \mathbb{E}[\partial x f(x, \xi)]
\]

So \(g(x, \omega) \in \partial x f(x, \omega)\) is a stochastic subgradient.
Stochastic optimization – setup

- Cannot compute expectation in general
- Computational techniques based on sampling

Assumption 1: Possible to generate independent identically distributed (iid) samples \(\xi_1, \xi_2, \ldots \)

Assumption 2: For pair \((x, \xi) \in X \times \Omega \), oracle yields stochastic gradient \(g(x, \xi) \), i.e.,

\[
G(x) := \mathbb{E}[g(x, \xi)] \quad \text{s.t.} \quad G(x) \in \partial F(x).
\]

Theorem: Let \(\xi \in \Omega \); If \(f(\cdot, \xi) \) is convex, and \(F(\cdot) \) is finite valued in a neighborhood of \(x \), then

\[
\partial F(x) = \mathbb{E}[\partial_x f(x, \xi)].
\]

So \(g(x, \omega) \in \partial_x f(x, \omega) \) is a stochastic subgradient.
Stochastic optimization – setup

- Cannot compute expectation in general
- Computational techniques based on sampling

Assumption 1: Possible to generate independent identically distributed (iid) samples ξ_1, ξ_2, \ldots

Assumption 2: For pair $(x, \xi) \in \mathcal{X} \times \Omega$, oracle yields stochastic gradient $g(x, \xi)$, i.e.,

$$G(x) := \mathbb{E}[g(x, \xi)] \quad \text{s.t.} \quad G(x) \in \partial F(x).$$
Stochastic optimization – setup

- Cannot compute expectation in general
- Computational techniques based on sampling

Assumption 1: Possible to generate independent identically distributed (iid) samples ξ_1, ξ_2, \ldots

Assumption 2: For pair $(x, \xi) \in \mathcal{X} \times \Omega$, oracle yields stochastic gradient $g(x, \xi)$, i.e.,

$$G(x) := \mathbb{E}[g(x, \xi)] \quad \text{s.t.} \quad G(x) \in \partial F(x).$$

Theorem Let $\xi \in \Omega$; If $f(\cdot, \xi)$ is convex, and $F(\cdot)$ is finite valued in a neighborhood of x, then

$$\partial F(x) = \mathbb{E}[\partial_x f(x, \xi)].$$
Stochastic optimization – setup

▶ Cannot compute expectation in general
▶ Computational techniques based on sampling

Assumption 1: Possible to generate independent identically distributed (iid) samples ξ_1, ξ_2, \ldots

Assumption 2: For pair $(x, \xi) \in \mathcal{X} \times \Omega$, oracle yields stochastic gradient $g(x, \xi)$, i.e.,

$$G(x) := \mathbb{E}[g(x, \xi)] \quad \text{s.t.} \quad G(x) \in \partial F(x).$$

Theorem Let $\xi \in \Omega$; If $f(\cdot, \xi)$ is convex, and $F(\cdot)$ is finite valued in a neighborhood of x, then

$$\partial F(x) = \mathbb{E}[\partial_x f(x, \xi)].$$

▶ So $g(x, \omega) \in \partial_x f(x, \omega)$ is a stochastic subgradient.
Stochastic optimization – approaches

♣ Stochastic Approximation (SA)

► Sample ξ_k iid
Stochastic optimization – approaches

♣ Stochastic Approximation (SA)

► Sample ξ_k iid
► Generate stochastic subgradient $g(x, \xi)$

♣ Sample average approximation (SAA)

► Generate m iid samples, ξ_1, \ldots, ξ_m
► Consider empirical objective $\hat{F}_m := \frac{m}{m-1} \sum_i f(x, \xi_i)$
► SAA refers to creation of this sample average problem
► Minimizing \hat{F}_m still needs to be done!
Stochastic optimization – approaches

♣ Stochastic Approximation (SA)
 ▶ Sample ξ_k iid
 ▶ Generate stochastic subgradient $g(x, \xi)$
 ▶ Use that in a subgradient method
Stochastic optimization – approaches

♣ Stochastic Approximation (SA)
 ► Sample ξ_k iid
 ► Generate stochastic subgradient $g(x, \xi)$
 ► Use that in a subgradient method

♣ Sample average approximation (SAA)
Stochastic optimization – approaches

♣ Stochastic Approximation (SA)
 ▶ Sample ξ_k iid
 ▶ Generate stochastic subgradient $g(x, \xi)$
 ▶ Use that in a subgradient method

♣ Sample average approximation (SAA)
 ▶ Generate m iid samples, ξ_1, \ldots, ξ_m
Stochastic optimization – approaches

♣ Stochastic Approximation (SA)
 ► Sample ξ_k iid
 ► Generate stochastic subgradient $g(x, \xi)$
 ► Use that in a subgradient method

♣ Sample average approximation (SAA)
 ► Generate m iid samples, ξ_1, \ldots, ξ_m
 ► Consider empirical objective $\hat{F}_m := m^{-1} \sum_i f(x, \xi_i)$
Stochastic optimization – approaches

♣ Stochastic Approximation (SA)
 ▶ Sample ξ_k iid
 ▶ Generate stochastic subgradient $g(x, \xi)$
 ▶ Use that in a subgradient method

♣ Sample average approximation (SAA)
 ▶ Generate m iid samples, ξ_1, \ldots, ξ_m
 ▶ Consider empirical objective $\hat{F}_m := m^{-1} \sum_i f(x, \xi_i)$
 ▶ SAA refers to creation of this sample average problem
 ▶ Minimizing \hat{F}_m still needs to be done!
Stochastic approximation – SA

SA or stochastic (sub)-gradient

- Let $x_0 \in \mathcal{X}$
- For $k \geq 0$
 - Sample ω_k; obtain $g(x_k, \xi_k)$ from oracle
 - Update $x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g(x_k, \xi_k))$, where $\alpha_k > 0$
Stochastic approximation – SA

SA or stochastic (sub)-gradient

► Let $x_0 \in \mathcal{X}$

► For $k \geq 0$

 ◦ Sample ω_k; obtain $g(x_k, \xi_k)$ from oracle

 ◦ Update $x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g(x_k, \xi_k))$, where $\alpha_k > 0$

We’ll simply write

\[
x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)
\]
Stochastic approximation – SA

SA or stochastic (sub)-gradient

- Let $x_0 \in \mathcal{X}$
- For $k \geq 0$
 - Sample ω_k; obtain $g(x_k, \xi_k)$ from oracle
 - Update $x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k(x_k, \xi_k))$, where $\alpha_k > 0$

We’ll simply write

$$x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)$$

Does this work?
Setup

x_k depends on rvs ξ_1, \ldots, ξ_{k-1}, so itself random
Stochastic approximation – analysis

Setup

- x_k depends on rvs ξ_1, \ldots, ξ_{k-1}, so itself random
- Of course, x_k does not depend on ξ_k
Setup

- \(x_k \) depends on rvs \(\xi_1, \ldots, \xi_{k-1} \), so itself random
- Of course, \(x_k \) does not depend on \(\xi_k \)
- Subgradient method analysis hinges upon: \(\| x_k - x^* \|^2 \)
Setup

- x_k depends on rvs ξ_1, \ldots, ξ_{k-1}, so itself random
- Of course, x_k does not depend on ξ_k
- Subgradient method analysis hinges upon: $\|x_k - x^*\|^2$
- Stochastic subgradient hinges upon: $\mathbb{E}[\|x_k - x^*\|^2]$
Stochastic approximation – analysis

Setup

- x_k depends on rvs ξ_1, \ldots, ξ_{k-1}, so itself random
- Of course, x_k does not depend on ξ_k
- Subgradient method analysis hinges upon: $\|x_k - x^*\|^2$
- Stochastic subgradient hinges upon: $\mathbb{E}[\|x_k - x^*\|^2]$

Denote: $R_k := \|x_k - x^*\|^2$ and $r_k := \mathbb{E}[R_k] = \mathbb{E}[\|x_k - x^*\|^2]$
Stochastic approximation – analysis

Setup

- x_k depends on rvs ξ_1, \ldots, ξ_{k-1}, so itself random
- Of course, x_k does not depend on ξ_k
- Subgradient method analysis hinges upon: $\|x_k - x^*\|^2$
- Stochastic subgradient hinges upon: $\mathbb{E}[\|x_k - x^*\|^2]$

Denote: $R_k := \|x_k - x^*\|^2$ and $r_k := \mathbb{E}[R_k] = \mathbb{E}[\|x_k - x^*\|^2]$

Bounding R_{k+1}

$$R_{k+1} = \|x_{k+1} - x^*\|^2 = \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|^2$$
Stochastic approximation – analysis

Setup

- x_k depends on rvs ξ_1, \ldots, ξ_{k-1}, so itself random
- Of course, x_k does not depend on ξ_k
- Subgradient method analysis hinges upon: $\|x_k - x^*\|^2$
- Stochastic subgradient hinges upon: $\mathbb{E}[\|x_k - x^*\|^2]$

Denote: $R_k := \|x_k - x^*\|^2$ and $r_k := \mathbb{E}[R_k] = \mathbb{E}[\|x_k - x^*\|^2]$

Bounding R_{k+1}

$$R_{k+1} = \|x_{k+1} - x^*\|^2 = \|P_{x}(x_k - \alpha_k g_k) - P_{x}(x^*)\|^2$$
$$\leq \|x_k - x^* - \alpha_k g_k\|^2$$
Stochastic approximation – analysis

Setup

- x_k depends on rvs ξ_1, \ldots, ξ_{k-1}, so itself random
- Of course, x_k does not depend on ξ_k
- Subgradient method analysis hinges upon: $\|x_k - x^*\|^2$
- Stochastic subgradient hinges upon: $\mathbb{E}[\|x_k - x^*\|^2]$

Denote: $R_k := \|x_k - x^*\|^2$ and $r_k := \mathbb{E}[R_k] = \mathbb{E}[\|x_k - x^*\|^2]$

Bounding R_{k+1}

$$R_{k+1} = \|x_{k+1} - x^*\|^2 = \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|^2$$

$$\leq \|x_k - x^* - \alpha_k g_k\|^2$$

$$= R_k + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle.$$
\[R_{k+1} \leq R_k + \alpha_k^2 \| g_k \|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \]
\[R_{k+1} \leq R_k + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \]

- **Assume:** \(\|g_k\|_2 \leq M \) on \(\mathcal{X} \)
- **Taking expectation:**
 \[r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle]. \]
Stochastic approximation – analysis

\[R_{k+1} \leq R_k + \alpha_k^2 \|g_k\|^2_2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \]

- **Assume:** \(\|g_k\|_2 \leq M \) on \(\mathcal{X} \)

- **Taking expectation:**
 \[r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle]. \]

- **We need to now get a handle on the last term**
Stochastic approximation – analysis

\[R_{k+1} \leq R_k + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \]

▶ **Assume:** \(\|g_k\|_2 \leq M \) on \(\mathcal{X} \)

▶ Taking expectation:

\[r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle]. \]

▶ We need to now get a handle on the last term

▶ Since \(x_k \) is independent of \(\xi_k \), we have

\[\mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle] = \]
\[R_{k+1} \leq R_k + \alpha_k^2 \| g_k \|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \]

- **Assume:** \(\| g_k \|_2 \leq M \) on \(\mathcal{X} \)
- **Taking expectation:**
 \[r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E} [\langle g_k, x_k - x^* \rangle] . \]
- **We need to now get a handle on the last term**
- **Since** \(x_k \) **is independent of** \(\xi_k \), **we have**
 \[
 \mathbb{E} [\langle x_k - x^*, g(x_k, \xi_k) \rangle] = \mathbb{E} \left\{ \mathbb{E} [\langle x_k - x^*, g(x_k, \xi_k) \rangle | \xi_{[1..(k-1)]}] \right\}
 =
 \]
 \[
 =
 \]
 \[
 =
 \]
\[R_{k+1} \leq R_k + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \]

- **Assume:** \(\|g_k\|_2 \leq M \) on \(\mathcal{X} \)
- **Taking expectation:**
 \[r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle]. \]
- **We need to now get a handle on the last term**
- **Since** \(x_k \) **is independent of** \(\xi_k \), **we have**
 \[
 \mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle] = \mathbb{E}\left\{ \mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle | \xi_{[1..(k-1)]}] \right\}
 = \mathbb{E}\left\{ \langle x_k - x^*, \mathbb{E}[g(x_k, \xi_k) | \xi_{[1..(k-1)]}] \rangle \right\}
 =
 \]
Stochastic approximation – analysis

\[R_{k+1} \leq R_k + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \]

- **Assume:** \(\|g_k\|_2 \leq M \) on \(X \)

- **Taking expectation:**
 \[r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k E[\langle g_k, x_k - x^* \rangle]. \]

- **We need to now get a handle on the last term**

- **Since** \(x_k \) **is independent of** \(\xi_k \), **we have**

 \[
 E[\langle x_k - x^*, g(x_k, \xi_k) \rangle] = E \left\{ E[\langle x_k - x^*, g(x_k, \xi_k) \rangle \mid \xi_{[1..(k-1)]}] \right\} \\
 = E \left\{ \langle x_k - x^*, E[g(x_k, \xi_k) \mid \xi_{[1..(k-1)]}] \rangle \right\} \\
 = E[\langle x_k - x^*, G_k \rangle], \quad G_k \in \partial F(x_k).
 \]
It remains to bound: \(\mathbb{E}[\langle x_k - x^*, G_k \rangle] \)
It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

- Since F is cvx, $F(x) \geq F(x_k) + \langle G_k, x - x_k \rangle$ for any $x \in \mathcal{X}$.

We've bounded the expected progress; What now?
Stochastic approximation – analysis

It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

- Since F is cvx, $F(x) \geq F(x_k) + \langle G_k, x - x_k \rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular

$$2\alpha_k \mathbb{E}[F(x^*) - F(x_k)] \geq 2\alpha_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$
It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

- Since F is cvx, $F(x) \geq F(x_k) + \langle G_k, x - x_k \rangle$ for any $x \in X$.
- Thus, in particular

$$2\alpha_k \mathbb{E}[F(x^*) - F(x_k)] \geq 2\alpha_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

Plug this bound back into the r_{k+1} inequality:

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle]$$
It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

- Since F is cvx, $F(x) \geq F(x_k) + \langle G_k, x - x_k \rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular

$$2\alpha_k \mathbb{E}[F(x^*) - F(x_k)] \geq 2\alpha_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

Plug this bound back into the r_{k+1} inequality:

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle]$$

$$2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle] \leq r_k - r_{k+1} + \alpha_k M^2$$
It remains to bound: \(\mathbb{E}[\langle x_k - x^*, G_k \rangle] \)

- Since \(F \) is cvx, \(F(x) \geq F(x_k) + \langle G_k, x - x_k \rangle \) for any \(x \in \mathcal{X} \).
- Thus, in particular

\[
2\alpha_k \mathbb{E}[F(x^*) - F(x_k)] \geq 2\alpha_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]
\]

Plug this bound back into the \(r_{k+1} \) inequality:

\[
\begin{align*}
 r_{k+1} & \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle] \\
 2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle] & \leq r_k - r_{k+1} + \alpha_k M^2 \\
 2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] & \leq r_k - r_{k+1} + \alpha_k M^2.
\end{align*}
\]
Stochastic approximation – analysis

It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

- Since F is cvx, $F(x) \geq F(x_k) + \langle G_k, x - x_k \rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular

$$2\alpha_k \mathbb{E}[F(x^*) - F(x_k)] \geq 2\alpha_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

Plug this bound back into the r_{k+1} inequality:

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle]$$

$$2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle] \leq r_k - r_{k+1} + \alpha_k M^2$$

$$2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \alpha_k M^2.$$

We’ve bounded the expected progress; What now?
2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \alpha_k M^2.
\[2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \alpha_k M^2. \]

Sum up over \(i = 1, \ldots, k \), to obtain

\[\sum_{i=1}^{k} (2\alpha_i \mathbb{E}[F(x_i) - f(x^*)]) \leq r_1 - r_{k+1} + M^2 \sum_i \alpha_i^2 \]
Stochastic approximation – analysis

\[2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \alpha_k M^2. \]

Sum up over \(i = 1, \ldots, k \), to obtain

\[
\sum_{i=1}^{k} (2\alpha_i \mathbb{E}[F(x_i) - f(x^*)]) \leq r_1 - r_{k+1} + M^2 \sum_i \alpha_i^2
\]
\[
\leq r_1 + M^2 \sum_i \alpha_i^2.
\]
2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \alpha_k M^2.

Sum up over $i = 1, \ldots, k$, to obtain

$$\sum_{i=1}^{k} (2\alpha_i \mathbb{E}[F(x_i) - f(x^*)]) \leq r_1 - r_{k+1} + M^2 \sum_{i} \alpha_i^2$$

$$\leq r_1 + M^2 \sum_{i} \alpha_i^2.$$

Divide both sides by $\sum_{i} \alpha_i$, so
Stochastic approximation – analysis

\[2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \alpha_k M^2. \]

Sum up over \(i = 1, \ldots, k \), to obtain

\[
\sum_{i=1}^{k} (2\alpha_i \mathbb{E}[F(x_i) - f(x^*)]) \leq r_1 - r_{k+1} + M^2 \sum_i \alpha_i^2
\]

\[
\leq r_1 + M^2 \sum_i \alpha_i^2.
\]

Divide both sides by \(\sum_i \alpha_i \), so

- Set \(\gamma_i = \frac{\alpha_i}{\sum_i \alpha_i} \).
- Thus, \(\gamma_i \geq 0 \) and \(\sum_i \gamma_i = 1 \).
\[2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \alpha_k M^2.\]

Sum up over \(i = 1, \ldots, k\), to obtain

\[
\sum_{i=1}^{k} (2\alpha_i \mathbb{E}[F(x_i) - f(x^*)]) \leq r_1 - r_{k+1} + M^2 \sum_i \alpha_i^2 \\
\leq r_1 + M^2 \sum_i \alpha_i^2.
\]

Divide both sides by \(\sum_i \alpha_i\), so

- Set \(\gamma_i = \frac{\alpha_i}{\sum_k \alpha_i}\).

- Thus, \(\gamma_i \geq 0\) and \(\sum_i \gamma_i = 1\)

\[
\mathbb{E} \left[\sum_i \gamma_i (F(x_i) - F(x^*)) \right] \leq \frac{r_1 + M^2 \sum_i \alpha_i^2}{2 \sum_i \alpha_i}
\]
Stochastic approximation – analysis

- Bound looks similar to bound in subgradient method
Stochastic approximation – analysis

- Bound looks similar to bound in subgradient method
- But we wish to say something about x_k

Since $\gamma_i \geq 0$ and $\sum_k \gamma_i = 1$, and we have $\gamma_i F(x_i)$

Easier to talk about averaged $\bar{x}_k := \sum_k \gamma_i x_i$.

$f(\bar{x}_k) \leq \sum_i \gamma_i F(x_i)$ due to convexity

So we finally obtain the inequality $E[F(\bar{x}_k) - F(x^*)] \leq r_1 + M_2 \sum_i \alpha_i^2 \sum_i \alpha_i$.
Stochastic approximation – analysis

- Bound looks similar to bound in subgradient method
- But we wish to say something about x_k
- Since $\gamma_i \geq 0$ and $\sum_i^k \gamma_i = 1$, and we have $\gamma_i F(x_i)$
Stochastic approximation – analysis

- Bound looks similar to bound in subgradient method
- But we wish to say something about x_k
- Since $\gamma_i \geq 0$ and $\sum_i^k \gamma_i = 1$, and we have $\gamma_i F(x_i)$
- Easier to talk about averaged

$$\bar{x}_k := \sum_i^k \gamma_i x_i.$$
Bound looks similar to bound in subgradient method

But we wish to say something about x_k

Since $\gamma_i \geq 0$ and $\sum_i^k \gamma_i = 1$, and we have $\gamma_i F(x_i)$

Easier to talk about averaged

$$\bar{x}_k := \sum_i^k \gamma_i x_i.$$

$f(\bar{x}_k) \leq \sum_i \gamma_i F(x_i)$ due to convexity
Stochastic approximation – analysis

- Bound looks similar to bound in subgradient method
- But we wish to say something about x_k
- Since $\gamma_i \geq 0$ and $\sum_i^k \gamma_i = 1$, and we have $\gamma_i F(x_i)$
- Easier to talk about averaged

$$\bar{x}_k := \sum_i^k \gamma_i x_i.$$

- $f(\bar{x}_k) \leq \sum_i \gamma_i F(x_i)$ due to convexity
- So we finally obtain the inequality

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{r_1 + M^2 \sum_i \alpha_i^2}{2 \sum_i \alpha_i}.$$
Stochastic approximation – finally

♠ Let $D_X := \max_{x \in X} \|x - x^*\|_2$ (act. only need $\|x_1 - x^*\| \leq D_X$)

♠ Assume $\alpha_i = \alpha$ is a constant. Observe that

$$E[F(\bar{x}_k) - F(x^*)] \leq \frac{D^2_X + M^2k\alpha^2}{2k\alpha}$$

♠ Minimize the rhs over $\alpha > 0$ to obtain

$$E[F(\bar{x}_k) - F(x^*)] \leq \frac{D_X M}{\sqrt{k}}$$

♠ If k is not fixed in advance, then choose

$$\alpha_i = \frac{\theta D_X}{M \sqrt{i}}, \quad i = 1, 2, \ldots$$

♠ Analyze $E[F(\bar{x}_k) - F(x^*)]$ with this choice of stepsize
Let $D_X := \max_{x \in X} \|x - x^*\|_2$ (act. only need $\|x_1 - x^*\| \leq D_X$) Assume $\alpha_i = \alpha$ is a constant. Observe that

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{D^2_X + M^2k\alpha^2}{2k\alpha}$$

Minimize the rhs over $\alpha > 0$ to obtain

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{D_X M}{\sqrt{k}}$$

If k is not fixed in advance, then choose

$$\alpha_i = \frac{\theta D_X}{M\sqrt{i}}, \quad i = 1, 2, \ldots$$

Analyze $\mathbb{E}[F(\bar{x}_k) - F(x^*)]$ with this choice of stepsize

We showed $O(1/\sqrt{k})$ rate
Theorem Let $f(x, \xi)$ be C^1_L convex. Let $e_k := \nabla F(x_k) - g_k$ satisfy $\mathbb{E}[e_k] = 0$. Let $\|x_i - x^*\| \leq D$. Also, let $\alpha_i = 1/(L + \eta_i)$. Then,

$$\mathbb{E}\left[\sum_{i=1}^{k} F(x_{i+1}) - F(x^*)\right] \leq \frac{D^2}{2\alpha_k} + \sum_{i=1}^{k} \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$
Theorem Let $f(x, \xi)$ be C^1_L convex. Let $e_k := \nabla F(x_k) - g_k$ satisfy $\mathbb{E}[e_k] = 0$. Let $\|x_i - x^*\| \leq D$. Also, let $\alpha_i = 1/(L + \eta_i)$. Then,

$$\mathbb{E}\left[\sum_{i=1}^{k} F(x_{i+1}) - F(x^*)\right] \leq \frac{D^2}{2\alpha_k} + \sum_{i=1}^{k} \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$

As before, by using $\bar{x}_k = \frac{1}{k} \sum_{i=1}^{k} x_{i+1}$ we get

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{D^2}{2\alpha_k k} + \frac{1}{k} \sum_{i=1}^{k} \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$
Theorem Let $f(x, \xi)$ be C^1_L convex. Let $e_k := \nabla F(x_k) - g_k$ satisfy $\mathbb{E}[e_k] = 0$. Let $\|x_i - x^*\| \leq D$. Also, let $\alpha_i = 1/(L + \eta_i)$. Then,

$$\mathbb{E}\left[\sum_{i=1}^k F(x_{i+1}) - F(x^*)\right] \leq \frac{D^2}{2\alpha_k} + \sum_{i=1}^k \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$

As before, by using $\bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_{i+1}$ we get

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{D^2}{2\alpha_k k} + \frac{1}{k} \sum_{i=1}^k \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$

Using $\alpha_i = L + \eta_i$ where $\eta_i \propto 1/\sqrt{i}$ we obtain
Theorem Let $f(x, \xi)$ be C^1_L convex. Let $e_k := \nabla F(x_k) - g_k$ satisfy $\mathbb{E}[e_k] = 0$. Let $\|x_i - x^*\| \leq D$. Also, let $\alpha_i = 1/(L + \eta_i)$. Then,

$$
\mathbb{E}\left[\sum_{i=1}^{k} F(x_{i+1}) - F(x^*)\right] \leq \frac{D^2}{2\alpha_k} + \sum_{i=1}^{k} \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.
$$

As before, by using $\bar{x}_k = \frac{1}{k} \sum_{i=1}^{k} x_{i+1}$ we get

$$
\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{D^2}{2\alpha_k k} + \frac{1}{k} \sum_{i=1}^{k} \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.
$$

- Using $\alpha_i = L + \eta_i$ where $\eta_i \propto 1/\sqrt{i}$ we obtain

$$
\mathbb{E}[F(\bar{x}_k) - F(x^*)] = O\left(\frac{LD^2}{k}\right) + O\left(\frac{\sigma D}{\sqrt{k}}\right)
$$

where σ bounds the variance $\mathbb{E}[\|e_i\|^2]$.
Theorem Let $f(x, \xi)$ be C^1_L convex. Let $e_k := \nabla F(x_k) - g_k$ satisfy $\mathbb{E}[e_k] = 0$. Let $\|x_i - x^*\| \leq D$. Also, let $\alpha_i = 1/(L + \eta_i)$. Then,

$$
\mathbb{E}\left[\sum_{i=1}^{k} F(x_{i+1}) - F(x^*)\right] \leq \frac{D^2}{2\alpha_k} + \sum_{i=1}^{k} \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.
$$

As before, by using $\bar{x}_k = \frac{1}{k} \sum_{i=1}^{k} x_{i+1}$ we get

$$
\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{D^2}{2\alpha_k k} + \frac{1}{k} \sum_{i=1}^{k} \frac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.
$$

▶ Using $\alpha_i = L + \eta_i$ where $\eta_i \propto 1/\sqrt{i}$ we obtain

$$
\mathbb{E}[F(\bar{x}_k) - F(x^*)] = O\left(\frac{LD^2}{k}\right) + O\left(\frac{\sigma D}{\sqrt{k}}\right)
$$

where σ bounds the variance $\mathbb{E}[\|e_i\|^2]$
Theorem Suppose $f(x, \xi)$ are convex and $F(x)$ is μ-strongly convex. Let $\bar{x}_k := \sum_{i=0}^{k} \theta_i x_i$, where $\theta_i = \frac{2(i+1)}{(k+1)(k+2)}$, we obtain

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{2M^2}{\mu^2(k + 1)}.$$

Lacoste-Julien, Schmidt, Bach (2012).
Theorem Suppose $f(x, \xi)$ are convex and $F(x)$ is μ-strongly convex. Let $\bar{x}_k := \sum_{i=0}^{k} \theta_i x_i$, where $\theta_i = \frac{2(i+1)}{(k+1)(k+2)}$, we obtain

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{2M^2}{\mu^2(k+1)}.$$

Lacoste-Julien, Schmidt, Bach (2012).

With uniform averaging $\bar{x}_k = \frac{1}{k} \sum_i x_i$, we get $O(\log k/k)$.

Stochastic approximation – remarks
Sample average approximation

Assumption: regularization $\|x\|_2 \leq B$; $\xi \in \Omega$ closed, bounded.

Function estimate: $F(x) = \mathbb{E}[f(x, \xi)]$
Subgradient in $\partial F(x) = \mathbb{E}[g(x, \xi)]$

Sample Average Approximation (SAA):

- Collect samples ξ_1, \ldots, ω_m
- **Empirical objective:** $\hat{F}_m(x) := \frac{1}{m} \sum_{i=1}^{m} f(x, \xi_i)$
Sample average approximation

Assumption: regularization $\|x\|_2 \leq B$; $\xi \in \Omega$ closed, bounded.

Function estimate: $F(x) = \mathbb{E}[f(x, \xi)]$
Subgradient in $\partial F(x) = \mathbb{E}[g(x, \xi)]$

Sample Average Approximation (SAA):

- Collect samples ξ_1, \ldots, ω_m
- Empirical objective: $\hat{F}_m(x) := \frac{1}{m} \sum_{i=1}^{m} f(x, \xi_i)$
- aka Empirical Risk Minimization
Sample average approximation

Assumption: regularization $\|x\|_2 \leq B; \xi \in \Omega$ closed, bounded.

| Function estimate: $F(x) = \mathbb{E}[f(x, \xi)]$
| Subgradient in $\partial F(x) = \mathbb{E}[g(x, \xi)]$

Sample Average Approximation (SAA):

- Collect samples ξ_1, \ldots, ω_m
- **Empirical objective:** $\hat{F}_m(x) := \frac{1}{m} \sum_{i=1}^{m} f(x, \xi_i)$
- aka *Empirical Risk Minimization*
- **Confusing:** We often optimize \hat{F}_m using stochastic subgradient; but theoretical guarantees are then only on the *empirical* suboptimality $\mathbb{E}[\hat{F}_m(\bar{x}_k)] \leq \ldots$
Sample average approximation

Assumption: \(\text{regularization } \|x\|_2 \leq B; \xi \in \Omega \text{ closed, bounded.} \)

Function estimate: \(F(x) = \mathbb{E}[f(x, \xi)] \)
Subgradient in \(\partial F(x) = \mathbb{E}[g(x, \xi)] \)

Sample Average Approximation (SAA):

- Collect samples \(\xi_1, \ldots, \omega_m \)
- Empirical objective: \(\hat{F}_m(x) := \frac{1}{m} \sum_{i=1}^{m} f(x, \xi_i) \)
- aka Empirical Risk Minimization
- Confusing: We often optimize \(\hat{F}_m \) using stochastic subgradient; but theoretical guarantees are then only on the empirical suboptimality \(\mathbb{E}[\hat{F}_m(\bar{x}_k)] \leq \ldots \)
- For guarantees on \(F(\bar{x}_k) \) more work; (regularization + conc.) \(F(\bar{x}_k) - F(x^*) \leq O(1/\sqrt{k}) + O(1/\sqrt{m}) \)
Online optimization
Online optimization

- We have *fixed* and *known* $f(x, \xi)$

[30 / 35]
Online optimization

- We have *fixed* and *known* $f(x, \xi)$
- ξ_1, ξ_2, \ldots presented to us sequentially

Can be chosen adversarially!
Online optimization

- We have fixed and known $f(x, \xi)$
- ξ_1, ξ_2, \ldots presented to us sequentially
 Can be chosen adversarially!

- Guess x_k;
Online optimization

• We have fixed and known $f(x, \xi)$
• ξ_1, ξ_2, \ldots presented to us sequentially

 Can be chosen adversarially!

• Guess x_k; Observe ξ_k;
Online optimization

• We have fixed and known $f(x, \xi)$

• ξ_1, ξ_2, \ldots presented to us sequentially

 Can be chosen adversarially!

• Guess x_k; Observe ξ_k; incur cost $f(x_k, \xi_k)$;
Online optimization

- We have *fixed* and *known* $f(x, \xi)$
- ξ_1, ξ_2, \ldots presented to us sequentially

 Can be chosen adversarially!

- Guess x_k; Observe ξ_k; incur cost $f(x_k, \xi_k)$; Update to x_{k+1}
Online optimization

• We have fixed and known $f(x, \xi)$
• ξ_1, ξ_2, \ldots presented to us sequentially

Can be chosen adversarially!

• Guess x_k; Observe ξ_k; incur cost $f(x_k, \xi_k)$; Update to x_{k+1}
• We get to see things only sequentially; sequence of samples shown to us by nature may depend on our guesses
We have **fixed** and **known** $f(x, \xi)$

- ξ_1, ξ_2, \ldots **presented to us sequentially**

 Can be chosen adversarially!

- **Guess** x_k; **Observe** ξ_k; **incur cost** $f(x_k, \xi_k)$; **Update** to x_{k+1}

- We get to see things only sequentially; sequence of samples shown to us by nature may depend on our guesses

- So a typical goal is to minimize **Regret**
Online optimization

- We have fixed and known $f(x, \xi)$
- ξ_1, ξ_2, \ldots presented to us sequentially
 - Can be chosen adversarially!

- Guess x_k; Observe ξ_k; incur cost $f(x_k, \xi_k)$; Update to x_{k+1}
- We get to see things only sequentially; sequence of samples shown to us by nature may depend on our guesses
- So a typical goal is to minimize Regret

$$\frac{1}{T} \sum_{k=1}^{T} f(x_k, z_k) - \min_{x \in \mathcal{X}} \frac{1}{T} \sum_{k=1}^{T} f(x, z_k)$$
Online optimization

- We have fixed and known $f(x, \xi)$
- ξ_1, ξ_2, \ldots presented to us sequentially
 Can be chosen adversarially!

- Guess x_k; Observe ξ_k; incur cost $f(x_k, \xi_k)$; Update to x_{k+1}
- We get to see things only sequentially; sequence of samples shown to us by nature may depend on our guesses
- So a typical goal is to minimize Regret

$$\frac{1}{T} \sum_{k=1}^{T} f(x_k, z_k) - \min_{x \in X} \frac{1}{T} \sum_{k=1}^{T} f(x, z_k)$$

- That is, difference from the best possible solution we could have attained, had we been shown all the examples (z_k).
Online optimization

- We have fixed and known $f(x, \xi)$
- ξ_1, ξ_2, \ldots presented to us sequentially

 Can be chosen adversarially!

- **Guess** x_k; **Observe** ξ_k; **incur cost** $f(x_k, \xi_k)$; **Update** to x_{k+1}

- We get to see things only sequentially; sequence of samples shown to us by nature may depend on our guesses

- So a typical goal is to minimize **Regret**

 \[
 \frac{1}{T} \sum_{k=1}^{T} f(x_k, z_k) - \min_{x \in X} \frac{1}{T} \sum_{k=1}^{T} f(x, z_k)
 \]

- That is, difference from the best possible solution we could have attained, had we been shown all the examples (z_k).

- Online optimization is an important idea in machine learning, game theory, decision making, etc.
Online gradient descent

Based on Zinkevich (2003)

Slight generalization:

\[f(x, \xi) \text{ convex (in } x) \]; possibly nonsmooth

\[x \in \mathcal{X}, \text{ a closed, bounded set} \]
Online gradient descent

Based on Zinkevich (2003)

Slight generalization:
\(f(x, \xi) \) convex (in \(x \)); possibly nonsmooth
\(x \in \mathcal{X} \), a closed, bounded set

Simplify notation: \(f_k(x) \equiv f(x, \xi_k) \)

Regret \(R_T := \sum_{k=1}^{T} f_k(x_k) - \min_{x \in \mathcal{X}} \sum_{k=1}^{T} f_k(x) \)
Algorithm:

1. Select some $x_0 \in \mathcal{X}$, and $\alpha_0 > 0$
2. Round k of algo ($k \geq 0$):
Online gradient descent

Algorithm:

1. Select some \(x_0 \in X \), and \(\alpha_0 > 0 \)
2. Round \(k \) of algo (\(k \geq 0 \)):
 - Output \(x_k \)
Online gradient descent

Algorithm:

1. Select some $x_0 \in \mathcal{X}$, and $\alpha_0 > 0$
2. Round k of algo ($k \geq 0$):
 - Output x_k
 - Receive k-th function f_k
Online gradient descent

Algorithm:

1. Select some $x_0 \in \mathcal{X}$, and $\alpha_0 > 0$

2. Round k of algo ($k \geq 0$):
 - Output x_k
 - Receive k-th function f_k
 - Incur loss $f_k(x_k)$

Using $\alpha_k = c/\sqrt{k + 1}$ and assuming $\|g_k\|_2 \leq G$, can be shown that average regret $\mathbb{E}[R_T] \leq O(1/\sqrt{T})$.
Algorithm:

1. Select some $x_0 \in \mathcal{X}$, and $\alpha_0 > 0$

2. Round k of algo ($k \geq 0$):
 - Output x_k
 - Receive k-th function f_k
 - Incur loss $f_k(x_k)$
 - Pick $g_k \in \partial f_k(x_k)$
Online gradient descent

Algorithm:

1. Select some $x_0 \in \mathcal{X}$, and $\alpha_0 > 0$

2. Round k of algo ($k \geq 0$):
 - Output x_k
 - Receive k-th function f_k
 - Incur loss $f_k(x_k)$
 - Pick $g_k \in \partial f_k(x_k)$

 Update: $x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)$
Online gradient descent

Algorithm:

1. Select some $x_0 \in \mathcal{X}$, and $\alpha_0 > 0$
2. Round k of algo ($k \geq 0$):
 - Output x_k
 - Receive k-th function f_k
 - Incur loss $f_k(x_k)$
 - Pick $g_k \in \partial f_k(x_k)$
 - Update: $x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)$

Using $\alpha_k = \frac{c}{\sqrt{k+1}}$ and assuming $\|g_k\|_2 \leq G$, can be shown that average regret $\frac{1}{T}R_T \leq O(1/\sqrt{T})$
Assumption: Lipschitz condition $\|\partial f\|_2 \leq G$
Assumption: Lipschitz condition $\| \partial f \|_2 \leq G$

$$x^* = \arg\min_{x \in \mathcal{X}} \sum_{k=1}^{T} f_k(x)$$
OGD – regret bound

Assumption: Lipschitz condition \(\| \partial f \|_2 \leq G \)

\[
x^* = \arg\min_{x \in \mathcal{X}} \sum_{k=1}^{T} f_k(x)
\]

Since \(g_k \in \partial f_k(x_k) \), we have

\[
f_k(x^*) \geq f_k(x_k) + \langle g_k, x^* - x_k \rangle, \text{ or } f_k(x_k) - f_k(x^*) \leq \langle g_k, x_k - x^* \rangle
\]
OGD – regret bound

Assumption: Lipschitz condition $\|\partial f\|_2 \leq G$

$$x^* = \arg\min_{x \in \mathcal{X}} \sum_{k=1}^{T} f_k(x)$$

Since $g_k \in \partial f_k(x_k)$, we have

$$f_k(x^*) \geq f_k(x_k) + \langle g_k, x^* - x_k \rangle, \text{ or}$$

$$f_k(x_k) - f_k(x^*) \leq \langle g_k, x_k - x^* \rangle$$

Further analysis depends on bounding

$$\|x_{k+1} - x^*\|^2_2$$
OGD regret – bounding distance

Recall: \(x_{k+1} = P_X(x_k - \alpha_k g_k) \). Thus,

\[
\|x_{k+1} - x^*\|_2^2 = \|P_X(x_k - \alpha_k g_k) - x^*\|_2^2 = \|P_X(x_k - \alpha_k g_k) - P_X(x^*)\|_2^2
\]
OGD regret – bounding distance

Recall: \(x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k) \). Thus,

\[
\|x_{k+1} - x^*\|_2^2 = \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - x^*\|_2^2 \\
= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|_2^2 \\
(P_{\mathcal{X}} \text{ is nonexpan.}) \leq \|x_k - x^* - \alpha_k g_k\|_2^2
\]
Recall: \(x_{k+1} = P_X(x_k - \alpha_k g_k) \). Thus,

\[
\|x_{k+1} - x^*\|^2 \leq \|P_X(x_k - \alpha_k g_k) - x^*\|^2 \\
= \|P_X(x_k - \alpha_k g_k) - P_X(x^*)\|^2 \\
\leq \|x_k - x^* - \alpha_k g_k\|^2 \\
= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle
\]
OGD regret – bounding distance

Recall: $x_{k+1} = P_X(x_k - \alpha_k g_k)$. Thus,

$$\|x_{k+1} - x^*\|_2^2 = \|P_X(x_k - \alpha_k g_k) - x^*\|_2^2$$

$$= \|P_X(x_k - \alpha_k g_k) - P_X(x^*)\|_2^2$$

(P_X is nonexpan.)

$$\leq \|x_k - x^* - \alpha_k g_k\|_2^2$$

$$= \|x_k - x^*\|_2^2 + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$\langle g_k, x_k - x^* \rangle \leq \frac{\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2}{2\alpha_k} + \frac{\alpha_k}{2} \|g_k\|_2^2$$
Recall: \(x_{k+1} = P_X(x_k - \alpha_k g_k) \). Thus,

\[
\|x_{k+1} - x^*\|_2^2 = \|P_X(x_k - \alpha_k g_k) - x^*\|_2^2 \\
= \|P_X(x_k - \alpha_k g_k) - P_X(x^*)\|_2^2 \\
(P_X \text{ is nonexpan.}) \leq \|x_k - x^* - \alpha_k g_k\|_2^2 \\
= \|x_k - x^*\|_2^2 + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle
\]

\[
\langle g_k, x_k - x^* \rangle \leq \frac{\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2}{2\alpha_k} + \frac{\alpha_k}{2} \|g_k\|_2^2
\]

Now invoke \(f_k(x_k) - f_k(x^*) \leq \langle g_k, x_k - x^* \rangle \)

\[
f_k(x_k) - f_k(x^*) \leq \frac{\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2}{2\alpha_k} + \frac{\alpha_k}{2} \|g_k\|_2^2
\]
Recall: $x_{k+1} = P\chi(x_k - \alpha_k g_k)$. Thus,

$$\|x_{k+1} - x^*\|_2^2 = \|P\chi(x_k - \alpha_k g_k) - x^*\|_2^2$$
$$\|P\chi(x_k - \alpha_k g_k) - P\chi(x^*)\|_2^2$$

($P\chi$ is nonexpan.)

$$\leq \|x_k - x^* - \alpha_k g_k\|_2^2$$
$$= \|x_k - x^*\|_2^2 + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$\langle g_k, x_k - x^* \rangle \leq \frac{\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2}{2\alpha_k} + \frac{\alpha_k}{2} \|g_k\|_2^2$$

Now invoke $f_k(x_k) - f_k(x^*) \leq \langle g_k, x_k - x^* \rangle$

$$f_k(x_k) - f_k(x^*) \leq \frac{\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2}{2\alpha_k} + \frac{\alpha_k}{2} \|g_k\|_2^2$$

Sum over $k = 1, \ldots, T$, let $\alpha_k = c/\sqrt{k + 1}$, use $\|g_k\|_2 \leq G$

Obtain $R_T \leq O(\sqrt{T})$