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Compressed Matrix Multiplication

RASMUS PAGH, IT University of Copenhagen

We present a simple algorithm that approximates the product of n-by-n real matrices A and B. Let ||AB||F
denote the Frobenius norm of AB, and b be a parameter determining the time/accuracy trade-off. Given
2-wise independent hash functions h1, h2 : [n] → [b], and s1, s2 : [n] → {−1, +1} the algorithm works by first
“compressing” the matrix product into the polynomial

p(x) =
n∑

k=1

( n∑
i=1

Aiks1(i) xh1(i)

)⎛
⎝ n∑

j=1

Bkjs2( j) xh2( j)

⎞
⎠.

Using the fast Fourier transform to compute polynomial multiplication, we can compute c0, . . . , cb−1 such
that

∑
i ci xi = (p(x) mod xb) + (p(x) div xb) in time Õ(n2 + nb). An unbiased estimator of (AB)i j with variance

at most ||AB||2F/b can then be computed as:

Cij = s1(i) s2( j) c(h1(i)+h2( j)) mod b.

Our approach also leads to an algorithm for computing AB exactly, with high probability, in time Õ(N + nb)
in the case where A and B have at most N nonzero entries, and AB has at most b nonzero entries.
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1. INTRODUCTION

Several computational problems can be phrased in terms of matrix products where the
normalized result is expected to consist mostly of numerically small entries.

—Given msamples of a multivariate random variable (X1, . . . , Xn), compute the sample
covariance matrix that is used in statistical analyses. If most pairs of random vari-
ables are independent, the corresponding entries of the sample covariance matrix
will be concentrated around zero.
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9:2 R. Pagh

—Linearly transform all column vectors in a matrix B to an orthogonal basis AT in
which the columns of B are approximately sparse. Such batch transformations are
common in lossy data compression algorithms such as JPEG, using properties of
specific orthogonal bases to facilitate fast computation.

In both cases, an approximation of the matrix product may be as good as an exact
computation, since the main issue is to identify large entries in the result matrix.

This article considers n-by-n matrices with real values. We devise a combinatorial
algorithm for the special case of computing a matrix product AB that is “compressible”.
For example, if AB is sparse it falls into our class of compressible products, and we
are able to give an efficient algorithm. More generally, the complexity depends on the
Frobenius norm of the product, which for a matrix C is defined as ||C||F = √

�i, jC2
i j. If

most contributions to ||AB||F come from a sparse subset of the entries of AB, we are
able to quickly compute a good approximation of the product AB.

Our method can be seen as a compressed sensing method for the matrix product, with
the nonstandard idea that the sketch of AB is computed without explicitly constructing
AB. The main technical idea is to use FFT [Cooley and Tukey 1965] to efficiently
compute a linear sketch of an outer product of two vectors. We also make use of error-
correcting codes in a novel way to achieve recovery of the entries of AB having highest
magnitude in near-linear time.

1.1. Related Work

We focus on approximation algorithms and algorithms for matrix products with sparse
outputs. See Vassilevska Williams [2012] and Le Gall [2012] for descriptions of state-
of-the-art, exact, dense matrix multiplication algorithms. We will make use of Õ(·)-
notation, which suppresses polylogarithmic multiplicative factors, that is, a function is
in Õ( f ) if it is in O( f polylog( f )).

Matrix Multiplication with Sparse Output. Lingas [2009] considered the problem of
computing a matrix product AB with at most b̄ entries that are not trivially zero. A
matrix entry is said to be trivially zero if every term in the corresponding dot product
is zero. In general b̄ can be much larger than the number b of nonzeros because zeros
in the matrix product may be due to cancellations. Lingas showed, by a reduction to
fast rectangular matrix multiplication, that this is possible in time O(n2b̄ω/2−1), where
ω < 2.38 is the matrix multiplication exponent, see for example, Coppersmith and
Winograd [1990]. Observe that for b̄ = n2 the bound simply becomes O(nω), so this
strictly generalizes dense matrix multiplication.

Yuster and Zwick [2005] devised asymptotically fast algorithms for the case of sparse
input matrices, using a matrix partitioning idea. Resen Amossen and Pagh [2009]
extended this result to be more efficient in the case where also the output matrix is
sparse. In the dense input setting of Lingas, this leads to an improved time complexity
of O(n1.73 b̄0.41) for n ≤ b̄ ≤ n1.25. The exponents in this time bound depend on constants
governing the complexity of rectangular matrix multiplication, see Resen Amossen and
Pagh [2009] for details. Should it be the case that ω = 2 the time complexity becomes
(n4/3b̄2/3)1+o(1).

Iwen and Spencer [2009] showed how to use compressed sensing to compute a matrix
product AB in time O(n2+ε), for any given constant ε > 0, in the special case where
each column of AB contains at most n0.3 nonzero values. (Of course, by symmetry the
same result holds when there is sparseness in each row.) The exponent 0.3 stems from
the algorithm for rectangular matrix multiplication by Le Gall [2012], which appeared
after the publication of Iwen and Spencer [2009].
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All the results described in the preceding articles work by reduction to fast rectangu-
lar matrix multiplication, so the algorithms are not “combinatorial.” However, Lingas
[2009] observed that a time complexity of O(n2 + b̄n) is achieved by the column-row
method, a simple combinatorial algorithm. Also, replacing the fast rectangular matrix
multiplication in the result of Iwen and Spencer [2009] by a naı̈ve matrix multiplica-
tion algorithm, and making use of randomized sparse recovery methods (see Gilbert
and Indyk [2010]), leads to a combinatorial algorithm running in time Õ(n2 +nb) when
each column of AB has O(b/n) nonzero values.

Approximate Matrix Multiplication. The result of Iwen and Spencer [2009] is not
restricted to sparse matrix products: Their algorithm is shown to compute an approx-
imate matrix product in time O(n2+ε) assuming that the result can be approximated
well by a matrix with sparse column vectors. The approximation produced is one with
at most n0.3 nonzero values in each column, and is almost as good as the best approx-
imation of this form. However, if some column of AB is dense, the approximation may
differ significantly from AB.

Historically, Cohen and Lewis [1999] were the first to consider randomized algo-
rithms for approximate matrix multiplication, with theoretical results restricted to the
case where input matrices do not have negative entries. Suppose A has column vectors
a1, . . . , an and B has row vectors b1, . . . , bn. The product of A and B can be written as a
sum of n outer products:

AB =
n∑

k=1

akbk. (1)

The method of Cohen and Lewis [1999] can be understood as sampling each outer
product according to the weight of its entries, and combining these samples to produce
a matrix C where each entry is an unbiased estimator for (AB)i j . If n2c samples are
taken, for a parameter c ≥ 1, the difference between C and AB can be bounded, with
high probability, in terms of the Frobenius norm of AB, namely

||AB− C||F = O(||AB||F/
√

c).

This bound on the error is not shown in Cohen and Lewis [1999], but follows from the
fact that each estimator has a scaled binomial distribution.

Drineas et al. [2006] showed how a simpler sampling strategy can lead to a good
approximation of the form CR, where matrices C and R consist of c columns and c rows
of A and B, respectively. Their main error bound is in terms of the Frobenius norm
of the difference: ||AB − CR||F = O(||A||F ||B||F/

√
c). This error is never better than

the one achieved by Cohen and Lewis for the same value of c, but applies to arbitrary
matrices rather than just matrices with non-negative entries. The time to compute
CR using the classical algorithm is O(n2c)—asymptotically faster results are possible
by fast rectangular matrix multiplication. Drineas et al. [2006] also give bounds on
the elementwise differences |(AB − CR)i j |, but the best such bound obtained is of size
�(M2n/

√
c), where M is the magnitude of the largest entry in A and B. This is a rather

weak bound in general, since the largest possible magnitude of an entry in AB is M2n.
Sarlós [2006] showed how to achieve the same Frobenius norm error guarantee

using c AMS sketches [Alon et al. 1999] on rows of A and columns of B. Again, if the
classical matrix multiplication algorithm is used to combine the sketches, the time
complexity is O(n2c). This method gives a stronger error bound for each individual
entry of the approximation matrix. If we write an entry of AB as a dot product, (AB)i j =
ãi · b̃j , the magnitude of the additive error is O(||ãi||2||b̃j ||2/

√
c) with high probability

(see Sarlós [2006] and Alon et al. [2002]). In contrast to the previous results, this
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approximation can be computed in a single pass over the input matrices. Clarkson and
Woodruff [2009] further refine the results of Sarlós, and show that the space usage is
nearly optimal in a streaming setting.

Recent Developments. After the appearance of the conference version of this pa-
per [Pagh 2012], Kutzkov [2012] presented analogous deterministic algorithms. Simi-
lar to the present article, Kutzkov uses summary techniques developed in the context
of finding heavy hitters in a data stream to obtain time and space efficient algorithms,
but the details of how this is done differ significantly. He presents two algorithms: a
general one that handles any real matrix product, and one that requires the entries of
input matrices to be nonnegative. The former one has a time-accuracy trade-off that is
strictly worse than the bound achieved here, but with guaranteed accuracy. The latter
algorithm achieves better results than the algorithms in this article when the magni-
tudes of entries in AB are sufficiently skewed, for example, for Zipfian distributions
with Zipf parameter z > 1.

Valiant [2012] revisited the Light Bulb Problem [Paturi et al. 1995], which can be
seen as the problem of finding a unique large entry in a matrix product AAT , where A
is an n-by-d matrix. For this problem we can assume that d is much smaller than n,
for example, d = O(log n). Valiant’s algorithm implicitly uses the fact that it suffices to
compute a rough approximation to each matrix entry. More generally, he shows how
to find up to about n1.3 large entries in a product AAT , where A has entries in ±1,
using time n2−�(1) whenever the difference between the large entries and the average
is big enough. Previous results for the Light Bulb Problem were subquadratic only
when the largest entries were of size �(d). In Section 3.2, we consider covariance
matrix estimation as an application of our results, a setting generalizing the Light
Bulb Problem.

1.2. New Results

In this article we improve existing results in cases where the matrix product is
“compressible”—in fact, we produce a compressed representation of AB. Let N ≤ 2n2

denote the number of nonzero entries in A and B. We obtain an approximation C by
a combinatorial algorithm running in time Õ(N + nb), making a single pass over the
input while using space O(b lg n), such that.

—if AB has at most b nonzero entries, C = AB with high probability;
—if AB has Frobenius norm q when removing its b largest entries (in magnitude), the

error of each entry is bounded, with high probability, by

|Cij − (AB)i j | < q/
√

b.

Compared to Cohen and Lewis [1999], we avoid the restriction that input matrices
cannot contain negative entries. Also, their method will produce only an approximate
result even when AB is sparse. Finally, their method inherently uses space �(n2), and
hence is not able to exploit compressibility to achieve smaller space usage.

Our algorithm is faster than existing matrix multiplication algorithms for sparse
outputs [Resen Amossen and Pagh 2009; Lingas 2009] whenever b < n6/5, as well as in
situations where a large number of cancellations mean that b � b̄.

The simple, combinatorial algorithms derived from Drineas et al. [2006] and Sarlós
[2006] yield error guarantees that are generally incomparable with those achieved
here, when allowing same time bound, that is, c = �(b/n). The Frobenius error bound
we achieve is:

||AB− C||F ≤ ||AB||F
√

n/c.
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Our result bears some similarity to the result of Iwen and Spencer [2009], since both
results be seen as compressed sensing of the product AB. One basic difference is that
Iwen and Spencer perform compressed sensing on each column of AB (n sparse signals),
while we treat the whole matrix AB as a single sparse signal. This means that we are
robust towards skewed distribution of large values among the columns.

2. ALGORITHM AND ANALYSIS

We will view the matrix AB as the set of pairs (i, j), where the weight of item (i, j) is
(AB)i j . Equivalently, we can think of it as a vector indexed by pairs (i, j).

Our approach is to compute a linear sketch pakbk for each outer product of (1), and
then compute

∑
k pakbk to obtain a sketch for AB. For exposition, we first describe how

to compute an AMS sketch of the outer product (seen as a weighted set) in time O(n),
and then extend this to the more accurate COUNT SKETCH. In the following, we use [n]
to denote the set {1, . . . , n}.
2.1. AMS Sketches

Alon et al. [1999] described and analyzed the following approach to sketching a data
stream z1, z2, . . . , where item zi ∈ [n] has weight wi.

Definition 2.1. We say that a function h : U → R is k-wise independent if it is chosen
(from a family of functions) such that for any k distinct elements x1, . . . , xk ∈ U the
values h(x1), . . . , h(xk) are independent and uniformly distributed in R. In this article we
will always choose a k-wise independent function independently from all other random
choices made by the algorithm.

Often, the sketch of Alon et al. [1999] is described and analyzed with a 4-wise inde-
pendent hash function, but for our purposes a 2-wise independent hash function will
suffice. The so-called AMS sketch is constructed as follows: Take a 2-wise independent
function s : [n] → {−1,+1} (which we will call the sign function), and compute the sum
X = ∑

i s(zi) wi. In this article we will use a sign function on pairs (i, j) that is a product
of sign functions on the coordinates: s(i, j) = s1(i) s2( j). Indyk and McGregor [2008],
and Braverman et al. [2010] have previously analyzed moments of AMS sketches with
hash functions of this form. However, for our purposes, it suffices to observe that s(i, j)
is 2-wise independent if s1 and s2 are 2-wise independent. The AMS sketch of the entries
of an outer product uv, where by definition (uv)i j = uiv j , is:

∑
(i, j)∈[n]×[n]

s(i, j) (uv)i j =
(

n∑
i=1

s1(i) ui

)⎛
⎝ n∑

j=1

s2( j) v j

⎞
⎠.

That is, the sketch for the outer product is simply the product of the sketches of
the two vectors (using different hash functions). Since each term of the AMS sketch
has expectation 0 and s(i, j)2 = 1, is not hard to see that multiplying the sketch by
s(i, j) gives an unbiased estimator for (uv)i j . However, a single AMS sketch has a
variance of roughly ||uv||2F , which is too large for our purposes. Taking the average
of b such sketches to reduce the variance by a factor b would increase the time to
retrieve an estimator for an entry in the matrix product by a factor of b. By using a
different sketch, we can avoid this problem, and additionally get better estimates for
compressible matrices.

2.2. Count Sketches

Our algorithm will use the COUNT SKETCH of Charikar et al. [2004], which has precision
at least as good as the estimator obtained by taking the average of b AMS sketches,
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but is much better for skewed distributions. The method maintains a sketch of any
desired size b, using a 2-wise independent splitting function h : [n] → {0, . . . , b − 1} to
divide the items into b groups. For each group, an AMS sketch is maintained using a
2-wise independent hash function s : [n] → {−1,+1}. That is, the sketch is the vector
(c0, . . . , cb−1), where ck = ∑

i, h(zi )=k s(zi) wi. An unbiased estimator for the total weight of
an item z is ch(z)s(z). To obtain stronger guarantees, one can take the median of several
estimators constructed as previously stated (with different sets of hash functions)—we
return to this in Section 3.3.

Sketching a Matrix Product Naı̈vely. Since COUNT SKETCH is linear, we can compute
the sketch for AB by sketching each of the outer products in (1), and adding the sketch
vectors. Each outer product has O(n2) terms, which means that a direct approach to
computing its sketch has time complexity O(n2), resulting in a total time complexity of
O(n3).

Improving the Complexity. We now show how to improve the complexity of the outer
product sketching from O(n2) to O(n + b lg b) by choosing the hash functions used by
COUNT SKETCH in a “decomposable” way, and applying FFT. We use the sign function
s(i, j) defined in Section 2.1, and similarly decompose the function h as follows:

h(i, j) = h1(i) + h2( j) mod b,

where h1 and h2 are chosen independently at random from a 2-wise independent family.
It is wellknown that this also makes h 2-wise independent [Carter and Wegman 1979;
Pǎtraşcu and Thorup 2011]. Given a vector u ∈ Rn and functions ht : [n] → {0, . . . , b−1},
st : [n] → {−1,+1}, we define the following polynomial:

pht,st
u (x) =

n∑
i=1

st(i) ui xht(i).

The polynomial can be represented either in the standard basis as the vector of coeffi-
cients of monomials x0, . . . , xb−1, or in the discrete Fourier basis as the vector(

pht,st
u (ω0), pht,st

u (ω1), . . . , pht,st
u (ωb−1)

)
,

where ω is a primitive bth root of unity, that is, a complex number such that ωb = 1
and ωi �= 1 for 0 < i < b. The efficient transformation to the latter representation is
known as the fast Fourier transform (FFT), and can be computed in time O(b log b)
when b is a power of 2 [Cooley and Tukey 1965]. Taking componentwise products of
the vectors representing ph1,s1

u and ph2,s2
v in the Fourier basis, we get a vector p∗ where

p∗
t = ph1,s1

u (ωt) ph2,s2
v (ωt). Now consider the following polynomial:

p∗
uv(x) =

b−1∑
k=0

∑
i, j

h(i, j)=k

s(i, j) (uv)i j xk

Using ωt h(i, j) = ωt h1(i)+t h2( j), we have that

p∗
uv(ωt) =

∑
i, j

s(i, j) (uv)i j ωh(i, j)t =
(∑

i

s1(i) ui ωt h1(i)

) ⎛
⎝∑

j

s2( j) v j ωt h2( j)

⎞
⎠ = p∗

t .

That is, p∗ is the representation, in the discrete Fourier basis, of p∗
uv. Now observe that

the coefficients of p∗
uv(x) are the entries of a COUNT SKETCH for the outer product uv

using the sign function s(i, j) and splitting function h(i, j). Thus, applying the inverse
FFT to p∗ we compute the COUNT SKETCH of uv.
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function COMPRESSEDPRODUCT(A,B, b, d)
for t := 1 to d do

s1[t], s2[t] ∈R Maps({1, . . . , n} → {−1,+1})
h1[t], h2[t] ∈R Maps({1, . . . , n} → {0, . . . , b− 1})
p[t] := 0
for k := 1 to n do

(pa, pb) := (0,0)
for i := 1 to n do

pa[h1(i)] := pa[h1(i)] + s1[t](i)Aik

end for
for j := 1 to n do

pa[h2(j)] := pb[h2(j)] + s2[t](j)Bkj

end for
(pa, pb) := (FFT(pa),FFT(pb))
for z := 1 to b do

p[t][z] := p[t][z] + pa[z] pb[z]
end for

end for
end for
for t := 1 to d do p[t] := FFT−1(p[t]) end for
return (p, s1, s2, h1, h2)

end

function DECOMPRESS(i, j)
for t := 1 to d do

Xt := s1[t](i) s2[t](j) p[t][(h1(i) + h2(j)) mod b]
return MEDIAN(X1, . . . , Xd)

end

Fig. 1. Method for encoding an approximate representation of AB of size bd, and corresponding method for
decoding its entries. Maps(D → C) denotes the set of functions from D to C, and ∈R denotes independent,
random choice. (Limited randomness is sufficient to obtain our guarantees, but this is not reflected in the
pseudocode.) We use 0 to denote a zero vector (or array) of suitable size that is able to hold complex numbers.
FFT(p) denotes the discrete fourier transform of vector p, and FFT−1 its inverse.

The pseudocode of Figure 1, called with parameter d = 1, summarizes the encoding
and decoding functions discussed so far. We use arrays to represent polynomial coeffi-
cients, such that entry number i is the coefficient of xi. For simplicity, the pseudocode
assumes that the hash functions involved are fully random. A practical implementa-
tion of the involved hash functions is character-based tabulation [Pǎtraşcu and Thorup
2011], but for the best theoretical space bounds, we use polynomial hash functions
[Dietzfelbinger et al. 1992].

Time and Space Analysis. We analyze each iteration of the outer loop. Computing
puv(x) takes time O(n+ b lg b), where the first term is the time to construct the polyno-
mials, and the last term is the time to multiply the polynomials, using FFT [Cooley and
Tukey 1965]. Computing the sketch for each outer product and summing it up takes
time O(n2 + nb lg b). Finally, in time O(n2), we can obtain the estimate for each entry
in AB.

The analysis can be tightened when Aand B are sparse or rectangular, and it suffices
to compute the sketch that allows random access to the estimate C. Suppose that Ais n1-
by-n2, and B is n2-by-n3, and they contain N � n2 nonzero entries. It is straightforward
to see that each iteration runs in time O(N +n2b lg b), assuming that Aand B are given
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in a form that allows the nonzero entries of a column (row) to be retrieved in linear
time.

The required hash functions, with constant evaluation time, can be stored in space
O(d) using polynomial hash functions [Dietzfelbinger et al. 1992]. The space required
for the rest of the computation is O(db), since we are handling O(d) polynomials of
degree less than b. Further, access to the input is restricted to a single pass if A is
stored in column-major order, and B is stored in row-major order.

LEMMA 2.2. COMPRESSEDPRODUCT(A, B, b, d) runs in time O(d(N + n2b lg b)), and uses
space for O(db) real numbers, in addition to the input.

We note that the time bound may be much smaller than n2, which is the number of
entries in the approximate product C. This is because C is not constructed explicitly.
In Section 4, we address how to efficiently extract the b largest entries of C.

3. ERROR ANALYSIS

We can obtain two kinds of guarantees on the approximation: One in terms of the
Frobenius norm (Section 3.1), which applies even if we use just a single set of hash
functions (d = 1), and stronger guarantees (Section 3.3) that require the use of d =
O(lg n) hash functions. Section 3.2 considers the application of our result to covariance
matrix estimation. The analysis uses several tail inequalities covered in any textbook
on randomized algorithms (e.g., Motwani and Raghavan [1995, Sects. 3 and 4]).

3.1. Frobenius Norm Guarantee

THEOREM 3.1. For d = 1 and any (i∗, j∗), the function call DECOMPRESS(i∗, j∗) com-
putes an unbiased estimator for (AB)i∗ j∗ with variance bounded by ||AB||2F/b.

PROOF. For i, j ∈ {1, . . . , n}, let Ki, j be the indicator variable for the event h(i, j) =
h(i∗, j∗). We can write X as:

X = s(i∗, j∗)
∑
i, j

Ki, js(i, j)(AB)i j .

Observe that Ki∗, j∗ = 1, E[s(i∗, j∗)s(i, j)] = 0 whenever (i, j) �= (i∗, j∗), and s(i∗, j∗)2 = 1.
This implies that E[X] = (AB)i∗ j∗ . To bound the variance of X, we rewrite it as:

X = (AB)i∗ j∗ + s(i∗, j∗)
∑

(i, j)�=(i∗, j∗)

Ki, js(i, j)(AB)i j . (2)

Since s(i∗, j∗)2 = 1 and the values s(i, j), i, j ∈ {1, . . . , n} are 2-wise independent, the
terms have covariance zero, so the variance is simply the sum∑

(i, j)�=(i∗, j∗)

Var(Ki, js(i, j)(AB)i j).

We have that E[Ki, js(i, j)(AB)i j] = 0, so the variance of each term is equal to its second
moment:

E[(Ki, js(i, j)(AB)i j)2] = (AB)2
i jE[Ki, j] = (AB)2

i j/b.

The last equality uses that h is 2-wise independent, so we have E[Ki, j] = 1/b for
(i, j) �= (i∗, j∗). Summing over all terms i, j, we get that Var(X) ≤ ||AB||2F/b.

As a consequence of the lemma, we get from Chebychev’s inequality that each esti-
mate is accurate with probability 3/4 up to an additive error of 2||AB||F/

√
b. By taking

the entrywise median estimate of d = O(lg n) independent runs of the algorithm, this
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Fig. 2. Finding correlations using approximate matrix multiplication. Upper left: 100-by-100 random matrix
A where all entries are sampled from [−1; 1], independently except rows 21 and 66 which are positively
correlated. Upper right: AAT has mostly numerically small values off diagonals, expect entries (66,21) and
(21,66) corresponding to the correlated rows in A. Lower left: Approximation of AAT output by our algorithm
using b = 2000. Lower right: After subtracting the contribution of diagonal elements of AAT and thresholding
the resulting approximation, a small set of entries remains that are “candidates for having a large value”,
including (66,21).

accuracy is obtained for all entries with high probability. This follows from Chernoff
bounds, since the expected number of bad estimates is at most d/4, and d/2 bad esti-
mates are required to make the median estimate bad.

3.2. Covariance Matrix Estimation

We now consider the application of our result to covariance matrix estimation from
a set of samples. The covariance matrix captures pairwise correlations among the
components of a multivariate random variable X = (X1, . . . , Xn)T . It is defined as
cov(X) = E[(X − E[X])(X − E[X])T ]. We can arrange observations x1, . . . , xm of X as
columns in an n-by-m matrix A. Figure 2 illustrates how approximate matrix multipli-
cation can be used to find correlations among rows of A (corresponding to components
of X). In the following, we present a theoretical analysis of this approach.
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The sample mean of X is x̄ = 1
m

∑m
i=1 xi. The sample covariance matrix Q is an

unbiased estimator of cov(X), given by:

Q = 1
m− 1

m∑
i=1

(xi − x̄)(xi − x̄)T .

Let x̄1 denote the n-by-m matrix that has all columns equal to x̄. Then, we can write Q
as a matrix product:

Q = 1
m− 1

(A− x̄1)(A− x̄1)T .

To simplify calculations, we consider computation of Q̃, which is derived from Q
by setting entries on the diagonal to zero. Notice that a linear sketch of Q can be
transformed easily into a linear sketch of Q̃, and that a sketch of Q̃ also allows us to
quickly approximate Q. Entry Q̃ij , i �= j is a random variable that has expectation 0 if
Xi and Xj are independent. It is computed as 1

m−1 times the sum over mobservations of
(Xi −E[Xi])(Xj −E[Xj]). Assuming independence and using the formula from Goodman
[1960], this means that its variance is m

(m−1)2 Var(Xi)Var(Xj) ≤ 4
mVar(Xi)Var(Xj), for

m ≥ 2. If cov(X) is a diagonal matrix (i.e., every pair of variables is independent), the
expected squared Frobenius norm of Q̃ is:

E
[||Q̃||2F

] = 2
∑
i< j

E
[
Q2

i j

] = 2
∑
i< j

Var(Qij) ≤ 8
m

∑
i< j

Var(Xi)Var(Xj) <
4
m

(∑
i

Var(Xi)

)2

.

In a statistical test for pairwise independence, one will assume independence, and
test if the sample covariance matrix is indeed close to diagonal. We can derive an
approximation guarantee from Theorem 3.1 for the sketch of Q̃ (and hence Q), assuming
the hypothesis that cov(X) is diagonal. If this is not true, our algorithm will still be
computing an unbiased estimate of cov(X), but the observed variance in each entry will
be larger.

THEOREM 3.2. Consider mobservations of random variables X1, . . . , Xn that are pair-
wise independent. We can compute in time Õ((n + b)m) and space Õ(b) an unbiased
approximation to the sample covariance matrix with additive error on each entry (with
high probability) O(

∑n
i=1 Var(Xi)/

√
mb).

No similar result follows from the method of Cohen and Lewis [1999], which does not
give a theoretical guarantee when applied to matrices with negative entries. Similarly,
the algorithms of Drineas et al. [2006] and Sarlós [2006] do not have sufficiently strong
guarantees on the error of single entries to imply Theorem 3.2. However, we note that
a similar result could be obtained by the method of Iwen and Spencer [2009].

The special case of indicator random variables is of particular interest. Then,∑n
i=1 Var(Xi) ≤ n, and if m ≥ n, we can achieve additive error o(1) in time slightly

superlinear in the size of the input matrix.

COROLLARY 3.3. Consider m observations of indicator random variables X1, . . . , Xn
that are pairwise independent. Using space b ≥ n and time Õ(mb), we can compute an
approximation to the sample covariance matrix with additive error O(n/

√
mb).

Final Remarks. Observe that this easily generalizes to the case in which we want
to test a set of random variables X1, . . . , Xn for (pairwise) independence from another
set of random variables Y1, . . . , Yn. This problem arises, for example, when testing the
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hypothesis that observed data is modeled by a given Bayesian network, that is, satisfies
a series of conditional independence assumptions. Similarly, it is easy to investigate
changes in correlation by subtracting two matrix products, making use of the fact that
COUNT SKETCH is linear.

3.3. Tail Guarantees

We now provide a stronger analysis of our matrix multiplication algorithm, focusing
on the setting in which we compute d = O(lg n) independent sketches as described in
Section 2.2, and the estimator returned is the median.

Sparse Outputs. We first show that sparse outputs are computed exactly with high
probability.

THEOREM 3.4. Suppose AB has at most b/8 nonzero entries, and d ≥ 6 lg n. Then,
COMPRESSEDPRODUCT(A, B, b, d) together with DECOMPRESS correctly computes AB with
probability 1 − o(1).

PROOF. Let S0 denote the set of coordinates of nonzero entries in AB. Consider again
the estimator (2) for (AB)i∗ j∗ . We observe that X �= (AB)i∗ j∗ can only happen when
Ki, j �= 0 for some (i, j) �= (i∗, j∗) with (AB)i j �= 0, that is, (i, j) ∈ S0 and h(i, j) = h(i∗, j∗).
Since h is 2-wise independent with range b and |S0| ≤ b/8, this happens with probability
at most 1/8. The expected number of sketches with X �= (AB)i∗ j∗ is therefore at most
d/8. If less than d/2 of the sketches have X �= (AB)i∗ j∗ , the median will be (AB)i∗ j∗ . By
Chernoff bounds, the probability that the expected value d/8 is exceeded by a factor 4
is (e4−1/44)d/10 = o(2−d/3). In particular, if we choose d = 6 lg n then the probability that
the output is correct in all entries is 1 − o(1).

Skewed Distributions. Our next goal is to obtain stronger error guarantees in the
case where the distribution of values in AB is skewed such that the Frobenius norm is
dominated by the b/20 largest entries.

Let Errk
F(M) denote the squared Frobenius norm (i.e., sum of entries squared) of a

matrix that is identical to matrix M except for its k largest entries (in absolute value),
where it is zero. The following theorem shows a high probability bound on the error of
estimates. The success probability is can be improved to 1 − n−c for any constant c by
increasing d by a constant factor.

THEOREM 3.5. Suppose that d ≥ 6 lg n. Then, DECOMPRESS in conjunction with
COMPRESSEDPRODUCT(A, B, b, d) computes a matrix C such that for each entry Cij we
have

|Cij − (AB)i j | < 12
√

Errb/20
F (AB)/b

with probability 1 − o(n−2).

PROOF. Consider again Eq. (2) that describes a single estimator X for (AB)i∗ j∗ . Let
v be the length n2 − 1 vector with entries Ki, j(AB)i j , indexed by i j ranging over all
(i, j) �= (i∗, j∗). The error of X is s(i∗, j∗) times the dot product of v and the ±1 vector
represented by s. Since s is 2-wise independent, Var(X) ≤ ||v||22. Let L denote the set
of coordinates of the b/20 largest entries in AB (absolute value), different from (i∗, j∗),
with ties resolved arbitrarily. We would like to argue that with probability 9/10 two
events hold simultaneously:

—K(i, j) = 0 for all (i, j) ∈ L.
—||v||22 ≤ σ 2, where σ 2 = 20 Errb/20

F (AB)/b.
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When this is the case, we say that v is “good”. For each (i, j) ∈ L, Pr[Ki, j �= 0] = 1/b. By
the union bound, the probability that the first event does not hold is at most 1/20. To
analyze the second event, we focus on the vector v′ obtained from v by fixing Ki, j = 0
for (i, j) ∈ L. The expected value of ||v′||22 is bounded by σ 2/20. Thus, by Markov’s
inequality, we have that ||v′||22 > σ 2 has probability at most 1/20. Note that, when the
first event holds, we have v′ = v. So we conclude that v is good with probability at least
1 − 1/20 − 1/20 = 9/10.

For each estimator X, since Var(X) ≤ ||v||22 the probability that the error is of mag-
nitude t or more is at most ||v||22/t2 by Chebychev’s inequality. So for a good vector v,
the probability that t2 ≥ 7σ 2 ≥ 7||v||22 is at most 1/49. Thus, for each estimator, the
probability that it is based on a good vector and has error less than√

7σ 2 ≤ 12
√

Errb/20
F (AB)/b

is at least 1 − 1/10 − 1/49 > 7/8.
Finally, observe that it is unlikely that d/2 or more estimators have larger error. As in

the proof of Theorem 3.4, we get that the probability that this occurs is o(2−d/3) = o(n−2).
Thus, the probability that the median estimator has larger error is o(n−2).

4. SUBLINEAR RESULT EXTRACTION

In analogy with the sparse recovery literature (see Gilbert and Indyk [2010] for an
overview), we now consider the task of extracting the most significant coefficients of
the approximation matrix C in time o(n2). In fact, if we allow the compression algorithm
to use a factor O(lg n) more time and space, the time complexity for decompression will
be O(b lg2 n). Our main tool is error-correcting codes, previously applied to the sparse
recovery problem by Gilbert et al. [2010]. However, compared to Gilbert et al. [2010],
we are able to proceed in a more direct way that avoids iterative decoding. We note that
a similar result could be obtained by a 2-dimensional dyadic decomposition of [n] × [n],
but it appears that this would result in time O(b lg3 n) for decompression.

For � ≥ 0, let S� = {(i, j) | |(AB)i j | > �} denote the set of entries in AB with
magnitude larger than �, and let L denote the b/κ largest entries in AB, for some
constant κ. Our goal is to compute a set S of O(b) entries that contains L ∩ S� where
� = O(

√
Errb/κ

F (AB)/b). Intuitively, with high probability, we should output entries in
L if their magnitude is significantly above the standard deviation of entries of the
approximation C.

4.1. Approach

The basic approach is to compute a sequence of COUNT SKETCHES using the same set of
hash functions to approximate different submatrices of AB. The set of sketches that
contain a particular entry will then reveal (with high probability) the location of the
entry. The submatrices are constructed using a good error-correcting code

E : [n] → {0, 1}
,
where 
 = O(lg n). Let IEr denote the diagonal matrix where entry (i, i) equals E(i)r, bit
number r of E(i). Then, IEr A is the matrix that is derived from A by changing entries
to zero in those rows i for which E(i)r = 0. Similarly, we can derive BIEr from B by
changing entries to zero in columns j where E( j)r = 0. The matrix sketches that we
compute are:

Cr· = (IEr A)B, for r ∈ {1, . . . , 
}, and
C·r = A(BIEr−


), for r ∈ {
 + 1, . . . , 2
} (3)

We aim to show the following result.
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THEOREM 4.1. Assume d = O(lg n) is sufficiently large. There exists a constant κ such
that if � ≥ κ

√
Errb/κ

F (AB)/b then FINDSIGNIFICANTENTRIES(�) returns a set of O(b) positions
that includes the positions of the b/κ entries in AB having the highest magnitudes,
possibly omitting entries with magnitude below �. The running time is O(b lg2 n), space
usage is O(b lg n), and the result is correct with probability 1 − 1

n.

As earlier, the success probability can be made 1−n−c for any constant c by increasing
d by a constant factor. Combining this with Theorem 3.4 and Lemma 2.2, we obtain
the following corollary.

COROLLARY 4.2. Let A be an n1-by-n2 matrix, and B an n2-by-n3 matrix, with N
nonzero entries in total. Further, suppose that AB is known to have at most b nonzero
entries. Then, a sparse representation of AB, correct with probability 1 − 1

n, can be
computed in time O(N + n2b lg b+ b lg2 n), using space O(b lg n) in addition to the input.

4.2. Details

We now fill in the details of the approach sketched in Section 4.1. Consider the matrix
sketches of (3). We use p(t,r) to denote polynomial t in the sketch number r, for r =
1, . . . , 2
.

For concreteness, we consider an expander code [Sipser and Spielman 1996], which
is able to efficiently correct a fraction δ = �(1) errors. Given a string within Hamming
distance δ
 from E(x), the input x can be recovered in time O(
), if the decoding algo-
rithm is given access to a (fixed) lookup table of size O(n). (We assume without loss of
generality that δ
 is integer.)

Pseudocode for the algorithm computing the set of positions (i, j) can be found in
Figure 3. For each splitting function h(t)(i, j) = (h(t)

1 (i) + h(t)
2 ( j)) mod b, and each hash

value k we try to recover any entry (i, j) ∈ L ∩ S� with h(t)(i, j) = k. The recovery will
succeed with good probability if there is a unique such entry. As argued in Section 3.3,
we get uniqueness for all but a small fraction of the splitting functions with high
probability.

The algorithm first reads the relevant magnitude Xr from each of the 2
 sketches.
It then produces a binary string s that encodes which sketches have low and high
magnitude (below and above �/2, respectively). This string is then decoded into a pair
of coordinates (i, j), that are inserted in a multiset S.

A post-processing step removes “spurious” entries from S that were not inserted for
at least d/2 splitting functions, before the set is returned.

PROOF OF THEOREM 4.1. It is easy to see that FINDSIGNIFICANTENTRIES can be imple-
mented to run in expected time O(db
), which is O(b lg2 n), and space O(db), which is
O(b lg n). The implementation uses the linear time algorithm for DECODE [Sipser and
Spielman 1996], and a hash table to maintain the multiset S.

Also, since we insert db positions into the multiset S, and output only those that have
cardinality d/2 or more, the set returned clearly has at most 2b distinct positions. It re-
mains to see that each entry (i, j) ∈ L∩ S� is returned with high probability. Notice that

((IEr A)B)i j =
{

(AB)i j if E(i)r = 1
0 otherwise

(A(BIEr ))i j =
{

(AB)i j if E( j)r = 1
0 otherwise

.
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function FINDSIGNIFICANTENTRIES(Δ)
S := ∅
for t := 1 to d do
for k := 1 to b do
for r := 1 to 2 do Xr := |p(t,r)[k]| end for
s :=
for r := 1 to 2 do
if Xr > Δ/2 then s := s||1 else s := s||0

end for
(i, j) :=DECODE(s)
INSERT((i, j), S)

end for
end for
for (i, j) ∈ S do
if |{(i, j)} ∩ S| < d/2 then DELETE((i, j), S) end if

end for
return S

end

Fig. 3. Method for computing the positions of O(b) significant matrix entries of magnitude � or more. String
concatenation is denoted ||, and ε denotes the empty string. DECODE(s) decodes the (corrupted) codewords
formed by the bit string s (which must have length a multiple of 
), returning an arbitrary result if no
codeword is found within distance δ
. INSERT(x, S) inserts a copy of x into the multiset S, and DELETE(x, S)
deletes all copies of x from S. FINDSIGNIFICANTENTRIES can be used in conjunction with DECOMPRESS to obtain
a sparse approximation.

Therefore, conditioned on h(t)(i, j) = k, we have that the random variable Xr = |p(t,r)[k]|
has E[Xr] ∈ {0, |(AB)i j |}, where the value is determined by the rth bit of the string
ŝ = E(i)||E( j). The algorithm correctly decodes the rth bit if Xr ≤ �/2 for ŝr = 0, and
Xr > �/2 for ŝr = 1. In particular, the decoding of a bit is correct if (AB)i j ≥ � and Xr
deviates by at most �/2 from its expectation.

From the proof of Theorem 3.5, we see that the probability that the error of a single
estimator is greater than 12

√
Errb/20

F (AB)/b is at most 1/8. If � is at least twice as large, this
error bound implies correct decoding of the bit derived from the estimator, assuming
(AB)i∗ j∗ > �. Adjusting constants 12 and 20 to a larger value κ the error probability
can be decreased to δ/3. This means that the probability that there are δ
 errors or
more is at most 1/3. So with probability 2/3 DECODE correctly identifies (i∗, j∗), and
inserts it into S.

Repeating this for d different hash functions the expected number of copies of (i∗, j∗)
in S is at least 2d/3, and by Chernoff bounds the probability that there are less than
d/2 copies is 2−�(d). For sufficiently large d = O(lg n), the probability that any entry of
magnitude � or more is missed is less than 1/n.

5. ESTIMATING COMPRESSIBILITY

To apply Theorems 3.4 and 3.5, it is useful to be able to compute bounds on com-
pressibility of AB. In the following sections, we consider, respectively, estimation of the
number of nonzero entries, and of the ErrF value.

5.1. Number of Nonzero Entries

An constant-factor estimate of b̄ ≥ b can be computed in time O(N lg N) using Cohen’s
method [Cohen 1998] or its refinement for matrix products [Resen Amossen et al.
2010]. Recall that b̄ is an upper bound on the number of nonzeros, when not taking
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into account that there may be zeros in AB that are due to cancellation of terms. We
next show how to take cancellation of terms into consideration, to get a truly output-
sensitive algorithm.

The idea is to perform a doubling search that terminates (with high probability)
when we arrive at an upper bound on the number of nonzero entries that is within
a factor O(1) from the true value. Initially, we multiply A and B by random diagonal
matrices (on left and right side, respectively). This will not change the number of
nonzero entries, but by the Schwartz-Zippel lemma (see, e.g., Motwani and Raghavan
[1995, Theorem 7.2]) it ensures that a linear combination of entries in AB is zero (with
high probability) only when all these entries are zero.

The doubling search creates sketches for AB using b = 2, 4, 8, 16, . . . until, say, 4
5 b

entries of the sketch vector become zero for all hash functions h(1), . . . , h(d). Since there
is no cancellation (with high probability), this means that the number of distinct hash
values (under h(i, j)) of nonzero entries (i, j) is at most b/5.

We wish to bound the probability that this happens when the true number b̃ of
nonzero entries is larger than b. The expected number of hash collisions is

(b̃
2

)
/b. If the

number of distinct hash values of nonzero entries is at most b/5 the average number
of collisions per entry is b̃/(b/5) − 1. This means that, assuming b̃ ≥ b, the observed
number of collisions can be lower bounded as:

b̃
(

b̃
b/5

− 1
) /

2 ≥ b̃2

b/5
4
5

/
2 ≥ 2b̃

b̃ + 1

(
b̃
2

)/
b.

Note that the observed value is a factor 2b̃
b̃+1 ≥ 4/3 larger than the expectation. So

Markov’s inequality implies that this happens with probability at most 3/4. If it
happens for all d hash functions, we can conclude with probability 1 − (3/4)−d that b is
an upper bound on the number of nonzero entries.

Conversely, as soon as b/5 exceeds the number b̃ of nonzero entries we are guaranteed
to finish the doubling search. This means we get a 5-approximation of the number of
nonzeros.

5.2. Upper Bounding Errb/κ

F (AB)

To be able to conclude that the result of FINDSIGNIFICANTENTRIES is correct with high
probability, using Theorem 4.1, we need an upper bound on

√
Errb/κ

F (AB)/b. We will in fact
show how to estimate the larger value√

Err0
F(AB)/b = ||AB||F/

√
b,

so the allowed value for � found may not be tight. We leave it as an open problem to
efficiently compute a tight upper bound on

√
Errb/κ

F (AB)/b.
The idea is to make use of the AMS sketch X of AB using the approach described in

Section 2.1 (summing the sketches for the outer products). If we use 4-wise independent
hash functions s1 and s2, Indyk and McGregor [2008] (see also Braverman et al. [2010]
for a slight correction of this result) have shown that X2 is an unbiased estimator for
the second moment of the input, which in our case equals ||AB||2F , with variance at most
8E[X2]2. By Chebychev’s inequality, this means that X2 is a 32-approximation of ||AB||2F
with probability 3/4. (Arbitrarily better approximation can be achieved, if needed, by
taking the mean of several estimators.) To make sure that we get an upper bound with
high probability, we take the median of d = O(log n) estimators, and multiply this value
by 32. The total time for computing the upper bound is O(dn2).
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6. CONCLUSION

We have seen that matrix multiplication allows surprisingly simple and efficient ap-
proximation algorithms in cases where the result is sparse or, more generally, its Frobe-
nius norm is dominated by a sparse subset of the entries. Of course, this can be combined
with known reductions of matrix multiplication to (smaller) matrix products [Drineas
et al. 2006; Sarlós 2006] to yield further (multiplicative error) approximation results.
We also observe that our algorithm easily parallelizes in the sense that the sketches
for each outer product can be computed independently in parallel.

Discussion. While it is hard to define the notion of a “combinatorial” algorithm for
matrix multiplication precisely, it seems that striving to get better algorithms for
matrix multiplication in approximate and/or data-dependent ways may be a feasible
way to approach practical fast matrix multiplication.

Our results on covariance matrix estimation touch the interface between theoretical
computer science and statistics. In particular, when data can be assumed to have some
noise, an approximation algorithm may be just as good at finding robust answers as an
exact algorithm. We believe that there is high potential for cross-fertilization between
these areas—see the book chapter by Mahoney [2012] for further arguments in this
direction.

Open Questions. The recent results of Valiant [2012] suggest that further complexity
improvements may be possible, but our initial attempts to combine ideas from his
algorithm with our approach have been unsuccessful.

It is an interesting question whether other linear algebra problems admit similar
speedups and/or simpler algorithms in such cases. For example, can a matrix inverse be
found more efficiently if it is sparse? Can an (approximate) least squares approximation
of a system of linear equations be found more efficiently if it is known that a good
sparse approximation exists? What decompositions become more efficient when the
result matrices are sparse?

Finally, we have used a randomized compressed sensing method, which means that
our algorithms have a probability of error. Are there deterministic (“for all”) compressed
sensing methods that could be used to achieve similar running times and approximation
guarantees? The result of Iwen and Spencer shows that the answer is positive if one is
satisfied with per-column approximation guarantees.
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