1. Prove that the functions in (a)–(b) below are convex, without resorting to second derivatives.
 (a) \(f(x, y) = x^2/y \) for \(y > 0 \) on \(\mathbb{R} \times \mathbb{R}_{++} \).
 (b) \(f(x) = \log(1 + e^{\sum a_i x_i}) \) on \(\mathbb{R}^n \) (\(a_i \in \mathbb{R} \) for \(1 \leq i \leq n \)).
 (c) Using (b) show that \(\det(X + Y)^{1/n} \geq \det(X)^{1/n} + \det(Y)^{1/n} \) for \(X, Y \in S_{++}^n \).

2. Let \(f : \mathbb{R} \to \mathbb{R}_{++} \). Prove that \(f \) is log-convex if and only if \(e^{cf(x)} \) is convex for every \(c \in \mathbb{R} \) (we assume \(f \) is continuous but not that it is differentiable).

3. Fenchel conjugates:
 (a) Derive the Fenchel conjugate for \(x^T Ax + b^T x \) where \(A \succeq 0 \) may be rank-deficient.
 (b) Consider the quasi-norm \(f(x) := \|x\|_{1/2} := \left[\sum_{i=1}^n |x_i|^{1/2} \right]^2 \). What is its bi-conjugate \(f^{**} \)?

4. Let a vector \(x \) be split into nonoverlapping subvectors \(x_1, \ldots, x_G \), then we define its \(l_{p,q} \)-mixed norm as
 \[
 \|x\|_{p,q} := \left(\sum_i^G \|x_i\|_q^p \right)^{1/p}, \quad p, q \geq 1.
 \]
 Derive the dual norm to this norm (Hint: it is another mixed-norm).
 (Remark: The norms \(\ell_{1,2}, \ell_{1,\infty} \) and \(\ell_{2,1} \) are perhaps the most interesting examples; they come up in multitask lasso and group lasso problems.)

5. Consider the normed metric space: \(\mathbb{R}^n \). Define the function
 \[
 d(x, y) := \frac{2\|x - y\|}{\|x\| + \|y\| + \|x - y\|}, \quad \forall x, y \in \mathbb{R}^n.
 \]
 Prove that \(d \) is a metric on \(\mathbb{R}^n \setminus \{0\} \).

6. Suppose \(f : \mathbb{R}^n \to \mathbb{R} \) is a symmetric function, (i.e., if \(x = [x_1, x_2, \ldots, x_n] \) and \(x_\sigma = [x_\sigma(1), \ldots, x_\sigma(n)] \) for any permutation \(\sigma : \{1, \ldots, n\} \to \{1, \ldots, n\} \), then \(f(x_\sigma) = f(x) \)). Let \(S_{nn}^n \) be the set of \(n \times n \) symmetric matrices, and \(\lambda : S_{nn}^n \to \mathbb{R}^n \) the eigenvalue map, that maps a symmetric matrix to the sorted (\(\downarrow \)) vector of its eigenvalues. Show that the Fenchel conjugate of the composite function
 \[
 (f \circ \lambda)^* = f^* \circ \lambda.
 \]
 [Hint: This question is simpler than it appears. Use the fact that for any two matrices \(X, Y \in S_{nn}^n \) we have the inequality
 \[
 \text{tr}(XY) \leq \lambda(X)^T \lambda(Y).
 \]
 Also useful is to remember that \(\lambda(\cdot) \) and \(\text{tr} \) enjoy the following invariance: \(\lambda(QAQ^T) = \lambda(A) \) for orthogonal \(Q \), and \(\text{tr}(QAQ^T) = \text{tr}(A) \). To prove the claim, try showing \((f \circ \lambda)^* \leq f^* \circ \lambda \) and \((f \circ \lambda)^* \geq f^* \circ \lambda \). It’ll be helpful to consider \(Y = U \text{Diag}(\lambda(Y)) U^T \).]

7. [Bonus] Let \(x \) and \(y \) be vectors whose coordinates are in sorted order, so that
 \[
 x_1 \geq x_2 \geq \ldots \geq x_n, \quad y_1 \geq y_2 \geq \ldots \geq y_n.
 \]
 Suppose now that \(x \) and \(y \) satisfy the following
 \[
 \sum_{i=1}^k x_i \leq \sum_{i=1}^k y_i, \text{ for } 1 \leq k < n
 \]
 \[
 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i,
 \]
 Prove that for convex function \(f : \mathbb{R} \to \mathbb{R} \), it must hold that
 \[
 \sum_{i=1}^n f(x_i) \leq \sum_{i=1}^n f(y_i).
 \]