Register for Vision Courses

For the Undergrads!

U1 Computer Vision (Spring, Narasimhan/Lee)
U2 Computational Photography (Fall, Efros)
U3 Vision Sensors (Alternate Springs, Narasimhan, 2008-)

Topics include the basics of how cameras work, signal and image processing, principles of optics and photography, introduction to stereo and motion, and having fun with images and photography. Pre-requisites: Linear Algebra and Calculus.

For the RoboGrads!

G1 Computer Vision (Core, Fall, Hebert)
G2 Sensors (Core, Spring, Siegel)

Rigorous treatment of multi-view geometry, motion, tracking, image segmentation, object detection and recognition. The advanced level Sensors course explores a broad range of sensor modalities including acoustic, tactile and force, in addition to vision.

For the Visionaries!

G3 Physics-based methods in Computer Vision (Fall, Narasimhan)
G4 Learning-based methods in Computer Vision (Spring, Efros)
G5 Geometry-based methods in Computer Vision (Spring, Hebert, 2008-)
G6 Algebraic methods in Computer Vision (Irregular, Liu)

Recent years have seen convergence of vision with graphics, machine learning, statistics, optics, and even medicine, resulting in exciting new avenues of research. These courses keep up with these trends making sure students and researchers are at the cutting edge of computer vision. Pre-requisites: U1 or U2 or G1.

Enter the World of Computer Vision

U1
U2
U3
G1
G2
G3
G4
G5
G6

For the Undergrads!

For the RoboGrads!

For the Visionaries!

Learn Rigorous Fundamentals of Computer Vision

Multi-view Stereo
Tracking
3D sensing

Face detection and recognition
Textures

Dive into Cutting-Edge Research

Medical Imaging
Learning Geometry
Thinking beyond Clear Air!

Register for Vision Courses

For the Undergrads!

U1 Computer Vision (Spring, Narasimhan/Lee)
U2 Computational Photography (Fall, Efros)
U3 Vision Sensors (Alternate Springs, Narasimhan, 2008-)

Topics include the basics of how cameras work, signal and image processing, principles of optics and photography, introduction to stereo and motion, and having fun with images and photography. Pre-requisites: Linear Algebra and Calculus.

For the RoboGrads!

G1 Computer Vision (Core, Fall, Hebert)
G2 Sensors (Core, Spring, Siegel)

Rigorous treatment of multi-view geometry, motion, tracking, image segmentation, object detection and recognition. The advanced level Sensors course explores a broad range of sensor modalities including acoustic, tactile and force, in addition to vision.

For the Visionaries!

G3 Physics-based methods in Computer Vision (Fall, Narasimhan)
G4 Learning-based methods in Computer Vision (Spring, Efros)
G5 Geometry-based methods in Computer Vision (Spring, Hebert, 2008-)
G6 Algebraic methods in Computer Vision (Irregular, Liu)

Recent years have seen convergence of vision with graphics, machine learning, statistics, optics, and even medicine, resulting in exciting new avenues of research. These courses keep up with these trends making sure students and researchers are at the cutting edge of computer vision. Pre-requisites: U1 or U2 or G1.