Mobile Routing

- Mobile IP
- Ad-hoc network routing
- TCP on wireless links
- Wireless MAC
- Assigned reading
 - [BMJ+98] Performance Comparison of Multi-Hop Wireless Ad Hoc Routing Protocols
 - [BPSK97] A Comparison of Mechanism for Improving TCP Performance over Wireless Links
 - [LBC+01] Capacity of Ad Hoc Wireless Networks
 - [She98] A Channel Access Scheme for Large Dense Packet Radio Networks

Wireless Challenges

- Force us to rethink many assumptions
- Need to share airwaves rather than wire
 - Don’t know what hosts are involved
 - Host may not be using same link technology
- Mobility
- Other characteristics of wireless
 - Noisy → lots of losses
 - Slow
 - Interaction of multiple transmitters at receiver
 - Collisions, capture, interference
 - Multipath interference

Cellular Reuse

- Transmissions decay over distance
 - Spectrum can be reused in different areas
 - Different “LANs”
 - Decay is $1/R^2$ in free space, $1/R^4$ in some situations
Overview

- Wireless TCP
- Internet routing
- Ad hoc routing
- Geographic ad hoc routing, MAC, Capacity (Brad Karp)

Wireless Challenges

- Force us to rethink many assumptions
- Need to share airwaves rather than wire
 - Don’t know what hosts are involved
 - Host may not be using same link technology
- Mobility
- Other characteristics of wireless
 - Noisy → lots of losses
 - Slow
 - Interaction of multiple transmitters at receiver
 - Collisions, capture, interference
 - Multipath interference

TCP Problems Over Noisy Links

- Wireless links are inherently error-prone
 - Fades, interference, attenuation
 - Errors often happen in bursts
- TCP cannot distinguish between corruption and congestion
 - TCP unnecessarily reduces window, resulting in low throughput and high latency
- Burst losses often result in timeouts
- Sender retransmission is the only option
 - Inefficient use of bandwidth

Constraints & Requirements

- Incremental deployment
 - Solution should not require modifications to fixed hosts
 - If possible, avoid modifying mobile hosts
- Probably more data to mobile than from mobile
 - Attempt to solve this first
Challenge #1: Wireless Bit-Errors

Burst losses lead to coarse-grained timeouts
Result: Low throughput

Performance Degradation

Best possible TCP with no errors (1.30 Mbps)
TCP Reno (280 Kbps)

2 MB wide-area TCP transfer over 2 Mbps Lucent WaveLAN

Proposed Solutions

- End-to-end protocols
 - Selective ACKs, Explicit loss notification
- Split-connection protocols
 - Separate connections for wired path and wireless hop
- Reliable link-layer protocols
 - Error-correcting codes
 - Local retransmission

Approach Styles (End-to-End)

- Improve TCP implementations
 - Not incrementally deployable
 - Improve loss recovery (SACK, NewReno)
 - Help it identify congestion (ELN, ECN)
 - ACKs include flag indicating wireless loss
 - Trick TCP into doing right thing → E.g. send extra dupacks
 - What is SMART?
 - DUPACK includes sequence of data packet that triggered it
Approach Styles (Split Connection)

- Split connections
 - Wireless connection need not be TCP
 - Hard state at base station
 - Complicates mobility
 - Vulnerable to failures
 - Violates end-to-end semantics

Split-Connection Congestion Window

- Wired connection does not shrink congestion window
- But wireless connection times out often, causing sender to stall

Approach Styles (Link Layer)

- More aggressive local retransmit than TCP
 - Bandwidth not wasted on wired links
 - Adverse interactions with transport layer
 - Timer interactions
 - Interactions with fast retransmissions
 - Large end-to-end round-trip time variation
 - FEC does not work well with burst losses

Hybrid Approach: Snoop Protocol

- Shield TCP sender from wireless vagaries
 - Eliminate adverse interactions between protocol layers
 - Congestion control only when congestion occurs
- The End-to-End Argument [SRC84]
 - Preserve TCP/IP service model: end-to-end semantics
 - Is connection splitting fundamentally important?
- Eliminate non-TCP protocol messages
 - Is link-layer messaging fundamentally important?

Fixed to mobile: transport-aware link protocol
Mobile to fixed: link-aware transport protocol
Snoop Overview

- Modify base station
 - to cache un-acked TCP packets
 - … and perform local retransmissions
- Key ideas
 - No transport level code in base station
 - When node moves to different base station, state eventually recreated there

Snoop Protocol: CH to MH

- Snoop agent: active interposition agent
 - Snoops on TCP segments and ACKs
 - Detects losses by duplicate ACKs and timers
 - Suppresses duplicate ACKs from FH sender

- Transfer of file from CH to MH
 - Current window = 6 packets

- Transfer begins
Snoop Protocol: CH to MH

- Snoop agent caches segments that pass by

- Packet 1 is Lost
 - Duplicate ACKs generated
 - Packet 1 retransmitted from cache at higher priority
- Duplicate ACKs suppressed

- Clean cache on new ACK

- Clean cache on new ACK

- Active soft state agent at base station
- Transport-aware reliable link protocol
- Preserves end-to-end semantics
Overview

- Wireless TCP
- Internet routing
- Ad hoc routing

How to Handle Mobile Nodes?

- Dynamic Host Configuration (DHCP)
 - Host gets new IP address in new locations
 - Problems
 - Host does not have constant name/address → how do others contact host?
 - What happens to active transport connections?

- Naming
 - Use DHCP and update name-address mapping whenever host changes address
 - Fixes contact problem but not broken transport connections

Handling Mobile Nodes (Transport)

- TCP currently uses 4 tuple to describe connection
 - \(<\text{Src Addr}, \text{Src port}, \text{Dst addr}, \text{Dst port}>\)
- Modify TCP to allow peer’s address to be changed during connection
- Security issues
 - Can someone easily hijack connection?
- Difficult deployment → both ends must support mobility
Handling Mobile Node

- Link layer mobility
 - Learning bridges can handle mobility \(\rightarrow\) this is how it is handled at CMU
 - Encapsulated PPP (PPTP) \(\rightarrow\) Have mobile host act like he is connected to original LAN
 - Works for IP AND other network protocols
- Multicast
 - Solves similar problem \(\rightarrow\) how to route packets to different sets of hosts at different times
 - Can’t we just reuse same solutions?
 - Don’t really have solution for multicast either!

Handling Mobile Nodes (Routing)

- Allow mobile node to keep same address and name
- How do we deliver IP packets when the endpoint moves?
 - Why can’t we just have nodes advertise route to their address?
- What about packets from the mobile host?
 - Routing not a problem
 - What source address on packet?
- Key design considerations
 - Scale
 - Incremental deployment

Basic Solution to Mobile Routing

- Same as other problems in Computer Science
 - Add a level of indirection
- Keep some part of the network informed about current location
 - Need technique to route packets through this location (interception)
- Need to forward packets from this location to mobile host (delivery)

Interception

- Somewhere along normal forwarding path
 - At source
 - Any router along path
 - Router to home network
 - Machine on home network (masquerading as mobile host)
- Clever tricks to force packet to particular destination
 - "Mobile subnet" – assign mobiles a special address range and have special node advertise route
Delivery

- Need to get packet to mobile’s current location
- Tunnels
 - Tunnel endpoint = current location
 - Tunnel contents = original packets
- Source routing
 - Loose source route through mobile current location
- Network address translation (NAT)
 - What about packets from the mobile host?

Mobile IP (RFC 2290)

- Interception
 - Typically home agent – hosts on home network
- Delivery
 - Typically IP-in-IP tunneling
 - Endpoint – either temporary mobile address or foreign agent
- Terminology
 - Mobile host (MH), correspondent host (CH), home agent (HA), foreign agent (FA)
 - Care-of-address, home address

Mobile IP (MH at Home)

Mobile IP (MH Moving)
Other Mobile IP Issues

- Route optimality
 - Triangle routing
 - Can be improved with route optimization
 - Unsolicited binding cache update to sender
- Authentication
 - Registration messages
 - Binding cache updates
- Must send updates across network
- Handoffs can be slow
- Problems with basic solution
 - Reverse path check for security
 - Do we really need it…

Overview

- Wireless TCP
- Internet routing
- Ad hoc routing
Ad Hoc Routing

- Create multi-hop connectivity among set of wireless, possibly moving, nodes
- Mobile, wireless hosts act as forwarding nodes as well as end systems
- Need routing protocol to find multi-hop paths
 - Needs to be dynamic to adapt to new routes, movement
 - Interesting challenges related to interference and power limitations
 - Low consumption of memory, bandwidth, power
 - Scalable with numbers of nodes
 - Localized effects of link failure

Problems Using DV or LS

- DV protocols may form loops
 - Very wasteful in wireless: bandwidth, power
 - Loop avoidance sometimes complex
- LS protocols: high storage and communication overhead
- More links in wireless (e.g., clusters) - may be redundant → higher protocol overhead

Problems Using DV or LS

- Periodic updates waste power
 - Tx sends portion of battery power into air
 - Reception requires less power, but periodic updates prevent mobile from “sleeping”
- Convergence may be slower in conventional networks but must be fast in ad-hoc networks and be done without frequent updates

Proposed Protocols

- Destination-Sequenced Distance Vector (DSDV)
 - DV protocol, destinations advertise sequence number to avoid loops, not on demand
- Temporally-Ordered Routing Algorithm (TORA)
 - On demand creation of hhh routes based on link-reversal
- Dynamic Source Routing (DSR)
 - On demand source route discovery
- Ad Hoc On-Demand Distance Vector (AODV)
 - Combination of DSR and DSDV: on demand route discovery with hhh routing
DSR Concepts

- **Source routing**
 - No need to maintain up-to-date info at intermediate nodes
- **On-demand route discovery**
 - No need for periodic route advertisements

DSR Components

- **Route discovery**
 - The mechanism by which a sending node obtains a route to destination
- **Route maintenance**
 - The mechanism by which a sending node detects that the network topology has changed and its route to destination is no longer valid

DSR Route Discovery

- **Route discovery - basic idea**
 - **Source** broadcasts route-request to **Destination**
 - Each node forwards request by adding own address and re-broadcasting
 - Requests propagate outward until:
 - Target is found, or
 - A node that has a route to Destination is found

C Broadcasts Route Request to F

Route Request
Source C
Destination F

- A
- B
- C
- D
- E
- G
- H
- Source C
- Destination F
C Broadcasts Route Request to F

H Responds to Route Request

C Transmits a Packet to F

Forwarding Route Requests

- A request is forwarded if:
 - Node is not the destination
 - Node not already listed in recorded source route
 - Node has not seen request with same sequence number
 - IP TTL field may be used to limit scope
- Destination copies route into a Route-reply packet and sends it back to **Source**
Route Cache
- All source routes learned by a node are kept in Route Cache
- Reduces cost of route discovery
- If intermediate node receives RR for destination and has entry for destination in route cache, it responds to RR and does not propagate RR further
- Nodes overhearing RR/RP may insert routes in cache

Sending Data
- Check cache for route to destination
- If route exists then
 - If reachable in one hop
 - Send packet
 - Else insert routing header to destination and send
- If route does not exist, buffer packet and initiate route discovery

Discussion
- Source routing is good for on demand routes instead of a priori distribution
- Route discovery protocol used to obtain routes on demand
 - Caching used to minimize use of discovery
 - Periodic messages avoided
 - But need to buffer packets

Snoop ACK Processing
- Ack arrives (from mobile host)
 - New ack? Yes
 - Yes: Free buffers, Update RTT estimate
 - No: Propagate ack to sender
 - No: Spurious ack
 - Yes: Discard
 - No: Dup ack?
 - Yes: Discard
 - No: Threshold?
 - Yes: Retransmit lost packet
 - No: Next pkt lost

Common case
Snoop Data Processing

Packet arrives

- New pkt?
 - No: Forward pkt
 - Yes: Reset local retransmit counter

- New pkt?
 - No: Mark as cong. loss
 - Yes: Cache packet

- In-sequence?
 - Yes: Forward to mobile
 - No: Cache packet

Benefits of TCP-Awareness

- 30-35% improvement for Snoop: LL congestion window is small (but no coarse timeouts occur)
- Connection bandwidth-delay product = 25 KB
- Suppressing duplicate acknowledgments and TCP-awareness leads to better utilization of link bandwidth and performance

Performance: FH to MH

- Snoop+SACK and Snoop perform best
- Connection splitting not essential
- TCP SACK performance disappointing

Next Lecture

- PROJECT CHECKPOINT
 - Related work
 - Preliminary results
 - Detailed timeline
- Multicast
 - routing, reliability, congestion control
- Network measurements
- Readings
 - [DG90] Multicast Routing in Datagram Internetworks and Extended LANs
 - [CRS201] Enabling Conferencing Applications on the Internet using an Overlay Multicast Architecture
 - [LAWD04] A First-Principles Approach to Understanding the Internet's Router-level Topology
 - [Pax97] End-to-End Internet Packet Dynamics
 - [JD04] Ten Fallacies and Pitfalls on End-to-End Available Bandwidth Estimation
 - [Pax04] Strategies for Sound Internet Measurement
Other Issues

• What about mobility?
• What about mobile-to-fixed communication?

Handling Mobility

Send packets to multiple base stations

Resend missed packets from Snoop cache on handoff

Handing Mobility

Snoop Protocol: MH to CH

• Caching and retransmission will not work
 • Losses occur before packet reaches BS
 • Congestion losses should not be hidden
• Solution: Explicit Loss Notifications (ELN)
 • In-band message to TCP sender
- MH begins transfer to CH

- Packet 1 lost on wireless link

- Add 1 to list of holes after checking for congestion

- Duplicate ACKs sent
- ELN information added to duplicate ACKs

- ELN information on duplicate ACKs
- Retransmit on Packet 1 on dup ACK + ELN
- No congestion control now

- Clean holes on new ACK
- Link-aware transport decouples congestion control from loss recovery
- Technique generalizes nicely to wireless transit links

- Header Compression
Low Bandwidth Links

- Efficiency for interactive
 - 40-byte headers vs payload size – 1 byte payload for telnet
- Header compression
 - What fields change between packets?
 - 3 types – fixed, random, differential

TCP Header

<table>
<thead>
<tr>
<th>Source port</th>
<th>Destination port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence number</td>
<td></td>
</tr>
<tr>
<td>Acknowledgement</td>
<td></td>
</tr>
<tr>
<td>HdrLen</td>
<td>Flags</td>
</tr>
<tr>
<td>Checksum</td>
<td>Urgent pointer</td>
</tr>
<tr>
<td>Options (variable)</td>
<td>Data</td>
</tr>
</tbody>
</table>

Header Compression

- What happens if packets are lost or corrupted?
 - Packets created with incorrect fields
 - Checksum makes it possible to identify
 - How is this state recovered from?
- TCP retransmissions are sent with complete headers
 - Large performance penalty – must take a timeout, no data-driven loss recovery
 - How do you handle other protocols?

Non-reliable Protocols

- IPv6 and other protocols are adding large headers
 - However, these protocols don’t have loss recovery
 - How to recovery compression state
- Decaying refresh of compression state
 - Suppose compression state is installed by packet X
 - Send full state with X+2, X+4, X+8 until next state
 - Prevents large number of packets being corrupted
- Heuristics to correct packet
 - Apply differencing fields multiple times
- Do we need to define new formats for each protocol?
 - Not really – can define packet description language [mobicom99]
CSMA/CD Does Not Work

- Carrier sense problems
 - Relevant contention at the receiver, not sender
 - Hidden terminal
 - Exposed terminal
- Collision detection problems
 - Hard to build a radio that can transmit and receive at same time

RTS/CTS Approach

- Before sending data, send Ready-to-Send (RTS)
- Target responds with Clear-to-Send (CTS)
- Others who hear defer transmission
 - Packet length in RTS and CTS messages
- If CTS is not heard, or RTS collides
 - Retransmit RTS after binary exponential backoff