Unicast: one source to one destination
Multicast: one source to many destinations

Two main functions:
- Efficient data distribution
- Logical naming of a group

Overview
- What/Why Multicast
- IP Multicast Service Basics
- Multicast Routing Basics
- DVMRP
- Reliability
- Congestion Control
- Overlay Multicast
- Publish-Subscribe

Multicast Routing
- Efficient data distribution
- Logical naming of a group
Multicast Router Responsibilities

- Learn of the existence of multicast groups (through advertisement)
- Identify links with group members
- Establish state to route packets
 - Replicate packets on appropriate interfaces
 - Routing entry:

 | Src, incoming interface | List of outgoing interfaces |

Logical Naming

- Single name/address maps to logically related set of destinations
 - Destination set = multicast group
- How to scale?
 - Single name/address independent of group growth or changes

Multicast Groups

- Members are the intended receivers
- Senders may or may not be members
- Hosts may belong to many groups
- Hosts may send to many groups
- Support dynamic creation of groups, dynamic membership, dynamic sources

Scope

- Groups can have different scope
 - LAN (local scope)
 - Campus/admin scoping
 - TTL scoping
- Concept of scope important to multipoint protocols and applications
Example Applications

- Broadcast audio/video
- Push-based systems
- Software distribution
- Web-cache updates
- Teleconferencing (audio, video, shared whiteboard, text editor)
- Multi-player games
- Server/service location
- Other distributed applications

Overview

- What/Why Multicast
- IP Multicast Service Basics
- Multicast Routing Basics
- DVMRP
- Reliability
- Congestion Control
- Overlay Multicast
- Publish-Subscribe

IP Multicast Architecture

- Service model
 - Host-to-router protocol (IGMP)
 - Multicast routing protocols (various)

IP Multicast Service Model (rfc1112)

- Each group identified by a single IP address
- Groups may be of any size
- Members of groups may be located anywhere in the Internet
- Members of groups can join and leave at will
- Senders need not be members
- Group membership not known explicitly
- Analogy:
 - Each multicast address is like a radio frequency, on which anyone can transmit, and to which anyone can tune-in.
IP Multicast Addresses

- Class D IP addresses
 - 224.0.0.0 – 239.255.255.255
 - \[\begin{array}{c} 1_1 \text{ Group ID} \end{array} \]

- How to allocate these addresses?
 - Well-known multicast addresses, assigned by IANA
 - Transient multicast addresses, assigned and reclaimed dynamically, e.g., by "sdr" program

IP Multicast Service

- Sending – same as before
- Receiving – two new operations
 - Join-IP-Multicast-Group(group-address, interface)
 - Leave-IP-Multicast-Group(group-address, interface)
 - Receive multicast packets for joined groups via normal IP-Receive operation

Multicast Scope Control – Small TTLs

- TTL expanding-ring search to reach or find a nearby subset of a group

Multicast Scope Control – Large TTLs

- Administrative TTL Boundaries to keep multicast traffic within an administrative domain, e.g., for privacy or resource reasons
 - TTL threshold set on interfaces to these links, greater than the diameter of the admin. domain
 - The rest of the Internet
 - An administrative domain
Overview

- What/Why Multicast
- IP Multicast Service Basics
- Multicast Routing Basics
- DVMRP
- Reliability
- Congestion Control
- Overlay Multicast
- Publish-Subscribe

IP Multicast Architecture

Multicast Routing

- Basic objective – build distribution tree for multicast packets
- Multicast service model makes it hard
 - Anonymity
 - Dynamic join/leave

Routing Techniques

- Flood and prune
 - Begin by flooding traffic to entire network
 - Prune branches with no receivers
 - Examples: DVMRP, PIM-DM
 - Unwanted state where there are no receivers
- Link-state multicast protocols
 - Routers advertise groups for which they have receivers to entire network
 - Compute trees on demand
 - Example: MOSPF
 - Unwanted state where there are no senders
Routing Techniques

- Core based protocols
 - Specify "meeting place" aka core
 - Sources send initial packets to core
 - Receivers join group at core
 - Requires mapping between multicast group address and "meeting place"
- Examples: CBT, PIM-SM

Shared vs. Source-based Trees

- Source-based trees
 - Separate shortest path tree for each sender
 - DVMRP, MOSPF, PIM-DM, PIM-SM
- Shared trees
 - Single tree shared by all members
 - Data flows on same tree regardless of sender
 - CBT, PIM-SM

Source-based Trees

A Shared Tree
Shared vs. Source-Based Trees

- Source-based trees
 - Shortest path trees – low delay, better load distribution
 - More state at routers (per-source state)
 - Efficient for dense-area multicast
- Shared trees
 - Higher delay (bounded by factor of 2), traffic concentration
 - Choice of core affects efficiency
 - Per-group state at routers
 - Efficient for sparse-area multicast
- Which is better? → extra state in routers is bad!

Distance-Vector Multicast Routing

- DVMRP consists of two major components:
 - A conventional distance-vector routing protocol (like RIP)
 - A protocol for determining how to forward multicast packets, based on the routing table
- DVMRP router forwards a packet if
 - The packet arrived from the link used to reach the source of the packet (reverse path forwarding check – RPF)
 - If downstream links have not pruned the tree

Overview

- What/Why Multicast
- IP Multicast Service Basics
- Multicast Routing Basics
- DVMRP
- Reliability
- Congestion Control
- Overlay Multicast
- Publish-Subscribe

Example Topology
Overview

- What/Why Multicast
- IP Multicast Service Basics
- Multicast Routing Basics
- DVMRP
- Reliability
- Congestion Control
- Overlay Multicast
- Publish-Subscribe

Implosion

Packet 1 is lost
All 4 receivers request a resend

Retransmission

- Re-transmitter
 - Options: sender, other receivers
- How to retransmit
 - Unicast, multicast, scoped multicast, retransmission group, ...
- Problem: Exposure

Exposure

Packet 1 does not reach R1; Receiver 1 requests a resend
Packet 1 resent to all 4 receivers
Ideal Recovery Model

Packet 1 reaches R1 but is lost before reaching other Receivers.

Only one receiver sends NACK to the nearest S or R with packet.

Repair sent only to those that need packet.

SRM

- Originally designed for wb
- Receiver-reliable
 - NACK-based
- Every member may multicast NACK or retransmission

SRM Request Suppression

Packet 1 is lost; R1 requests resend to Source and Receivers.

Packet 1 is resent; R2 and R3 no longer have to request a resend.

Delay varies by distance.

Deterministic Suppression

Delay = C × d_{S,R}
SRM Star Topology
Packet 1 is lost; All Receivers request resends
Packet 1 is resent to all Receivers
Delay is same length

SRM: Stochastic Suppression
Delay = U[0,D2] x d_{S,R}

SRM (Summary)
- NACK/Retransmission suppression
 - Delay before sending
 - Delay based on RTT estimation
 - Deterministic + Stochastic components
- Periodic session messages
 - Full reliability
 - Estimation of distance matrix among members

What’s Missing?
- Losses at link (A,C) causes retransmission to the whole group
- Only retransmit to those members who lost the packet
- [Only request from the nearest responder]
Local Recovery

- Different techniques in various systems
- Application-level hierarchy
 - Fixed v.s. dynamic
- TTL scoped multicast
- Router supported

Overview

- What/Why Multicast
- IP Multicast Service Basics
- Multicast Routing Basics
- DVMRP
- Reliability
- Congestion Control
- Overlay Multicast
- Publish-Subscribe

Multicast Congestion Control

- What if receivers have very different bandwidths?
- Send at max?
- Send at min?
- Send at avg?

Video Adaptation: RLM

- Receiver-driven Layered Multicast
- Layered video encoding
- Each layer uses its own mcast group
- On spare capacity, receivers add a layer
- On congestion, receivers drop a layer
- Join experiments used for shared learning
Layered Media Streams

- R1 joins layer 1, joins layer 2, joins layer 3
- R2 joins layer 1, join layer 2, fails at layer 3
- R3 joins layer 1, fails at layer 2

Drop Policies for Layered Multicast

- Priority
 - Packets for low bandwidth layers are kept, drop queued packets for higher layers
 - Requires router support
- Uniform (e.g., drop tail, RED)
 - Packets arriving at congested router are dropped regardless of their layer
- Which is better?
 - Intuition vs. reality!

RLM Intuition

- Uniform
 - Better incentives to well-behaved users
 - If oversend, performance rapidly degrades
 - Clearer congestion signal
 - Allows shared learning
- Priority
 - Can waste upstream resources
 - Hard to deploy
- RLM approaches optimal operating point
 - Uniform is already deployed
 - Assume no special router support
RLM Join Experiment

- Receivers periodically try subscribing to higher layer
- If enough capacity, no congestion, no drops → Keep layer (& try next layer)
- If not enough capacity, congestion, drops → Drop layer (& increase time to next retry)
- What about impact on other receivers?

RLM Scalability?

- What happens with more receivers?
- Increased frequency of experiments?
 - More likely to conflict (false signals)
 - Network spends more time congested
- Reduce # of experiments per host?
 - Takes longer to converge
- Receivers coordinate to improve behavior

Join Experiments

Overview

- What/Why Multicast
- IP Multicast Service Basics
- Multicast Routing Basics
- DVMRP
- Reliability
- Congestion Control
- Overlay Multicast
- Publish-Subscribe
Supporting Multicast on the Internet

At which layer should multicast be implemented?

IP Multicast

- Highly efficient
- Good delay

End System Multicast

Potential Benefits Over IP Multicast

- Quick deployment
- All multicast state in end systems
- Computation at forwarding points simplifies support for higher level functionality
Concerns with End System Multicast

- Self-organize recipients into multicast delivery overlay tree
 - Must be closely matched to real network topology to be efficient
- Performance concerns compared to IP Multicast
 - Increase in delay
 - Bandwidth waste (packet duplication)

Coordination: Cooperative group communication

- Scribe: Tree-based group management
- Multicast, anycast primitives
- Scalable: large numbers of groups, members, wide range of members/group, dynamic membership
- [IEEE JSAC ’02]
Respecting forwarding capacity

- The tree structure described may not respect maximum capacities
- Scribe's push-down fails to resolve the problem because a leaf node in one tree may have children in another tree

Parent location algorithm

- Node adopts prospective child
- If too many children, choose one to reject:
 - First, look for one in stripe without shared prefix
 - Otherwise, select node with shortest prefix match
- Orphan locates new parent in up to two steps:
 - Tries former siblings with stripe prefix match
 - Adopts or rejects using same criteria; continue push-down
 - Use the spare capacity group

The spare capacity group

- If orphan hasn't found parent yet, anycasts to spare capacity group
- Group contains all nodes with fewer children than their forwarding capacity
- Anycast returns nearby node, which starts a DFS of the spare capacity group tree, sending first to a child...

Spare capacity group (cont.)

- At each node in the search:
 - If node has no children left to search, check whether it receives a stripe the orphan seeks
 - If so, verifies that the orphan is not an ancestor (which would create a cycle)
 - If both tests succeed, the node adopts the orphan
 - May leave spare capacity group
 - If either test fails, back up to parent (more DFS...)
A spare capacity example

Problems

- Imposing bandwidth constraints on Scribe can
 - result in:
 - High tree depth
 - non-DHT links

- Observed Cause: mismatch between id space and node bandwidth constraints

Overview

- What/Why Multicast
- IP Multicast Service Basics
- Multicast Routing Basics
- DVMRP
- Reliability
- Congestion Control
- Overlay Multicast
- Publish-Subscribe

Publish-Subscribe

- P/S service is also known as event service
- Publishers role: Publishers generate event data and publishes them
- Subscribers role: Subscribers submit their subscriptions and process the events received
- P/S service: It’s the mediator/broker that routes events from publishers to interested subscribers
Key attributes of P/S communication model
- The publishing entities and subscribing entities are anonymous
- The publishing entities and subscribing entities are highly de-coupled
- Asynchronous communication model
- The number of publishing and subscribing entities can dynamically change without affecting the entire system

Key functions implemented by P/S service
- Event filtering (event selection)- The process which selects the set of subscribers that have shown interest in a given event
- Event routing (event delivery) – The process of routing the published events from the publisher to all interested subscribers

Subject based vs. Content based
- Subject based:
 - Generally also known as topic based, group based or channel based event filtering.
 - Here each event is published to one of these channels by its publisher
 - A subscriber subscribes to a particular channel and will receive all events published to the subscribed channel.
 - Simple process for matching an event to subscriptions
Subject based vs. Content based

- **Content based:**
 - More flexibility and power to subscribers, by allowing to express as an arbitrary query over the contents of the event.
 - E.g. Notify me of all stock quotes of IBM from New York stock exchange if the price is greater than 150
 - Added complexity in matching an event to subscriptions

Event based vs. Content based

Event routing

- The basic P/S system consists of many event publishers, an event broker (or mediator) and many subscribers.
- An event publisher generates an event in response to some change it monitors
- The events are published to an event broker which matches events against all subscriptions forwarded by subscribers in the system.
- Event broker system could have either a single event broker or multiple distributed event brokers coordinating among themselves

Event routing

- The basic P/S system consists of many event publishers, an event broker (or mediator) and many subscribers.
- An event publisher generates an event in response to some change it monitors
- The events are published to an event broker which matches events against all subscriptions forwarded by subscribers in the system.
- Event broker system could have either a single event broker or multiple distributed event brokers coordinating among themselves

Basic elements of P/S model

- **Event data model**
 - Structure
 - Types
- **Subscription model**
 - Filter language
 - Scope (subject, content, context)
- **General challenge**
 - Expressiveness vs. Scalability