Graph Model

- Represent each router as node
- Direct link between routers represented by edge
 - Symmetric links ⇒ undirected graph
 - Edge “cost” \(c(x,y) \) denotes measure of difficulty of using link
 - delay, $ cost, or congestion level
- Task
 - Determine least cost path from every node to every other node
 - Path cost \(d(x,y) \) = sum of link costs

Routes from Node A

- Properties
 - Some set of shortest paths forms tree
 - Shortest path spanning tree
 - Solution not unique
 - E.g., A-E-F-C-D also has cost 7

Summary

- The Story So Far…
 - IP addresses are structure to reflect Internet structure
 - IP packet headers carry these addresses
 - When Packet Arrives at Router
 - Examine header to determine intended destination
 - Look up in table to determine next hop in path
 - Send packet out appropriate port
- Today’s lecture
 - How to generate the forwarding table

Forwarding Table for A

<table>
<thead>
<tr>
<th>Dest</th>
<th>Cost</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>E</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>B</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>E</td>
</tr>
</tbody>
</table>
Ways to Compute Shortest Paths

• Centralized
 • Collect graph structure in one place
 • Use standard graph algorithm
 • Disseminate routing tables

• Link-state
 • Every node collects complete graph structure
 • Each computes shortest paths from it
 • Each generates own routing table

• Distance-vector
 • No one has copy of graph
 • Nodes construct their own tables iteratively
 • Each sends information about its table to neighbors

Outline

• Distance Vector
• Link State

Distance-Vector Method

• Idea
 • At any time, have cost/next hop of best known path to destination
 • Use cost \(\infty\) when no path known
 • Initially
 • Only have entries for directly connected nodes

Distance-Vector Update

• Update\((x,y,z)\)
 \[
 d \leftarrow c(x,z) + d(z,y) \quad \text{# Cost of path from } x \text{ to } y \text{ with first hop } z
 \]
 \[
 \text{if } d < d(x,y) \quad \text{# Found better path}
 \]
 \[
 \text{return } d, z \quad \text{# Updated cost / next hop}
 \]
 \[
 \text{else}
 \]
 \[
 \text{return } d(x,y), \text{ nexthop}(x,y) \quad \text{# Existing cost / next hop}
 \]
Algorithm

- Bellman-Ford algorithm
- Repeat
 - For every node x
 - For every neighbor z
 - For every destination y
 - \(d(x, y) \leftarrow \text{Update}(x, y, z) \)
- Until converge
Distance Vector: Link Cost Changes

Link cost changes:
- Node detects local link cost change
- Updates distance table
- If cost change in least cost path, notify neighbors

“good news travels fast”

algorithm terminates

good news travels fast

algorithm continues on!

Distance Vector: Split Horizon

If Z routes through Y to get to X:
- Z does not advertise its route to X back to Y

algorithm terminates

Distance Vector: Poison Reverse

If Z routes through Y to get to X:
- Z tells Y its (Z’s) distance to X is infinite (so Y won’t route to X via Z)
- Eliminates some possible timeouts with split horizon
- Will this completely solve count to infinity problem?
Poison Reverse Failures

- Iterations don’t converge
- “Count to infinity”

Solution
- Make “infinity” smaller
- What is upper bound on maximum path length?

Routing Information Protocol (RIP)

- Earliest IP routing protocol (1982 BSD)
- Current standard is version 2 (RFC 1723)

Features
- Every link has cost 1
- “Infinity” = 16
- Limits to networks where everything reachable within 15 hops

Sending Updates
- Every router listens for updates on UDP port 520
- RIP message can contain entries for up to 25 table entries

RIP Updates

- Initial
 - When router first starts, asks for copy of table for every neighbor
 - Uses it to iteratively generate own table
- Periodic
 - Every 30 seconds, router sends copy of its table to each neighbor
 - Neighbors use to iteratively update their tables
- Triggered
 - When every entry changes, send copy of entry to neighbors
 - Except for one causing update (split horizon rule)
 - Neighbors use to update their tables

RIP Staleness / Oscillation Control

- Small Infinity
 - Count to infinity doesn’t take very long
- Route Timer
 - Every route has timeout limit of 180 seconds
 - Reached when haven’t received update from next hop for 6 periods
 - If not updated, set to infinity
- Soft-state refresh → important concept!!!
- Behavior
 - When router or link fails, can take minutes to stabilize
Outline

- Distance Vector
- Link State

Link State Protocol Concept

- Every node gets complete copy of graph
 - Every node “floods” network with data about its outgoing links
- Every node computes routes to every other node
 - Using single-source, shortest-path algorithm
 - Process performed whenever needed
 - When connections die / reappear

Sending Link States by Flooding

- X Wants to Send Information
 - Sends on all outgoing links
- When Node Y Receives Information from Z
 - Send on all links other than Z

Dijkstra’s Algorithm

- Given
 - Graph with source node s and edge costs $c(u,v)$
 - Determine least cost path from s to every node v
- Shortest Path First Algorithm
 - Traverse graph in order of least cost from source
Dijkstra's Algorithm: Concept

- **Node Sets**
 - **Done**: Already have least cost path to it
 - **Horizon**: Reachable in 1 hop from node in Done
 - **Unseen**: Cannot reach directly from node in Done

- **Label**
 - \(d(v) \): path cost from \(s \) to \(v \)
 - **Path**: Keep track of last link in path

Dijkstra's Algorithm: Initially

- No nodes done
- Source in horizon

Dijkstra's Algorithm: Initially

- \(d(v) \) to node \(A \) shown in red
- Only consider links from done nodes

Dijkstra's Algorithm

- Select node \(v \) in horizon with minimum \(d(v) \)
- Add link used to add node to shortest path tree
- Update \(d(v) \) information
Dijkstra’s Algorithm

- Repeat...

Link State Characteristics

- With consistent LSDBs*, all nodes compute consistent loop-free paths
- Can still have transient loops

*Link State Data Base

Packet from C to A may loop around BDC if B knows about failure and C & D do not
OSPF Routing Protocol

- Open
 - Open standard created by IETF
- Shortest-path first
 - Another name for Dijkstra’s algorithm
- More prevalent than RIP

OSPF Reliable Flooding

- Transmit link state advertisements
 - Originating router
 - Typically, minimum IP address for router
 - Link ID
 - ID of router at other end of link
 - Metric
 - Cost of link
 - Link-state age
 - Incremented each second
 - Packet expires when reaches 3600
 - Sequence number
 - Incremented each time sending new link information

OSPF Flooding Operation

- Node X Receives LSA from Node Y
 - With Sequence Number q
 - Looks for entry with same origin/link ID

Cases
- No entry present
 - Add entry, propagate to all neighbors other than Y
- Entry present with sequence number p < q
 - Update entry, propagate to all neighbors other than Y
- Entry present with sequence number p > q
 - Send entry back to Y
 - To tell Y that it has out-of-date information
- Entry present with sequence number p = q
 - Ignore it

Flooding Issues

- When should it be performed
 - Periodically
 - When status of link changes
 - Detected by connected node
- What happens when router goes down & back up
 - Sequence number reset to 0
 - Other routers may have entries with higher sequence numbers
 - Router will send out LSAs with number 0
 - Will get back LSAs with last valid sequence number p
 - Router sets sequence number to p+1 & resends
Adoption of OSPF

- RIP viewed as outdated
 - Good when networks small and routers had limited memory & computational power
- OSPF Advantages
 - Fast convergence when configuration changes

Comparison of LS and DV Algorithms

Message complexity
- **LS**: with n nodes, E links, O(nE) messages
- **DV**: exchange between neighbors only

Speed of Convergence
- **LS**: Complex computation
 - But...can forward before computation
 - may have oscillations
- **DV**: convergence time varies
 - may be routing loops
 - count-to-infinity problem
 - (faster with triggered updates)

Space requirements:
- **LS**: maintains entire topology
- **DV**: maintains only neighbor state

Robustness: what happens if router malfunctions?
- **LS**: node can advertise incorrect link cost
 - each node computes only its own table
- **DV**: DV node can advertise incorrect path cost
 - each node’s table used by others
 - errors propagate thru network
- Other tradeoffs
 - Making LSP flood reliable

Next Lecture: BGP

- How to make routing scale to large networks
- How to connect together different ISPs

Lecture 10: 2-10-2005

37

38

39

40
EXTRA SLIDES
The rest of the slides are FYI

RIP Table Processing
• RIP routing tables managed by *application-level* process called route-d (daemon)
• advertisements sent in UDP packets, periodically repeated

Dijkstra’s Algorithm

1 *Initialization:*
2 \(N = \{A\} \)
3 for all nodes \(v \)
4 if \(v \) adjacent to \(A \)
5 then \(D(v) = c(A,v) \)
6 else \(D(v) = \infty \)
7
8 *Loop*
9 find \(w \) not in \(N \) such that \(D(w) \) is a minimum
10 add \(w \) to \(N \)
11 update \(D(v) \) for all \(v \) adjacent to \(w \) and not in \(N \):
12 \[D(v) = \min(D(v), D(w) + c(w,v)) \]
13 /* new cost to \(v \) is either old cost to \(v \) or known
14 shortest path cost to \(w \) plus cost from \(w \) to \(v \) */
15 *until all nodes in \(N \)*

Dijkstra’s algorithm: example

<table>
<thead>
<tr>
<th>Step</th>
<th>start (N)</th>
<th>(D(B),p(B))</th>
<th>(D(C),p(C))</th>
<th>(D(D),p(D))</th>
<th>(D(E),p(E))</th>
<th>(D(F),p(F))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>2,A</td>
<td>4,D</td>
<td>2,D</td>
<td>(\infty)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>2,A</td>
<td>3,E</td>
<td>4,E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td>3,E</td>
<td>4,E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ADEBC</td>
<td>4,E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ADEBCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lecture 10: 2-10-2005